Jeep XJ. Manual - part 48

 

  Index      Jeep     Jeep XJ - service repair manual 2001 year

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  46  47  48  49   ..

 

 

Jeep XJ. Manual - part 48

 

 

PEDAL PULSATION

Pedal pulsation is caused by components that are

loose, or beyond tolerance limits.

The primary cause of pulsation are disc brake

rotors with excessive lateral runout or thickness vari-
ation, or out of round brake drums. Other causes are
loose wheel bearings or calipers and worn, damaged
tires.

NOTE: Some pedal pulsation may be felt during
ABS activation.

BRAKE DRAG

Brake drag occurs when the lining is in constant

contact with the rotor or drum. Drag can occur at one
wheel, all wheels, fronts only, or rears only.

Drag is a product of incomplete brake shoe release.

Drag can be minor or severe enough to overheat the
linings, rotors and drums.

Minor drag will usually cause slight surface char-

ring of the lining. It can also generate hard spots in
rotors and drums from the overheat-cool down pro-
cess. In most cases, the rotors, drums, wheels and
tires are quite warm to the touch after the vehicle is
stopped.

Severe drag can char the brake lining all the way

through. It can also distort and score rotors and
drums to the point of replacement. The wheels, tires
and brake components will be extremely hot. In
severe cases, the lining may generate smoke as it
chars from overheating.

Common causes of brake drag are:
• Seized or improperly adjusted parking brake

cables.

• Loose/worn wheel bearing.

• Seized caliper or wheel cylinder piston.

• Caliper binding on corroded bushings or rusted

slide surfaces.

• Loose caliper mounting.

• Drum brake shoes binding on worn/damaged

support plates.

• Mis-assembled components.

• Long booster output rod.
If brake drag occurs at all wheels, the problem

may be related to a blocked master cylinder return
port, or faulty power booster (binds-does not release).

BRAKE FADE

Brake fade is usually a product of overheating

caused by brake drag. However, brake overheating
and resulting fade can also be caused by riding the
brake pedal, making repeated high deceleration stops
in a short time span, or constant braking on steep
mountain roads. Refer to the Brake Drag information
in this section for causes.

BRAKE PULL

Front brake pull condition could result from:
• Contaminated lining in one caliper

• Seized caliper piston

• Binding caliper

• Loose caliper

• Rusty caliper slide surfaces

• Improper brake shoes

• Damaged rotor
A worn, damaged wheel bearing or suspension

component are further causes of pull. A damaged
front tire (bruised, ply separation) can also cause
pull.

A common and frequently misdiagnosed pull condi-

tion is where direction of pull changes after a few
stops. The cause is a combination of brake drag fol-
lowed by fade at one of the brake units.

As the dragging brake overheats, efficiency is so

reduced that fade occurs. Since the opposite brake
unit is still functioning normally, its braking effect is
magnified. This causes pull to switch direction in
favor of the normally functioning brake unit.

An additional point when diagnosing a change in

pull condition concerns brake cool down. Remember
that pull will return to the original direction, if the
dragging brake unit is allowed to cool down (and is
not seriously damaged).

REAR BRAKE GRAB OR PULL

Rear grab or pull is usually caused by improperly

adjusted or seized parking brake cables, contami-
nated lining, bent or binding shoes and support
plates, or improperly assembled components. This is
particularly true when only one rear wheel is
involved. However, when both rear wheels are
affected, the master cylinder or proportioning valve
could be at fault.

BRAKES DO NOT HOLD AFTER DRIVING THROUGH DEEP
WATER PUDDLES

This condition is generally caused by water soaked

lining. If the lining is only wet, it can be dried by
driving with the brakes very lightly applied for a
mile or two. However, if the lining is both soaked and
dirt contaminated, cleaning and/or replacement will
be necessary.

BRAKE LINING CONTAMINATION

Brake lining contamination is mostly a product of

leaking calipers or wheel cylinders, worn seals, driv-
ing through deep water puddles, or lining that has
become covered with grease and grit during repair.
Contaminated lining should be replaced to avoid fur-
ther brake problems.

5 - 8

BRAKES

XJ

DIAGNOSIS AND TESTING (Continued)

WHEEL AND TIRE PROBLEMS

Some conditions attributed to brake components

may actually be caused by a wheel or tire problem.

A damaged wheel can cause shudder, vibration and

pull. A worn or damaged tire can also cause pull.

Severely worn tires with very little tread left can

produce a grab-like condition as the tire loses and
recovers traction. Flat-spotted tires can cause vibra-
tion and generate shudder during brake operation. A
tire with internal damage such as a severe bruise,
cut, or ply separation can cause pull and vibration.

BRAKE NOISES

Some brake noise is common with rear drum

brakes and on some disc brakes during the first few
stops after a vehicle has been parked overnight or
stored. This is primarily due to the formation of trace
corrosion (light rust) on metal surfaces. This light
corrosion is typically cleared from the metal surfaces
after a few brake applications causing the noise to
subside.

BRAKE SQUEAK/SQUEAL

Brake squeak or squeal may be due to linings that

are wet or contaminated with brake fluid, grease, or
oil. Glazed linings and rotors with hard spots can
also contribute to squeak. Dirt and foreign material
embedded in the brake lining will also cause squeak/
squeal.

A very loud squeak or squeal is frequently a sign of

severely worn brake lining. If the lining has worn
through to the brake shoes in spots, metal-to-metal
contact occurs. If the condition is allowed to continue,
rotors and drums can become so scored that replace-
ment is necessary.

BRAKE CHATTER

Brake chatter is usually caused by loose or worn

components, or glazed/burnt lining. Rotors with hard
spots can also contribute to chatter. Additional causes
of chatter are out-of-tolerance rotors, brake lining not
securely attached to the shoes, loose wheel bearings
and contaminated brake lining.

THUMP/CLUNK NOISE

Thumping or clunk noises during braking are fre-

quently not caused by brake components. In many
cases, such noises are caused by loose or damaged
steering, suspension, or engine components. However,
calipers that bind on the slide surfaces can generate
a thump or clunk noise. In addition, worn out,
improperly adjusted, or improperly assembled rear
brake shoes can also produce a thump noise.

BRAKE LAMP SWITCH

The brake lamp switch operation can be tested

with an ohmmeter. The ohmmeter is used to check
continuity between the pin terminals (Fig. 6).

SWITCH CIRCUIT IDENTIFICATION

• Terminals 1 and 2: brake sensor circuit

• Terminals 3 and 4: speed control circuit if

equipped

• Terminals 5 and 6: brake lamp circuit

SWITCH CONTINUITY TEST

NOTE: Disconnect switch harness before testing
switch continuity.

With the switch plunger retracted, attach test

leads to terminal pins 1 and 2. Replace switch if
meter indicates no continuity.

With the switch plunger retracted, attach test

leads to terminal pins 3 and 4. Replace switch if
meter indicates no continuity.

With the switch plunger extended, attach test

leads to terminal pins 5 and 6. Replace switch if
meter indicates no continuity.

RED BRAKE WARNING LAMP

The red brake warning lamp will illuminate under

the following conditions:

• Self test at start-up.

• Parking brakes are applied.

• Leak in front/rear brake hydraulic circuit.
If the red light remains on after start-up, first ver-

ify that the parking brakes are fully released. Then
check pedal action and fluid level. If the lamp on and
the brake pedal is low this indicates the pressure dif-

Fig. 6 Brake Lamp Switch Terminal Identification

1 – TERMINAL PINS
2 – PLUNGER TEST POSITIONS

XJ

BRAKES

5 - 9

DIAGNOSIS AND TESTING (Continued)

ferential switch and valve have been actuated due to
a leak in the hydraulic system.

On models with ABS brakes, the amber warning

lamp only illuminates during the self test and when
an ABS malfunction has occurred. The ABS lamp
operates independently of the red warning lamp.

For additional information refer to Group 8W.

MASTER CYLINDER/POWER BOOSTER

(1) Start engine and check booster vacuum hose

connections. A hissing noise indicates vacuum leak.
Correct any vacuum leak before proceeding.

(2) Stop engine and shift transmission into Neu-

tral.

(3) Pump brake pedal until all vacuum reserve in

booster is depleted.

(4) Press and hold brake pedal under light foot

pressure. The pedal should hold firm, if the pedal
falls away master cylinder is faulty (internal leak-
age).

(5) Start engine and note pedal action. It should

fall away slightly under light foot pressure then hold
firm. If no pedal action is discernible, power booster,
vacuum supply, or vacuum check valve is faulty. Pro-
ceed to the POWER BOOSTER VACUUM TEST.

(6) If the POWER BOOSTER VACUUM TEST

passes, rebuild booster vacuum reserve as follows:
Release brake pedal. Increase engine speed to 1500
rpm, close the throttle and immediately turn off igni-
tion to stop engine.

(7) Wait a minimum of 90 seconds and try brake

action again. Booster should provide two or more vac-
uum assisted pedal applications. If vacuum assist is
not provided, booster is faulty.

POWER BOOSTER VACUUM TEST

(1) Connect vacuum gauge to booster check valve

with short length of hose and T-fitting (Fig. 7).

(2) Start and run engine at curb idle speed for one

minute.

(3) Observe the vacuum supply. If vacuum supply

is not adequate, repair vacuum supply.

(4) Clamp hose shut between vacuum source and

check valve.

(5) Stop engine and observe vacuum gauge.
(6) If vacuum drops more than one inch HG (33

millibars) within 15 seconds, booster diaphragm or
check valve is faulty.

POWER BOOSTER CHECK VALVE TEST

(1) Disconnect vacuum hose from check valve.
(2) Remove check valve and valve seal from

booster.

(3) Use a hand operated vacuum pump for test.
(4) Apply 15-20 inches vacuum at large end of

check valve (Fig. 8).

(5) Vacuum should hold steady. If gauge on pump

indicates vacuum loss, check valve is faulty and
should be replaced.

Fig. 7 Typical Booster Vacuum Test Connections

1 – TEE FITTING
2 – SHORT CONNECTING HOSE
3 – CHECK VALVE
4 – CHECK VALVE HOSE
5 – CLAMP TOOL
6 – INTAKE MANIFOLD
7 – VACUUM GAUGE

Fig. 8 Vacuum Check Valve And Seal

1 – BOOSTER CHECK VALVE
2 – APPLY TEST VACUUM HERE
3 – VALVE SEAL

5 - 10

BRAKES

XJ

DIAGNOSIS AND TESTING (Continued)

COMBINATION VALVE

PRESSURE DIFFERENTIAL SWITCH

(1) Have helper sit in drivers seat to apply brake

pedal and observe red brake warning light.

(2) Raise vehicle on hoist.
(3) Connect bleed hose to a rear wheel cylinder

and immerse hose end in container partially filled
with brake fluid.

(4) Have helper press and hold brake pedal to floor

and observe warning light.

(a) If warning light illuminates, switch is operat-

ing correctly.

(b) If light fails to illuminate, check circuit fuse,

bulb, and wiring. The parking brake switch can be
used to aid in identifying whether or not the brake
light bulb and fuse is functional. Repair or replace
parts as necessary and test differential pressure
switch operation again.
(5) If warning light still does not illuminate,

switch is faulty. Replace combination valve assembly,
bleed brake system and verify proper switch and
valve operation.

REAR PROPORTIONING VALVE

The valve controls fluid flow. If fluid enters the

valve and does not exit the valve the combination
valve must be replaced.

DISC BRAKE ROTOR

The rotor braking surfaces should not be refinished

unless necessary.

Light surface rust and scale can be removed with a

lathe equipped with dual sanding discs. The rotor
surfaces can be restored by machining in a disc brake
lathe if surface scoring and wear are light.

Replace the rotor under the following conditions:
• severely scored

• tapered

• hard spots

• cracked

• below minimum thickness

ROTOR MINIMUM THICKNESS

Measure rotor thickness at the center of the brake

shoe contact surface. Replace the rotor if worn below
minimum thickness, or if machining would reduce
thickness below the allowable minimum.

Rotor minimum thickness is usually specified on

the rotor hub. The specification is either stamped or
cast into the hub surface.

ROTOR RUNOUT

Check rotor lateral runout with dial indicator

C-3339 (Fig. 9). Excessive lateral runout will cause
brake pedal pulsation and rapid, uneven wear of the

brake shoes. Position the dial indicator plunger
approximately 25.4 mm (1 in.) inward from the rotor
edge. Maximum allowable rotor runout is 0.102 mm
(0.004 in.).

ROTOR THICKNESS VARIATION

Variations in rotor thickness will cause pedal pul-

sation, noise and shudder.

Measure rotor thickness at 6 to 12 points around

the rotor face (Fig. 10).

Position the micrometer approximately 25.4 mm (1

in.) from the rotor outer circumference for each mea-
surement.

Thickness should not vary by more than 0.013 mm

(0.0005 in.) from point-to-point on the rotor. Machine
or replace the rotor if necessary.

BRAKE DRUM

The maximum allowable diameter of the drum

braking surface is indicated on the drum outer edge.
Generally, a drum can be machined to a maximum of
1.52 mm (0.060 in.) oversize. Always replace the
drum if machining would cause drum diameter to
exceed the size limit indicated on the drum.

BRAKE DRUM RUNOUT

Measure drum diameter and runout with an accu-

rate gauge. The most accurate method of measure-
ment involves mounting the drum in a brake lathe
and checking variation and runout with a dial indi-
cator.

Variations in drum diameter should not exceed

0.076 mm (0.003 in.). Drum runout should not exceed
0.20 mm (0.008 in.) out of round. Machine the drum
if runout or variation exceed these values. Replace

Fig. 9 Checking Rotor Runout And Thickness

Variation

1 – DIAL INDICATOR

XJ

BRAKES

5 - 11

DIAGNOSIS AND TESTING (Continued)

 

 

 

 

 

 

 

Content   ..  46  47  48  49   ..