Главная      Лекции     Лекции (разные) - часть 9

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  91  92  93   ..

 

 

Структурная геология и геологическое картирование

Структурная геология и геологическое картирование

Государственное образовательное учреждение

Высшего профессионального образования

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СТРУКТУРНАЯ ГЕОЛОГИЯ И ГЕОЛОГИЧЕСКОЕ КАРТИРОВАНИЕ

Учебно-методическое пособие для слушателей курсов повышения квалификации специальности «Геофизика» по программе «Методы поисков и разведки месторождений полезных ископаемых в промысловой и разведочной геофизике»

Казань 2009

Печатается по решению Редакционно-издательского совета ГОУ ВПО

«Казанский государственный университет им. В.И.Ульянова-Ленина»

Утверждено на заседании кафедры

региональной геологии и полезных ископаемых

Казанского государственного университета,

протокол № от 2009 года,

Учебно-методической комиссии геологического факультета,

протокол № от 2009 года

В.С. Полянин.

Структурная геология и геологическое картирование: пособие для самостоятельного изучения лекционного курса слушателей курсов повышения квалификации специальности «Геофизика». – Казань: Казанский государственный университет, 2009. – 56 с.

Настоящее учебно-методическое пособие предназначено для слушателей курсов повышения квалификации специальности «Геофизика», изучающих курс «Структурная геология и геологические картирование», имеющих высшее негеологическое образование. В пособии рассмотрены основные понятия структурной геологии и геологического картирования. Пособие может использоваться также студентами дневного отделения всех специальностей геологического факультета.

© Казанский государственный университет, 2009

© В.С. Полянин, 2009

СОДЕРЖАНИЕ

1. Структурная геология и геологическое картирование 4

2. Слой и строение слоистых толщ 7

3. Несогласия 11

4. Горизонтальное залегание слоев 14

5. Наклонное залегание слоев 14

6. Складчатые формы залегания слоев 16

7. Трещины в горных породах (разрывы без смещений) 25

8. Разрывы со смещениями 30

9. Формы залегания эффузивных пород 35

10.Формы залегания интрузивных пород 36

11. Формы залегания метаморфических пород. 38

12. Общие закономерности развития земной коры 39

13. Строение складчатых областей 40

14. Строение платформ 43

15. Применение геофизических методов в структурной

геологии и при геологическом картировании 45

16. Полевые геологические исследования 52

Литература 56

1. СТРУКТУРНАЯ ГЕОЛОГИЯ И ГЕОЛОГИЧЕСКОЕ КАРТИРОВАНИЕ

Структурная геология является одной из частей геотектоники — науки о строении, движениях и развитии земной коры. Она изучает формы залегания горных пород в земной коре, причины их возникновения и историю развития. Основными методами, которые используются в структурной геологии, являются сравнительно-исторический и актуалистический.

Знание условий залегания осадочных, изверженных и метаморфических пород в земной коре открывает возможность методически правильно подойти к выявлению и прогнозам размещения заключенных в них полезных ископаемых.

В последние годы в структурной геологии широко используются также данные геофизики и экспериментальной геологии, аэрофотосъемки.

Геологическое картирование (геологическая съемка) — одна из прикладных геологических дисциплин, рассматривающая методы составления геологических карт и их практическое применение. Цель геологического картирования — всестороннее изучение геологического строения, полезных ископаемых и составление геологической карты выбранного района в том или ином масштабе.

Геологическое картирование заключается в систематическом и всестороннем изучении естественных и искусственных обнажении (выходов на поверхность) горных пород с целью определения их состава происхождения, возраста и форм залегания и нанесения их распространения на топографическую карту.

Геологические карты представляют собой изображение на топографической карте с помощью условных знаков распространения и условий залегания горных пород на земной поверхности, разделенных по возрасту и составу. Карты являются одним из важнейших результатов геологического картирования, но могут быть также составлены на основании обработки материалов, накопленных при геологических исследованиях.

Ведущее значение при составлении геологических карт имеют структурная геология, геотектоника, историческая геология, минералогия, петрография, геофизика и учение о месторождениях полезных ископаемых. Лишь обладающий всей суммой необходимых знаний, прочно стоящий на позициях диалектического материализма геолог в состоянии вести на высоком уровне сложную работу по составлению геологических карт. При этом он должен избегать принятия поспешных субъективных заключений и стремиться на основе углубленного изучения природных явлений и фактов прийти к наиболее обоснованным, по возможности объективным выводам и построениям.

ТИПЫ ГЕОЛОГИЧЕСКИХ КАРТ

На практике нередко принято кроме обычной геологической карты составлять карты других типов. К числу таких карт относятся: карта четвертичных образований, литолого-геологическая, тектоническая, геоморфологическая, гидрогеологическая, инженерно-геологическая, полезных ископаемых, карты прогнозов по отдельным видам минерального сырья или их комплексам.

На геологических картах с помощью качественного фона (цветного или штрихового), буквенных, цифровых и других условных знаков показываются возраст, состав и происхождение горных пород, условия их залегания, характер границ между отдельными комплексами. На геологических картах может быть указано также распространение отдельных минералов или элементов в горных породах.

Все условные обозначения, употребляемые на данной геологической карте, выносятся с соответствующими пояснениями в таблицу условных обозначений.

На полях каждого листа геологической карты слева располагается стратиграфическая колонка, а на правом ее поле помещаются условные обозначения (легенда).

Четвертичные отложения изображаются на особых картах четвертичных отложений , отдельно от коренных пород. На таких картах они делятся по возрасту, происхождению и составу. Обнажающиеся на поверхности коренные породы указываются без расчленения. Исключение составляют лишь неогеновые континентальные образования, которые нередко показываются на карте четвертичных отложений и тоже делятся по возрасту, происхождению и составу.

На литолого-геологических картах на фоне окраски, соответствующей возрасту пород, штрихами изображается состав пород, выходящих па поверхность или скрытых под покровом четвертичных образований.

Разновидностью литолого-геологических карт являются петрографические карты. Они, как правило, крупномасштабные (от 1 : 10 000 и крупнее) и изображают разновидности какой-либо одной, достаточно широко развитой породы, например солей, известняков, сланцев, гнейсов, гранитов и т. п.

Тектоническими картами называют такие карты, на которых условными знаками изображены структурные формы различных категорий и разного возраста. Они делятся на общие (сводные) и региональные.

Структурные формы на тектонических картах могут изображаться двумя способами: 1) способом изогипс, при котором площадное изображение условии залегания пород достигается с помощью линий одинаковых высот определенных геологических поверхностей (последними могут быть поверхности несогласий, границы между разнородными литологическими комплексами, маркирующие слои, подошва или кровля стратиграфических горизонтов); 2) линейным способом, когда для изображения структурных форм употребляются линейные условные обозначения.

На геоморфологических картах условными штрихами и цветом изображаются основные типы рельефа и его отдельные элементы с учетом их происхождения и возраста. Основой геоморфологических карт являются топографическая карта и геологическая карта четвертичных отложений.

Основой для гидрогеологических карт является геологическая карта, на которой горные породы в зависимости от их возраста, происхождения или состава объединены в комплексы, обладающие одинаковой водоносностью. Выделенные комплексы пород располагаются на карте в возрастной последовательности или по генетическому признаку. Каждый из комплексов закрашивается условной краской, соответствующей степени водообильности пород и их химическому составу.

На инженерно-геологических картах на фоне данных о возрасте и составе пород условными штрихами или цветной окраской показываются физические свойства пород: пористость, проницаемость, устойчивость и другие данные, необходимые при строительстве.

Карты полезных ископаемых составляются на геологической основе, на которой условными значками различной формы и цвета или в виде естественных контуров указываются распространенные на данной площади месторождения полезных ископаемых, а также участки с рассеянной и вкрапленной минерализацией.

Прогнозные карты по отдельным видам минерального сырья или их комплексам строятся на геологической или тектонической основе. На них показывается распространение данного вида или комплекса полезных ископаемых и отмечаются перспективные районы с определением достоверности и обоснованности выделения первоочередных участков для постановки детальных работ.

ВИДЫ ГЕОЛОГИЧЕСКИХ КАРТ

В зависимости от масштаба собственно геологические карты делятся на четыре вида: мелкомасштабные, среднемасштабные, крупномасштабные и детальные.

Мелкомасштабные (обзорные) карты , имеющие масштаб 1 : 500 000 и мельче, дают представление о геологическом строении обширных территорий, отдельных государств, целых материков или всего мира. Топографическая основа мелкомасштабных геологических карт обычно сильно упрощена. На ней наносятся основные реки, крупные населенные пункты, очертания морей и озер, которые могут быть изображены в масштабе карты.

Среднемасштабные карты имеют масштаб 1 : 200 000 — 1 : 100 000 и составляются полистно, в рамках соответствующих топографических планшетов международной разграфки. Они передают основные черты геологического строения изображаемой территории, дают прогнозную оценку в отношении полезных ископаемых.

Крупномасштабные карты масштаба 1 : 50 000 — 1 : 25 000 также составляются полистно, на точных топографических основах. Они предназначены для подробного изображения геологического строения районов, перспективы которых в отношении выявления месторождений полезных ископаемых определены, а также для районов сельскохозяйственного освоения, строительства городов, предприятий, гидростанций. Крупномасштабные карты должны осветить не только геологическое строение земной поверхности, но и дать возможность составить ясное представление о глубинном строении территории.

Детальные геологические карты масштаба 1 : 10 000 и крупнее составляются обычно на специальных топографических основах. Этот вид геологических карт подробно отражает геологию районов или участков, на которых находятся месторождения полезных ископаемых или возводятся гидротехнические, промышленные и гражданские сооружения; позволяет решать вопросы, связанные с закономерностями размещения рудных тел, подсчетом запасов полезных ископаемых и возможностям промышленного и гражданского строительства.

УСЛОВНЫЕ ЗНАКИ ГЕОЛОГИЧЕСКИХ КАРТ

Возраст, состав и происхождение горных пород на геологических картах указываются с помощью условных знаков. Различают три основных вида условных знаков: 1) цветовые, 2) штриховые, 3) буквенные и цифровые.

Цветовые знаки служат для обозначения возраста осадочных, вулканогенных и метаморфических пород. При изображении интрузивных пород цвет применяется для указания их состава.

Штриховыми знаками обозначается состав пород. Исключением являются одноцветные геологические карты, на которых штрихами указываются как возраст, так и состав пород.

Буквенные и цифровые обозначения (индексы) служат для указания возраста и происхождения пород; состав интрузивных и некоторых вулканогенных пород обозначается также буквами.

2. СЛОЙ И СТРОЕНИЕ СЛОИСТЫХ ТОЛЩ

СЛОЙ И СЛОИСТОСТЬ

Слоем называется более или менее однородный, первично обособленный осадок (или горная порода), ограниченный приблизительно параллельными поверхностями. Помимо термина «слой» и практике часто употребляется термин «пласт», обозначающий в сущности то же, что и «слой». Однако термин «пласт» применяется чаще для обозначения слоев полезных ископаемых, например угля, известняка, гематита и т. д. Однородность слоев может быть выражена в составе, окраске, текстурных признаках, присутствии одинаковых включений или окаменелостей.

Чередование слоев называется слоистостью . Она представляет собой проявление неоднородности в толще осадочных пород и указывает на изменение условий отложения осадка. Слоистость — одно из самых характерных и важных свойств осадочных горных пород. На ней основано изучение вопросов литологии, стратиграфии, гидрогеологии, инженерной геологии. Слоистость позволяет сопоставлять стратиграфические разрезы, определять направление и амплитуду вертикальных тектонических движений, вести поиски и прослеживать рудные залежи, скопления нефти, воды и др. Слоистостью обусловлено также возникновение складок в осадочных толщах. Знание слоистости является важнейшим условием при выборе системы эксплуатационных выработок.

Поверхности, ограничивающие слой или пласт, не являются плоскими и строго параллельными и могут иметь многочисленные неровности и значительную кривизну. Они носят название поверхностей наслоения (или напластования, или контактов). Верхняя из них называется кровлей слоя (или пласта), а нижняя — подошвой . Переход одного слоя в другой может быть или резким, или постепенным, незаметным. В первом случае положение кровли или подошвы устанавливается легко, во втором — граница между соседними слоями проводится условно по поверхности, на которой происходит смена одного преобладающего состава другим. Характер перехода от одного слоя к другому позволяет судить о тех изменениях, которые произошли при отложении осадка.

Расстояние между кровлей и подошвой слоя (или пласта) составляет его мощность . Различают два вида мощностей: истинную и видимую. Истинной мощностью называется кратчайшее расстояние между кровлей и подошвой. Любое другое расстояние между кровлей и подошвой называется видимой мощностью.

Далеко не всегда удается одновременно наблюдать и кровлю, и подошву слоя. Нередки случаи, когда бывает обнажена только кровля либо подошва и часть слоя. В таких случаях замеряют неполную мощность слоя, представляющую собой расстояние по перпендикуляру к поверхности наслоения от кровли или подошвы до любой точки слоя.

ФОРМЫ СЛОИСТОСТИ

При изучении слоистости следует прежде всего обращать внимание на форму и мощность слоев.

Форма слоистости отражает характер движения той среды, в которой происходит накопление осадка. Выделяются четыре основные формы слоистости: параллельная, волнистая, косая и линзовидная.

При параллельной слоистости поверхности наслоения по строению близки к плоскостям. Этот вид слоистости свидетельствует об относительной неподвижности и покое среды; в которой накапливались осадки. Параллельная слоистость может быть полосовидной, прерывистой и ленточной.

Волнистая слоистость имеет волнистоизогнутые поверхности наслоения. Она формируется при движениях, имеющих периодическую смену или повторяемость в своем направлении, например при отливных и приливных течениях, волнениях в прибрежных мелководных зонах моря.

Косой слоистостью (или слойчатостью, по. Н. Б. Вассоевичу) называется слоистость с прямолинейными и криволинейными поверхностями наслоения, под различными углами которых внутри слоя располагается более мелкая слоистость. Этот вид слоистости образуется при движении среды в одном направлении, например реки, потока, морского течения или при движении воздуха.

В зависимости от условий образования различают несколько разновидностей косой слоистости (рис. 1).

Линзовидная слоистость характеризуется разнообразием форм и изменчивостью мощности отдельных слоев. При этом нередко происходит полное выклинивание слоя, что приводит к его разобщению на отдельные части или линзы. При резком выклинивании поверхности наслоения линзы нередко оказываются изогнутыми.

Линзовидная слоистость образуется при быстром и изменчивом движении водной или воздушной среды, например в речных потоках или в приливно-отливной полосе моря. Нередко линзовидная слоистость связана с размывом ранее отложенного материала и неровностями дна. Мелкая линзовидная слоистость может образоваться и в спокойном водоеме при периодическом привносе в него более грубозернистого материала.

Несмотря на большую протяженность отдельных слоев, они быстро или постепенно уменьшаются в мощности и в конечном счете исчезают или выклиниваются. Выклинивание слоя может произойти по разным причинам. Оно может быть вызвано неравномерностью осадконакопления и возможным полным его прекращением в непосредственной близости от участков, на которых осадок будет продолжать накапливаться.

Очень часто выклинивание слоя происходит при изменении состава накапливающегося осадка или в результате последующего размыва ранее отложившегося осадка или породы.

Мощность слоя отражает интенсивность движения среды, в которой накапливается осадок, и количество материала, поступающего в область отложения. В зависимости от мощности выделяются четыре вида слоистости: крупная — с мощностью отдельных слоев от десятков сантиметров до метров; мелкая — с мощностью слоев, измеряемой сантиметрами; тонкая, при которой мощность слоев измеряется миллиметрами; микрослоистость, видимая только под микроскопом.

СТРОЕНИЕ ПОВЕРХНОСТЕЙ НАСЛОЕНИЯ

Изучение особенностей строения поверхностей наслоения помогает выяснить происхождение и условия залегания осадочных толщ. К числу этих особенностей относятся: ископаемые знаки ряби, первичные трещины, следы жизнедеятельности различных организмов, отпечатки дождевых капель, кристаллов льда и др.

Среди знаков ряби по условиям образования различаются: ветровая рябь, рябь течения и рябь волнения.

Ветровая рябь имеет относительно крупные размеры и дугообразное расположение валиков в плане. Более крупные зерна осадка сосредоточиваются в ветровой ряби на гребнях.

В ряби течения валики имеют более мелкие размеры, с резко выраженными хребтиками. Валики ориентируются поперек или вдоль направления течения и характеризуются чешуйчато-черепитчатым расположением в плане.

Рябь волнения имеет наименьшие размеры и асимметричное расположение валиков, с более крутыми склонами, обращенными к берегу. Более грубые зерна осадка в ряби, образовавшейся в водной среде, накапливаются во впадинах между валиками. Рябь развивается только на верхней поверхности слоя, чем она отличается от волнистой слоистости или плойчатости, проявляющихся по всей толще слоя или пласта.

Первичные трещины , сохранившиеся в ископаемом состоянии на поверхности слоев или пластов, имеют различное происхождение. Большая часть их является трещинами высыхания, реже встречаются подводные и мерзлотные трещины. Они заполняются инородным материалом, образующим на поверхности наслоения валики и рубцы. Подводные трещины, возникающие вследствие коллоидного старения и свертывания донных илов, чаще образуют звездчатые группы рубцов, развивающиеся не сверху, а из центральных частей слоя.

На поверхности наслоения часто находят следы многочисленных животных , начиная от древнейших пермских обитателей суши, следы ползания крабов, червей и т. п. Особенно важны для геологов разнообразные по виду и происхождению рельефные отпечатки, называемые иероглифами (или гиероглифами), часто встречающиеся на поверхности слоев песчаников и карбонатных пород среди флишевых толщ. Эти отпечатки представляют собой главным образом следы ползания различных илоедов, а также оплывины и борозды размыва, развивающиеся на еще незатвердевшей поверхности илистого осадка. При накоплении следующего песчаного или карбонатного слоя образовавшиеся неровности отпечатываются на нижней его поверхности в виде борозд и бугорков различной величины и формы. Таким образом, иероглифы представляют собой как бы негативное отображение неровностей, сформировавшихся на поверхности илистого осадка, но сохраняющихся на нижней, а не на верхней поверхности слоев, в отличие от других первичных неровностей наслоения.

ПЕРВИЧНОЕ (НЕНАРУШЕННОЕ) И НАРУШЕННОЕ ЗАЛЕГАНИЕ СЛОЕВ

Основная часть осадков на поверхности Земли накапливается в морских или континентальных водоемах или на прибрежных равнинах. Поверхность, на которой идет накопление пород в этих условиях, обычно имеет очень незначительный наклон (менее 1°). Чаще он не превышает 15’, и лишь на отдельных участках угол наклона поверхности накопления составляет несколько градусов, а у подводных обрывов и скал — несколько десятков градусов. Поэтому основная часть осадочных пород залегает почти горизонтально. Следует также учесть, что длительное непрерывное накопление осадков выравнивает морское дно, а это приводит к еще большему его сглаживанию.

Первичное залегание со значительными наклонами пород, достигающими 3—4° и очень редко 10°, может возникнуть там, где отложение осадков происходит на склонах наземных и подводных возвышенностей или на склонах долин на суше. При накоплении пород на склонах подводных и наземных возвышенностей происходит облекание осадками неровностей рельефа с характерным примыканием к крутым его участкам и уступам.

Следует иметь в виду, что как бы ни был мал угол наклона осадочных толщ, находящихся в первичном залегании, тем не менее при широком распространении пород относительное погружение слоя или пачки слоев для различных пунктов может быть весьма значительным и составлять десятки и сотни метров.

Первичное залегание осадочных пород сохраняется сравнительно редко. Оно нарушается последующими тектоническими движениями, которые могут вызвать появление в осадочных толщах общего наклона, т. е. привести их к наклонному залеганию и образованию складчатых и разрывных нарушений.

ВЗАИМООТНОШЕНИЯ СЛОИСТЫХ ТОЛЩ

По характеру связи между отдельными слоями и отношению их к более древнему основанию можно выделить (по М. В. Муратову) три различных типа залегания осадочных толщ: трансгрессивное, регрессивное и миграционное.

Наиболее распространенным типом залегания осадочных толщ является трансгрессивное (рис. 2, а), возникшее в результате формирования осадков в прогибе на фоне общего длительного опускания при последующем относительно быстром поднятии. При развитии трансгрессии, обусловливающей создание трансгрессивной части комплекса, более древние слои всегда занимают меньшее пространство, чем последующие, более молодые слои, распространяющиеся на все большую площадь.

Регрессивный тип залегания выражается в последовательном сокращении площади, занимаемой более молодыми слоями по отношению к ранее образовавшимся слоям (см. рис. 2, б). Он возникает при относительно быстром опускании или прогибании впадины и при достаточно длительном последующем ее поднятии в целом или только периферических частей.

Миграционный (смещенный) тип залегания осадочных толщ характеризуется последовательным смещением области накопления осадков в одном направлении. Слои отступают с одной стороны прогиба и трансгрессивно ложатся на основание с другой его стороны. Весь комплекс приобретает резко асимметричное строение с неравномерным распределением мощностей и состава осадков и выдержанным наклоном в одном направлении.

3. НЕСОГЛАСИЯ (По А. А. Богданову.)

Возможны два случая соотношений между породами, слагающими слоистые толщи. В первом из них каждый вышележащий слой или комплекс слоев, составляющих данный стратиграфический горизонт, без каких-либо следов перерыва в накоплении осадков налегает на подстилающие породы. Такие взаимоотношения, отражающие непрерывность процесса накопления осадка, обусловливают согласное залегание пород. Во втором случае между вышележащими и подстилающими их слоями стратиграфическая последовательность нарушается, и отложения тех или иных стратиграфических горизонтов в разрезе отсутствуют. При этом возникает несогласное залегание пород.

Появление несогласий может быть обусловлено различными причинами. Они могут явиться результатом перерыва в осадконакоплении либо возникают при тектонических перемещениях одних толщ относительно других. В первом случае несогласия называются стратиграфическими, во втором — тектоническими.

СТРАТИГРАФИЧЕСКИЕ НЕСОГЛАСИЯ

В стратиграфических несогласиях выпадение тех или иных пород из разрезов вызывается прекращением осадкообразования, т. е. сменой режима, благоприятного для накопления осадков, условиями, в которых происходит разрушение и размыв ранее образовавшихся пород. Стратиграфические несогласия по ряду различных признаков (величина угла несогласия, отчетливость выражения поверхности несогласия, площадь распространения, условия возникновения) могут быть разделены на несколько видов.

По величине угла несогласия могут быть выделены: параллельное, угловое и географическое несогласия.

Параллельное несогласие выражается перерывом слоев, залегающих параллельно. Обе серии слоев выше и ниже поверхности несогласия располагаются параллельно друг другу но они отличаются по составу пород и по заключенным в них окаменелостям.

Разграничивающая эти серии поверхность несогласия выражена очень резко. Обычно она представляет собой поверхность древней подводной эрозии или наземной денудации, сформировавшуюся в тот отрезок времени, когда происходило поднятие и процесс образования осадочных толщ был прекращен.

Угловое несогласие выражается перерывом между двумя комплексами слоев, имеющими различный угол наклона.

Поверхность несогласия, разделяя несогласно залегающие свиты, срезает под углом различные горизонты древней свиты и проходит более или менее параллельно границам между отдельными горизонтами молодой свиты. Этот признак является одним из наиболее важных для установления углового несогласия при геологическом картировании и при чтении геологических карт.

Величина угла несогласия может колебаться в очень широких пределах — от 0 до 180° и резко изменяться в различных участках.

В том случае, если угол несогласия не превышает 30°, обычно говорят о слабом угловом несогласии, при угле несогласия более 30° — о резким несогласии.

Азимутальным угловым несогласием называется такое, при котором простирания контактирующих свит не совпадают.

Таким образом, полная характеристика углового несогласия слагается из двух величин: значения угла несогласия и угловой величины азимутального несогласия.

Географическим несогласием называется угловое несогласие с углом менее 1°. Вследствие малого угла такое несогласие может быть установлено только при изучении обширных территорий. В каждом отдельном обнажении несогласно залегающие верхние свиты характеризуются налеганием на различные подстилающие стратиграфические горизонты без видимого нарушения параллельности в ориентировке поверхностей наслоения.

Скрытое несогласие. Наряду с отчетливо выраженными явными поверхностями несогласия встречаются случаи, когда точное положение поверхности несогласия установить невозможно.

По площади распространения выделяются региональные и местные несогласия.

Региональные несогласия проявляются на огромных территориях и вызываются общими для больших площадей вертикальными положительными движениями.

Местные несогласия не имеют широкого распространения и отражают движения и рост отдельных структур.

По условиям возникновения несогласия делятся на истинные, ложные и внутриформационные.

Истинные несогласия фиксируют перерывы в отложении осадков, вызванные вертикальными движениями земной коры. Такие несогласия формируются в более или менее длительный отрезок времени, улавливаемый наблюдениями при изучении разрезов.

К ложным несогласиям должны быть отнесены различные сложные, но всегда местные размывы в сериях косослоистых пород, сопровождающиеся иногда резко выраженными угловыми несогласиями. Косая, перекрещивающаяся и диагональная слоистость возникает вследствие постоянного изменения поверхности накопления, при одновременном сочетании и наложении друг на друга процессов отложения осадка и его перемыва. Совершенно очевидно, что возникающие в данном случае явления местного размыва и углового несогласия не имеют ничего общего с различными формами истинных несогласий.

Внутриформационные несогласия включают несогласия, возникающие в результате размыва, происходящего одновременно (сингенетически) с накоплением осадка.

Внутриформационные размывы не отражают переломных моментов в развитии слоистой структуры и не предшествуют новым циклам осадконакопления. Они вызываются изменениями физико-географических условий в области накопления осадков (например увеличением скорости движения водной среды) или в зоне денудации.

Строение поверхностей несогласия

Поверхность стратиграфического несогласия может иметь различные формы. Она бывает сильно сглаженной, но возможны и резко выраженные неровности древнего погребенного рельефа с колебаниями отметок на коротких расстояниях, исчисляемыми десятками и даже сотнями метров.

Накопление осадков на неровной поверхности будет отличаться рядом особенностей. Наиболее характерны случаи облекания и прилегания.

Облекание представляет собой плащеобразное перекрытие отлогой поверхности размыва древних пород. Главной особенностью этой формы несогласного залегания является прямое отражение выступов и понижений поверхности несогласия в строении несогласно залегающей серии слоев. Мощности слоев в нижней части несогласно залегающей серии уменьшаются над повышениями древнего рельефа и увеличиваются над понижениями. Это различие мощностей постепенно выравнивается при движении вверх по разрезу; одновременно может изменяться и состав формирующихся слоев.

Прилегание . При резких очертаниях рельефа поверхности несогласия формирование осадочных пород происходит путем постепенного заполнения пониженных участков. Здесь вдоль крутых склонов будут иметь место различные случаи прилегания слоев; среди них различают параллельное и несогласное прилегания (рис. 3). При параллельном прилегании как размытые слои, так и налегающие на них свиты залегают параллельно; при несогласном верхние слои залегают на нижних с угловым несогласием.

Критерии установления стратиграфических несогласий

Граница поверхности несогласия обладает рядом признаков, позволяющих отличать ее от обычных границ между слоями. Ниже отмечены основные признаки поверхностей несогласия:

1) характерное строение поверхности несогласия, имеющей в отличие от обычных поверхностей наслоения многочисленные неровности в виде вымоин (карманов) и выступов;

2) угловое несогласие между свитами различного возраста;

3) резкий возрастной разрыв между фауной в выше- и нижележащих слоях (например слои с юрской фауной подстилаются слоями с каменноугольной фауной). Этот критерий наиболее важен для платформенных областей, где угловые несогласия крайне редки, а литологический состав может быть очень близким;

4) резкое различие в степени метаморфизма двух соприкасающихся свит, а также в их насыщенности жильными образованиями;

5) присутствие базального конгломерата в основании несогласно залегающей серии. Конгломерат указывает на стратиграфический перерыв и несогласие и распознается по обилию в нем гальки нижележащих отложении.

6) резкий переход от морских отложений к континентальным или, наоборот, от континентальных к морским большей частью свидетельствует о наличии между ними перерыва в отложении;

7) различные следы выветривания (как физического, так и химического), сохраняющиеся на поверхности несогласия или в породах, залегающих непосредственно ниже ее, также могут быть признаками перерыва.

В заключение характеристики стратиграфических несогласий следует еще раз подчеркнуть их значение в истории развития земной коры. Стратиграфические несогласия фиксируют смену знака в направлении вертикальных движений. Формирование несогласий не всегда следует связывать со складкообразовательными процессами; с другой стороны, рост складок не всегда сопровождается несогласиями.

ТЕКТОНИЧЕСКИЕ НЕСОГЛАСИЯ

Несогласные контакты между слоями различного возраста и литологического состава могут быть вызваны тектоническими разрывами и перемещениями по ним отдельных блоков горных пород. В условиях хорошей обнаженности и достаточной детальности геологических исследований обычно не представляет труда выявить стратиграфические и тектонические несогласия и отличить их друг от друга.

При тщательном изучении контакта можно получить следующие дополнительные сведения: 1) наличие систем зеркал скольжения и растертых масс тектонической брекчии указывает на большую вероятность тектонических причин образования контакта; 2) наличие базального конгломерата в основании верхней свиты, так же как и четко выраженных следов выветривания в поверхностной зоне нижней свиты, является несомненными доказательствами существования разделяющей их поверхности углового несогласия.

4. ГОРИЗОНТАЛЬНОЕ ЗАЛЕГАНИЕ СЛОЕВ

ПРИЗНАКИ ГОРИЗОНТАЛЬНОГО ЗАЛЕГАНИЯ СЛОЕВ

Горизонтальное залегание слоев характеризуется общим горизонтальным или близким к нему расположением поверхностей наслоения. Идеальных горизонтальных поверхностей наслоения в земной коре не встречается.

Так как при горизонтальном положении осадочных толщ каждый нижележащий слой является более древним, чем перекрывающий, соотношения разновозрастных слоев с элементами рельефа характеризуются расположением древних слоев в пониженных частях, а наиболее молодых слоев на возвышенных участках рельефа.

ИЗМЕРЕНИЕ МОЩНОСТИ СЛОЯ

Истинная мощность слоя при горизонтальном залегании определяется как разность между отметками кровли и подошвы слоя.

5. НАКЛОННОЕ ЗАЛЕГАНИЕ СЛОЕВ

ОБЩАЯ ХАРАКТЕРИСТИКА НАКЛОННОГО ЗАЛЕГАНИЯ СЛОЕВ

При наклонном (или моноклинальном) залегании слои на обширных пространствах наклонены в одном направлении.

С моноклинальным залеганием мы встречаемся при изучении крыльев складок и флексур.

ЭЛЕМЕНТЫ ЗАЛЕГАНИЯ

При проведении полевых работ, а затем камеральных исследований геологу постоянно приходится определять и выносить на карту ориентировку различных линий (линия хода маршрута, линия буровых скважин, линия погружения шарнира складки и др.) и плоскостей (контакты слоев – слоистость, поверхности тектонических трещин, плоскостей контактов различных по составу пород и др.).

При наклонном залегании измеряются направление и угол наклона слоев. Их положение в пространстве характеризуется элементами залегания, в которые входят понятия о линии простирания, линии падения и угла падения (рис. 4).

Линией простирания называется линия пересечения поверхности слоя с горизонтальной плоскостью или, другими словами, любая горизонтальная линия на поверхности слоя является линией простирания данного слоя.

Линией падения называется вектор, перпендикулярный к линии простирания, лежащий на поверхности слоя и направленный в сторону его наклона. Линия падения обладает наибольшим углом наклона к горизонту по сравнению с любой другой линией, которую можно провести на поверхности слоя.

Углом падения называется угол, заключенный между линией падения и проекцией ее на горизонтальную плоскость. Положение линии простирания в пространстве определяется ее азимутом, а линии падения — азимутом и углом падения.

Напомним, что азимутом (рис.5) заданного направления называется правый векториальный угол, заключенный между северным направлением истинного меридиана и заданным направлением.

Линия простирания, как и любая другая линия, имеет два противоположных направления, поэтому у линии простирания может быть замерено два азимута, различающихся между собой на 180°.

Падение имеет одно определенное направление, и для него может быть замерен только один азимут, отличающийся на 90° от азимута линии простирания. Значение угла падения не может быть больше 90°.

Для определения и измерения ориентировки линий в пространстве используется геологический компас. Все замеры производятся по северной стрелке компаса в положении, когда север (нуль на лимбе) компаса ориентирован по измеряемому направлению.

На рис. 6 приведены используемые в практике проведения исследований обозначения основных структурных элементов на геологических и структурно-тектонических картах.

ОПРЕДЕЛЕНИЕ ИСТИННОЙ МОЩНОСТИ СЛОЯ ПРИ НАКЛОННОМ ЗАЛЕГАНИИ

Измерение мощности слоя можно производить многими способами. Иногда истинную мощность можно измерить непосредственно в обнажении. С этой целью рулеткой измеряют расстояние между кровлей и подошвой слоя по перпендикуляру к поверхности наслоения.

Чаще оказывается возможным измерить лишь видимую мощность слоя. На рис. 7 указаны различные случаи вычисления истинной мощности в сечениях, ориентированных перпендикулярно линии простирания по измеренной видимой мощности, углу падения слоя и наклону поверхности рельефа.

Если истинная мощность слоя определяется в сечении, ориентированном косо по отношению к линии простирания, тогда вводят соответствующую поправку на отклонение линии разреза от направления падения. Эти поправки выражаются углом γ, представляющим собой разность между азимутами линий простирания и измере­ния. Вычисления производят по формуле П. М. Леонтовского:

Н = h (sin α соs β sin γ ± соs α sin β),

где Н — истинная мощность;

h — видимая мощность;

α — угол наклона пласта в косом сечении;

β — угол наклона рельефа.


Знаки плюс и минус употребляются в зависимости от соотношения направления наклонов поверхностей рельефа (или обнажения) и слоя; при наклоне их в одну сторону принимается знак минус, при наклоне в разные стороны плюс.

НОРМАЛЬНОЕ И ОПРОКИНУТОЕ ЗАЛЕГАНИЕ

При наклонном положении слоев возможны два принципиально отличных случая их залегания: нормальное и опрокинутое. При нормальном залегании кровля слоя располагается выше его подошвы, при опрокинутом подошва слоя оказывается выше его кровли. При повороте слоев до того момента, пока угол их наклона не станет равным 90°, они будут залегать нормально, т. е. их кровля будет располагаться выше подошвы, и молодые пласты будут налегать на более древние. При повороте на больший угол (хотя угол падения и станет уменьшаться) слои окажутся в перевернутом пли опрокинутом залегании, т, е. их подошва окажется выше кровли, а древние пласты — выше молодых.

6. СКЛАДЧАТЫЕ ФОРМЫ ЗАЛЕГАНИЯ СЛОЕВ

СКЛАДКИ И ИХ ЭЛЕМЕНТЫ

Складками называют волнообразные изгибы в слоистых толщах, образующиеся при пластических деформациях горных пород.

Совокупность складок составляет складчатость.

Среди складок выделяются две основные разновидности — антиклинальные и синклинальные. Антиклинальными складками (антиклиналями) называются изгибы, в центральных частях которых располагаются наиболее древние породы относительно их краевых; периферических частей. В синклинальных складках (синклиналях) центральные их части сложены породами более молодыми по сравнению с породами, слагающими их краевые части.

В складке выделяются следующие элементы. Часть складки в месте перегиба слоев называется замком, сводом или ядром (рис. 8, 1—2; 3—4; 5—6; 7—8 ). Термин «ядро складки» употребляется при характеристике пород, слагающих центральные части складки. При описании формы перегиба слоев употребляются термины «свод» или «замок». Части складок, примыкающие к своду (замку), называются крыльями (2—3; 4—5; 6—7 ). У смежных антиклинали и синклинали одно крыло является общим. Угол, образованный линиями, являющимися продолжением крыльев складки, называется углом складки α.

Осевой поверхностью складки называется поверхность, проходящая через точки перегиба слоев, составляющих складку.

Осевой линией складки , или осью складки , называется линия пересечения осевой поверхности с поверхностью рельефа. Осевая линия характеризует ориентировку складки в плане. Ее положение определяется азимутом простирания.

Шарнир – это линия перегиба складки. Пространственное положение шарнира (азимут погружения и угол погружения) может быть замерено и вынесено на геологическую карту.

Гребневой поверхностью называется поверхность, соединяющая самые высокие точки расположения слоев, образующих складку. Гребень складки представляет собой линию пересечения гребневой поверхности с кровлей или подошвой любого из слоев складки (рис.9).

Зеркало складок – это поверхность (плоскость), соединяющая шарниры группы складок по одной стратиграфической поверхности. Ориентировка зеркал складок также может быть замерена в поле и вынесена на геологическую карту.

Знаки, используемые для обозначения элементов складок и примеры их выделения на карту (план) приведены на рис.6.

Размеры складок характеризуются длиной, шириной и высотой. Длина складки — это расстояние вдоль осевой линии между смежными перегибами шарнира. Ширина складки (или горизонтальный размах ) составляется из расстояния между осевыми линиями двух соседних антиклиналей или синклиналей. Высотой складки (или вертикальным размахом ) называется расстояние по вертикали между замком антиклинали и замком смежной с ней синклинали, измеренное по одному и тому же слою (рис. 10).

Разнопорядковые складчатые структуры. Складки в метаморфических комплексах закономерно организованы. Обычно в складчатых структурах выделяются одновозрастные складки нескольких порядков (разного масштаба и размера).

Осевые поверхности разнопорядковых одновозрастных складок близпараллельны.


Положение зеркала мелких складок (складки более высокого порядка) маркирует залегание поверхности крыла и свода следующей по масштабу (более крупной) складки – складки более низкого порядка (рис.11.).

МОРФОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ СКЛАДОК

Классификации складок строятся на различных принципах. В основу классификации может быть положена форма складок или их происхождение. Классификация, в которой складки разделены по форме, называется морфологической; классификация, отражающая условия образования складок, носит название генетической. Морфологическая и генетическая классификации учитывают различные свойства складок и поэтому отнюдь не исключают, а дополняют друг друга.

В морфологической классификации складки делятся по ряду признаков.

I. По положению осевой поверхности выделяют:

А. Симметричные складки с вертикальной осевой поверхностью и одинаковыми углами наклона крыльев (рис. 12, 1 ).

Б. Асимметричные складки с наклонной или горизонтальной осевой поверхностью и различными углами наклона крыльев (рис. 12, 2 ). В свою очередь они могут быть разделены на четыре вида:

1) наклонные складки с падением крыльев в противоположные стороны различными углами и наклонной осевой поверхностью (рис. 12, 3 ).

2) опрокинутые складки с крыльями, наклоненными в одну и ту же сторону, и наклонной осевой поверхностью (рис. 12, 4 ). В опрокинутых складках различаются нормальные и опрокинутые (или подвернутые) крылья (рис. 12, 5 ): в нормальном крыле породы залегают нормально, т. е. молодые отложения располагаются выше древних; в опрокинутом, подвернутом крыле соотношение между древними и молодыми породами ненормальное — древние породы залегают выше молодых;

3) лежачие складки с горизонтальным положением осевых поверхностей (рис. 12, 7 );


4) ныряющие , или перевернутые , складки с осевой поверхностью, изогнутой до обратного падения (рис. 12, 8 ).

II. По отношению между крыльями складок выделяются:

1) обычные , или нормальные , складки с падением крыльев в различные стороны (рис. 13, а );

2) изоклинальные складки с параллельным расположением крыльев. При вертикальном расположении крыльев изоклинальные складки называются прямыми, при наклонных крыльях — опрокинутыми (рис. 13, б, в );

3) веерообразные складки с веерообразным расположением слоев. Ядра веерообразных складок нередко оказываются пережатыми, т. е. отделенными от остальных их частей (рис. 13, г , д ).

III. По форме замка различаются (рис. 14):

1) острые складки , с углом складки меньше 90°;

2) тупые складки , с углом складки больше 90°;


3) сундучные (или коробчатые ) складки , с плоскими замками и крутыми крыльями.

IV. По соотношению мощностей слоев на крыльях и в сводах складок выделяются:

1) подобные складки , у которых мощность слоев на крыльях меньше мощности в сводах, а форма замка не меняется с глубиной (рис.15, I );

2) концентрические складки с одинаковой мощностью слоев в своде и на крыльях. С глубиной радиус кривизны свода таких складок изменяется и антиклинали становятся более резкими, а синклинали расплываются (рис. 15, II ). В природе развиты преимущественно подобные складки. Однако различие в мощностях на своде и на крыльях подобных складок бывает обычно настолько незначительным, что на разрезах чаще изображаются концентрические складки, так как изменения в мощностях на разрезах не всегда могут быть отражены;

3) антиклинальные складки с утоненными замками (рис. 15, III ). В складках этого вида мощности пород в сводах меньше, чем на крыльях, вследствие чего для них характерно увеличение угла падения на крыльях с глубиной. Синклинальные складки подобной формы не встречаются;

4) синклинальные складки с повышенными мощностями пород в замках (рис. 15, IV ). Как и в антиклинальных скаладках с утоненными замками, в описываемом виде складок углы наклона крыльев увеличиваются с глубиной.

По соотношению длиной оси складки (длины) к ее короткой оси (ширине) различают: линейные, брахиформные и куполовидные.

Линейными называются складки, у которых отношение длины к ширине больше трех. Складки, у которых это отношение меньше трех, называются брахиформными (брахиантиклиналями и брахисинклиналями). В случае приблизительно одинаковых поперечных размеров складки называются куполовидными , а синклинальные складки этого вида — чашевидными .

На положение складок в земной коре большое влияние оказывают их шарниры. На поверхности Земли при горизонтальных шарнирах крылья складок параллельны осевой линии. Там, где шарнир погружается или воздымается, слои огибают осевую линию. Участки антиклинальных складок, на которых шарнир наклонен, носят название периклинального замыкания . Слои на таких участках падают в стороны от ядра складки. В синклинальных складках части складок, обладающих наклонным шарниром, называются центриклинальным замыканием . В этом случае слои, огибая ось складки, наклонены к ее ядру.

ФЛЕКСУРЫ

Флексурами называются коленчатые изгибы в слоистых толщах; выражены они обычно наклонным положением слоев при общем их горизонтальном залегании или более крутым падением на фоне общего наклонного залегания. У флексур в вертикальных разрезах выделяются следующие элементы (рис. 16): верхнее, или поднятое, крыло; нижнее, или опущенное, крыло; смыкающее крыло; угол наклона смыкающего крыла; вертикальная амплитуда смещающего крыла.


Флексуры, распространенные в породах с наклонным залеганием, могут быть согласными и несогласными. В согласных флексурах верхнее, нижнее и смыкающее крылья направлены в одну и ту же сторону, в несогласных флексурах верхнее и нижнее крылья наклонены в одну сторону, а смыкающее крыло — в противоположную. Если коленообразный изгиб пород наблюдается в горизонтальной плоскости, такая флексура носит название горизонтальной.

МЕХАНИЧЕСКИЕ УСЛОВИЯ ОБРАЗОВАНИЯ СКЛАДОК

Форма и размеры изгибов горных пород, возникающих при пластических деформациях, зависят от очень многих условий. Основное значение имеют: физические свойства пород, динамическая и кинематическая обстановка, характер возникающих в породах напряжений и состояние внешней среды.

Среди всего многообразия изгибов могут быть выделены три типа складок: складки продольного изгиба, складки поперечного изгиба и складки течения.

Продольный изгиб вызывается силами, действующими вдоль слоистости (рис. 17, а ). При этом происходит перемещение вещества, направленное параллельно поверхности наслоения.

Складки, возникающие при сдвиге, под воздействием противоположно направленных сил имеют все характерные черты, свойственные складкам продольного изгиба, но обладают хорошо заметным наклоном в сторону действия активных сил (рис. 17, б ).

При поперечном равномерном изгибе породы испытывают растяжение, а не сжатие. Образованию складок на начальных стадиях и в этом случае способствует скольжение слоев, но направленное иначе чем в складках продольного изгиба (рис. 17, г ).

Изгибы, связанные с течением, обычно возникают при неравномерных перемещениях вещества из участков с большим давлением к участкам, на которых давление относительно меньше.

В верхних зонах земной коры, в условиях сравнительно невысоких температур и давления, течение свойственно только высокопластичным горным породам: солям, гипсам, углям, известнякам, глинам, насыщенным водой.

Складки течения обладают особенно неправильными формами с многочисленными раздувами, утонениями и пережимами слоев (рис. 17, д ).

ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ ОБРАЗОВАНИЯ СКЛАДОК

Геологическая обстановка, в которой происходит образование складок, весьма различна. Наиболее широко распространены складки, связанные с эндогенными процессами, в этом случае возникает эндогенная складчатость, или складчатость тектонического происхождения. Значительно реже, главным образом в самой верхней части земной коры, возникают складки, обусловленные экзогенными процессами. В таких условиях образуется экзогенная складчатость, или складчатость нетектонического генезиса.

Эндогенная складчатость

В эндогенной складчатости выделяются две подгруппы: конседиментационная складчатость , или складчатость, возникающая параллельно с накоплением осадков, и постседиментационная , или наложенная складчатость, развивающаяся позже образования пород.

Кл ассификация складчатости :

1. Складчатость тектонического происхождения (эндогенная ):

1.1. Конседиментационная:

Складки погружения;

Складки, связанные с неравномерными вертикальными движениями;

1.2. Постседиментационная (наложенная):

1.2.1. поверхностная:

Складки регионального сдавливания;

Складки облекания (глыбовые, отраженные);

Складки гравитационного скольжения;

Приразрывные складки;

Складки, связанные с внедрением магмы;

Диапировые складки;

1.2.2. глубинная:

Складки вертикального течения;

Складки горизонтального течения;

2. Складчатость нетектонического происхождения (экзогенная ):

Подводно-оползневые складки, образующиеся при оползании осадков на дне бассейна;

Наземно-оползневые складки, образующиеся при оползневых процессах;

Складки, обусловленные деформациями при эпигенезе и диагенезе осадков (уплотнение, разбухание, дегидратация);

Складки, вызываемые разгрузкой от вышележащих толщ;

Складки обрушений, связанные с карстовыми явлениями, провалами и т.п.;

Складки, вызываемые напором ледников (гляциодислокации);

Первичные наклоны и изгибы, вызываемые неровностями поверхности накопления осадков (структуры облекания);

Первичные наклоны и изгибы в покровах эффузивных пород;

Первичные наклоны, связанные с различной скоростью накопления осадков или неравной мощностью пород.

Конседиментационная складчатость.

Складки погружений возникают при относительно равномерных опусканиях (фундамента), на котором происходит накопление осадков.

Постседиментационная (наложенная) складчатость.

Складки, сложенные породами, образовавшимися при перекристаллизации первоначального их состава в процессе складчатости, следует называть глубинными . Складки, развивающиеся в верхних зонах земной коры, при образовании которых не происходит существенных изменений в, первоначальном составе пород, называются поверхностными .

Складки регионального сдавливания (общего смятия, по В. В. Белоусову) образуются при продольном изгибе деформирующихся толщ под влиянием сил, действующих на огромных территориях параллельно поверхности Земли.

Складки облекания (отраженные складки, по В. Е. Хаину; глыбовые складки, по В. В. Белоусову) представляют собой поперечные изгибы в верхнем структурном этаже (или осадочном чехле), образующиеся при глыбовых перемещениях нижнего структурного этажа — фундамента.

Антиклинальные и синклинальные складки, разделенные продольными разрывами (обычно сбросами или взбросами), с уплощенными или плоскими замками и сравнительно крутыми крыльями. Такие глыбовые складки получили название горст - антиклиналей и грабен - синклиналей .

Складки гравитационного скольжения образуются на склонах поднятий под действием гравитационных сил.

Складки, связанные с разрывами (приразрывные складки) . При перемещении пород вверх по наклонным разрывам, главным образом по взбросам и надвигам, в нижнем лежачем крыле развиваются горизонтально или наклонно ориентированные силы, вызывающиеся давлением висячего крыла. Эти силы могут обусловить образование складок продольного изгиба в нижнем опущенном крыле разрыва, интенсивность и форма которых зависят от амплитуды перемещения и угла наклона сместителя.

Складки, связанные с перемещениями магмы в земной коре . Вблизи контактов многих массивов интрузивных пород, возникших как на значительных глубинах в виде батолитов, так и в непосредственной близости от поверхности в форме небольших тел, во вмещающих породах наблюдаются складки продольного или, реже, поперечного изгиба, оси которых ориентированы согласно с контурами интрузивных массивов.

Диапировые складки , или складки протыкания представляют собой антиклинальные структуры, образующиеся в результате внедрения пластичных горных пород в окружающие их менее пластичные и более хрупкие толщи.

Силы, вызывающие образование глубинной складчатости, могут действовать в горизонтальном или вертикальном направлениях. Горизонтальные силы обусловливают формирование складчатости вертикального течения, вертикальные силы — складчатости горизонтального течения.

Дисгармоничная складчатость.

Дисгармоничной складчатостью называется сочетание одновременных по возникновению и различных по форме складок, развитых в разнородных по составу горных породах. Появление дисгармоничной складчатости зависит от условий, в которых развиваются складки, и от состава слагающих их пород.

Складки волочения представляют собой разновидность дисгармоничной складчатости. Это мелкие складки, формирующиеся обычно внутри пластичных слоев, заключенных между более жесткими. Они образуются в результате межслоевого проскальзывания, которое приводит к «волочению» материала слоев более пластичных пород за перемещающимся слоем более жестких пород.

К типу складок волочения относятся, в частности, следующие системы микроскладок:

- связанные с перемещением пластов по разрывным нарушениям;

- возникшие синхронно с формированием глубинных складок продольного изгиба (рис. 18);

- связанные с формированием складок поперечного изгиба, локализованных в обрамлении соляных куполов и магматических интрузий (рис. 18.);

- связанные с метаморфическими процессами высоких ступеней, когда вещество находится в полурасплавленном состоянии (например, формирование птигматитовых складок).

Направление длинных крыльев складок волочения, указывающее на движение вещества в процессе их формирования, направлено в сторону антиформ (складчатость продольного изгиба) и синформ (складчатость поперечного изгиба) (рис. 18.). Это явление используется при проведении картирования складчатых структур и определении положения ядерных частей анти - и синформных структур и поисках минеральных месторождений.

ТЕКТОНОФИЗИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ СКЛАДЧАТЫХ СТРУКТУР

Складки продольного сжатия возникают в результате воздействия на слоистую толщу сжимающих тектонических усилий, направленных параллельно (продольно) по отношению к ориентировке слоев.

Будем сжимать тело слоистого строения в направлении, параллельном слоистости. В результате тело будет деформироваться (укорачиваться в одном и удлиняться в других направлениях) и приобретет складчатую структуру (возникнут складки разной морфологии и типа).

Ось, по которой происходит максимальное укорочение деформируемого тела, называется осью алгебраически минимальных главных нормальных напряжений тектонического поля, или осью сжатия тектонического поля. На картах и разрезах эта ось обозначается как σ3 .

Осью, по которой деформированное тело увеличивает свои размеры (происходит максимальное удлинение деформируемого тела) называется осью растяжения тектонического поля (осью алгебраически максимальных главных нормальных напряжений) и обозначается индексом σ1.

Ось, по которой изменения размеров деформированного тела не происходит (или их величина занимает промежуточное положение между максимальными и минимальными деформациями) называется средней осью тектонического поля и обозначается σ2.

Оси σ1, σ2 и σ3 тектонического поля напряжений ориентированы закономерно по отношению к элементам складок и упорядоченных деформационных структур (рис. 19).

Ось сжатия σ3 ориентирована:

-перпендикулярно осевым поверхностям складок;

-перпендикулярно сланцеватости (гнейсовидности) и линейности пород, слагающих метаморфические комплексы.

Оси σ1 и σ2 находятся в плоскости осевой поверхности складок и сланцеватости. При этом ось σ1 направлена в общем случае примерно в направлении падения осевой поверхности складок и параллельно направлению линейности, а ось σ2 ориентирована по простиранию осевой поверхности складок и перпендикулярно линейности.

7. ТРЕЩИНЫ В ГОРНЫХ ПОРОДАХ (разрывы без смещений)

Разрывы в горных породах делятся на две большие группы. К первой группе относятся трещины , представляющие собой разрывы, перемещения по которым имеют очень незначительную величину. Во вторую группу объединяются разрывы с заметными перемещениями пород, разъединяемых разрывами. Совокупность трещин, разбивающих тот или иной участок земной коры, называется трещиноватостью . По степени проявления трещины можно разделить на три группы: открытые, закрытые и скрытые.

Открытые трещины характеризуются четко видимой полостью. В закрытых трещинах разрыв хорошо заметен невооруженным глазом, но стенки трещин оказываются сближенными до такой степени, что заметить полость по разрыву не удается. Скрытые трещины очень тонки и при обычных наблюдениях не заметны, но их легко обнаружить при разбивании или окрашивании горных пород.

Отдельностью называются блоки и глыбы, на которые разделяется трещинами горная порода. Форма отдельности обусловливается расположением трещин. В осадочных горных породах обычно развиваются прямоугольная, кубическая, параллелепипедальная, призматическая, плитчатая, шаровая и глыбовая отдельности; в метаморфических — плитчатая, пластинчатая, ребристая, остроугольная; в лавах— призматическая, столбчатая или шаровая отдельности; среди интрузивных массивов встречаются кубическая, прямоугольная, параллелепипедальная и др.

В геометрической классификации трещин в осадочных и метаморфических породах, обладающих ясно выраженной слоистостью или имеющих неясную слоистость, но четкую сланцеватую текстуру, выделяются (рис. 20):

а) поперечные трещины, секущие в плане слоистость или сланцеватость по направлению падения. В разрезах поперечные трещины могут быть либо вертикальными, либо наклонными;

б) продольные трещины, параллельные линии простирания, но секущие слоистость или сланцеватость в вертикальных разрезах;

в) косые трещины, секущие слоистость или сланцеватость под углом относительно простирания и направления падения;

г) согласные трещины, ориентированные параллельно слоистости, или сланцеватости как в плане, так и в разрезах.

В массивных, а также в слоистых и сланцеватых породах нередко трещины удобнее классифицировать по углу наклона.

В таких случаях обычно выделяются следующие виды трещин: вертикальные (с углами падения от 80 до 90°), крутые (с углами падения 45 до 80°), пологие (с углами падения 10 до 45°), слабо наклоненные и горизонтальные (с углами падения от 0 до 10°).

В генетической классификации выделяются следующие типы и виды трещин:

Нетектонические трещины:

1. Первичные трещины.

2. Трещины выветривания.

3. Трещины оползней, обвалов и провалов.

4. Трещины расширения пород при разгрузке.

Тектонические трещины:

1. Трещины отрыва;

2. Трещины скола (скалывания);

3. Трещины раздавливания (сплющивания).

НЕТЕКТОНИЧЕСКИЕ ТРЕЩИНЫ

Образование нетектонических трещин в горных породах обусловлено изменениями внутренних свойств пород под влиянием сил, проявляющихся при экзогенных процессах на поверхности Земли или вблизи нее.

Первичные трещины развиваются в результате проявления внутренних сил, возникающих в породах при их усыхании, уплотнении, изменении объема и температуры и физико-химических превращениях.

Первичные трещины в осадочных породах , или диагенетические трещины , возникают преимущественно при процессах диагенеза, т. е. в стадии превращения осадка в горную породу.

Первичные трещины в эффузивных породах развиваются под воздействием напряжений, возникающих при их охлаждении. Уменьшение объема всегда вызывает появление растягивающих усилий, в результате которых образуются трещины.

Трещины выветривания . При выветривании порода теряет свою монолитность. Разрушение ее происходит главным образом за счет раскрытия и расширения ранее существовавших в ней трещин и образования новых — трещин выветривания.

Трещины оползней, обвалов и провалов . В описываемую группу объединены трещины, довольно разнообразные по происхождению. Они обычно часты и четко выражены, но имеют местное распространение.

Трещины расширения пород при разгрузке . Горные породы в земной коре находятся в сильно сжатом состоянии. Одна из основных сил, действующая повсеместно, вызывается тяжестью вышележащей толщи. При высвобождении пород от действия сжимающих сил, что происходит у поверхности Земли, в горных выработках, в бортах речных и овражных долин и при других подобных условиях, породы начинают выдавливаться в свободное пространство. В выработках выдавливаются боковые стенки, кровля и почва, стремящиеся заполнить все ее сечение; у поверхности Земли развиваются трещины отслаивания; в бортах речных долин и оврагов появляются характерные трещины бокового отпора.

Трещины отслаивания возникают параллельно обнаженной поверхности. Они часты и хорошо выражены вблизи нее, по становятся более редкими и менее ясными в глубине.

Трещины бортового отпора (отседания, откоса) развиваются в бортах долин рек и оврагов, врезанных в различные скальные и полускальные породы.

ТЕКТОНИЧЕСКИЕ ТРЕЩИНЫ

Тектонические трещины появляются в горных породах под влиянием тектонических сил, вызываемых в земной коре эндогенными процессами.

Тектонические трещины во многом, отличаются от трещин нетектонических. Различия выражаются прежде всего в том, что эти трещины более выдержаны как по простиранию, так и по падению и ориентированы по единому плану в различных по составу породах.

Трещиноватость горных пород – это совокупность рассекающих их трещин.

По условиям образования и морфологии среди тектонических трещин выделяются 3 основных типа:

- трещины отрыва;

- трещины скола (скалывания);

- трещины раздавливания (сплющивания).

Трещины отрыва имеют обычно линзовидную (иногда S – образную) форму. Трещины отрыва нередко образуют кулисообразные ряды.(рис.21).

Они образуются в результате раздвигания (приоткрывания) стенок трещин: прямого (трещины отрыва) или косого (трещины разрыва). Обычно трещины выполнены различными жильными минералами (кварц, карбонаты, рудные и др.) и / или дайками магматических пород.

Ось алгебраически максимальных главных нормальных напряжений (σ1 ) в период формирования трещин отрыва ориентирована в направлении, нормальном (перпендикулярном) их плоскостям.

Оси σ2 и σ3 залегают в плоскости трещины отрыва: в общем (простейшем) случае ось σ3 залегает в направлении простирания формирующейся трещины отрыва, а ось σ2 – совпадает с линией её падения (рис. 21).

Трещины скола – по морфологии прямолинейны или слабоизвилисты и характеризуются притертыми (тесно сжатыми) краями и наличием на плоскостях трещин штрихов (борозд) скольжения. Последние свидетельствуют о перемещении стенок трещин относительно друг друга. Трещины обычно «пустые» (без выполнения) и лишь в местах изгибов при перемещении стенок трещин могут возникнуть пустые (позднее выполненные жильными минералами) небольшие по мощности полости.

Обычно одновременно формируются не менее 2 систем так называемых сопряженных во времени и пространстве (синхронных) трещин скола. В кинематическом отношении эти трещины относятся к категории взбросов (взбросо-сдвигов, сдвигов и др.).(рис.21.).

Для правильного понимания динамики процесса трещинообразования необходимо дать определения двух терминов.

Квадрант сжатия – область, заключенная между трещинами скалывания, в которой расположена ось сжатия (σ3 ).

Квадрант растяжения – область, заключенная между трещинами скалывания, в которой расположена ось растяжения (σ1 ).

Установлено, что «ось сжатия» σ3 (ось алгебраически минимальных главных нормальных напряжений) является биссектрисой острого (в других случаях – тупого) угла, образованного сопряженными трещинами в квадранте сжатия. Положение названной оси определяется в результате анализа кинематического типа сопряженных трещин (рис. 21).

Ось σ2 («средняя») ориентирована в направлении простирания трещин и в общем случае маркирует направление линии их пересечения.

Оси σ1 («растяжения») направлена перпендикулярно осям σ2 и σ3 и является биссектрисой тупого угла (или острого) между сопряженными трещинами скола, в квадранте растяжения.

Кливаж – способность горных пород раскалываться на тонкие пластинки по густо развитой системе параллельных поверхностей (трещин), обычно секущих слоистость. Кливаж широко развит в метаморфических, интенсивно смятых в складки и рассеченных разрывными нарушениями горных породах.

Необходимо отметить, что нередко используемым термином «кливаж разлома (кливаж скалывания)» обозначаются совокупности часто (с частотой до 0,1 –0,5 см) расположенных трещин скола, обычно маркирующих осевые (или краевые) зоны разрывных нарушений.

Из существующих классификаций кливажа наиболее обоснованной является классификация, предложенная В. В. Белоусовым. Им выделяются следующие разновидности кливажа (рис. 22).

1. Послойный кливаж, развивающийся параллельно слоистости на ранних стадиях пластической деформации.

2. Веерообразный кливаж, располагающийся под острым углом к осевой поверхности и ориентированный таким образом, что он сходится под антиклиналями и над синклиналями, т. е. веерообразно относительно осевой, поверхности складки.

3. Обратный веерообразный кливаж, при котором поверхности кливажа сходятся над антиклиналями и под синклиналями.

4. S-образный кливаж с изменяющейся ориентировкой в пластах различного состава; этот вид осложняет как веерообразный, так и обратный веерообразный кливажи.


5. Главный (параллельный) кливаж, развивающийся параллельно осевым поверхностям складок как в замке, так и на крыльях.

Помимо этих типов кливажа, развитых в складках, явления, имеющие все признаки сходства с кливажем, наблюдаются иногда вблизи крупных разрывов, на что указывал М. А. Усов.

Общая классификация кливажа может быть дана в следующем виде.

А. Кливаж, связанный со складчатостью.

I. Послойный кливаж.

II. Секущий кливаж.

1. Веерообразный.

2. Обратный веерообразный.

3. Параллельный.

Б. Приразрывный кливаж.

Следует отметить, что нередко кливаж отождествляют со сланцеватостью: сланцеватость рассматривается как разновидность кливажа или, наоборот, кливаж как разновидность сланцеватости.

Между тем кливаж и сланцеватость — явления принципиально отличные друг от друга и до известной степени противоположные. Кливаж представляет собой один из видов механического разрушения породы а сланцеватость, выражающаяся в образовании линейных и пластинчатых минералов под влиянием процессов метаморфизма, развивается при образовании новых пород.

Кливаж может возникнуть как в породах, обладающих сланцеватостью, так и в породах без признаков сланцеватости. Последняя в свою очередь может наложиться на ранее сформировавшийся кливаж.

Трещины сплющивания – прямолинейные, тесно сжатые, короткие, без выполнения, на их стенках отсутствуют штрихи скольжения, что свидетельствует о том, что перемещения по плоскостям трещин сплющивания не происходили.

Ось σ3 всегда ориентирована строго перпендикулярно плоскостям трещин сплющивания, ось σ2 – по их простиранию, ось σ1 – по направлению их падения (рис. 21).

Встречаемые в литературе термины «кливаж течения », «кливаж осевой поверхности», «кливаж главный» , формирование которых сопровождает соответственно формирование сланцеватости (гнейсовидности) метаморфитов и тесно сжатых изоклинальных складок, используются для обозначения густой (с частотой трещин в 0,0n – 0,n см) сети параллельно расположенных трещин сплющивания, обычно «маркированных» листоватыми и пластинчатыми минералами.

8. РАЗРЫВЫ СО СМЕЩЕНИЯМИ

Рассмотрим разрывы, по которым происходили значительные смещения пород, прилегающих к поверхности разрыва. Четкой грани между трещинами и разрывами со смещениями провести невозможно. В районах, где развиты только трещины, разрыв со смещением в 10 см будет заметен и, следовательно, выделен, в то время как в районах с широким распространением разрывов со смещениями отмеченный разрыв окажется отнесенным к трещинам.

Классификация разрывов со смещениями разработана на основании многолетней практики геологов. Эти разрывы делятся на шесть основных групп: сбросы, взбросы, сдвиги, раздвиги, надвиги и покровы. Разрывы каждой из групп обладают отличительными морфологическими признаками и образуются при различных динамических и кинематических условиях. Поэтому данная классификация является как морфологической, так и генетической.

СБРОСЫ

Сбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения опущенных пород.

Классификация сбросов. Сбросы различаются по ряду признаков: углу наклона сместителя, ориентировке по отношению к простиранию нарушенных пород, соотношению наклона смесителя и нарушенных пород, направлению перемещения крыльев, взаимному расположению сбросов в плане и в разрезе. По углу наклона сместителя выделяются: пологие сбросы с углом наклона сместителя до 30°, крутые с углом наклона сместителя от 30 до 80° и вертикальные с углом наклона сместителя более 80°.

По отношению к простиранию нарушенных пород различаются: продольные сбросы , у которых общее простирание сместителя совпадает с простиранием нарушенных пород, косые (диагональные) сбросы , сместитель которых ориентирован под углом к простиранию пород, и поперечные сбросы , направленные вкрест простирания пород.

По соотношению наклонов сместителя и нарушенных пород выделяются согласные и несогласные сбросы . У согласных сбросов наклон пород и сместителя направлен в одну и ту же сторону; у несогласных сбросов породы и сместитель падают в противоположные стороны.

По направлению движения крыльев выделяются четыре вида сбросов: прямые, обратные, шарнирные и цилиндрические . В прямых сбросах висячее крыло перемещается вниз, в обратных — лежачее крыло перемещается вверх. В шарнирных сбросах крылья поворачиваются в разные стороны или в одну и ту же сторону вокруг оси, перпендикулярной к простиранию сместителя (рис. 23). Если ось вращения расположена не у конца сброса, а на его продолжении, крылья шарнирного сброса могут двигаться в различных направлениях. В цилиндрических сбросах движение происходит по дуге или искривленной поверхности, близкой к дуге, вокруг оси вращения, расположенной в стороне от сместителя.

По взаимному расположению сбросов в плане различают параллельные, радиальные и перистые сбросы . В параллельных сбросах поверхности сместителей в плане и разрезе параллельны, и смещение по таким сбросам носит нередко ступенчатый характер. Радиальные сбросы расходятся от одной точки или от определенного участка по радиусам. Такие сбросы могут возникать на периклинальных и центриклинальных замыканиях складок или на сводах куполов. Перистые сбросы образуют ветвящуюся сеть, в которой выделяется основной наиболее крупный сброс и ответвляющиеся, более мелкие.

По отношению к времени образования нарушенных разрывами отложений сбросы делятся на конседиментационные , т. е. возникающие и развивающиеся одновременно с накоплением осадков, и постседиментационные (наложенные). В конседиментационных сбросах на поднятых крыльях нередко мощности пород оказываются сокращенными, и отдельные стратиграфические горизонты выпадают из разреза. В противоположность этому на опущенных крыльях мощности пород увеличиваются, наблюдаются полные стратиграфические разрезы и относительно более мелкозернистые и глубоководные фации. В постседиментационных (наложенных) разрывах мощности пород и фации не имеют различий.

При движении крыльев, соприкасающихся друг с другом, поверхности сместителя притираются и становятся гладкими, как бы отполированными. Такие блестящие поверхности носят название зеркал скольжения. На зеркалах скольжения образуются многочисленные штрихи и бороздки (бороздки скольжения), ориентированные по направлению движения крыльев. Зеркала скольжения возникают даже при относительно небольших перемещениях.

При смещениях с амплитудами в десятки и сотни метров в результате разрушения неровностей и выступов поверхности сместителя, помимо зеркал скольжения, между крыльями сброса развивается брекчия трения, представляющая собой раздробленную и перетертую массу обломков пород.

ВЗБРОСЫ

Взбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения приподнятых пород.

Классификация взбросов почти совпадает с классификацией сбросов. Взбросы также различаются по ряду признаков.

По углу наклона сместителя выделяются: пологие взбросы с углом наклона сместителя до 30°, крутые — с углом наклона от 30 до 80° и вертикальные — с углом наклона сместителя от 80 до 90°. По отношению к простиранию нарушенных пород различаются продольные взбросы , у которых простирание сместителей совпадает с направлением простирания пород, косые или диагональные взбросы , ориентированные под углом к простиранию пород, и поперечные , направленные под прямым углом к простиранию пород. По соотношению наклона пород и сместителя (в вертикальных разрезах) выделяют согласные и несогласные взбросы . У согласных взбросов наклон пород и сместителя направлен в одну и ту же сторону, у несогласных - породы и сместитель наклонены в противоположные стороны (рис. 24).

По направлению перемещения крыльев выделяются три вида взбросов: прямые, обратные и шарнирные . В прямых взбросах висячее крыло перемещается вверх, в обратных — лежачее крыло перемещается вниз, в шарнирных — крылья повернуты вокруг оси, находящейся на одном из концов разрыва.

Следует отметить, что в цилиндрических сбросах (см. рис. 23) в верхней их части разрыв может быть классифицирован как сброс, а в нижней как взброс. Это дает основание некоторым исследователям отказаться от деления разрывов на сбросы и взбросы, и все разрывы, относящиеся к сбросам и взбросам, называть сбросами. С этим, однако, нельзя согласиться по следующим причинам. В подавляющем большинстве случаев движение крыльев по сместителю происходит прямолинейно. При этом отделение сбросов от взбросов не вызывает затруднений. В цилиндрических и шарнирных сбросах крылья двигаются не прямолинейно, а по кривым вокруг оси, в связи с чем принятые классификационные признаки недостаточны для их отнесения к сбросам и взбросам. Обычно такие разрывы называются сбросами, за исключением тех случаев, в которых устанавливается перемещение одного из крыльев вверх. К сбросам следует относить и разрывы с вертикальным положением сместителя, если только, как и в цилиндрических сбросах, не устанавливается перемещение одного из крыльев вверх.

По взаимному расположению в плане различают ступенчатые, радиальные и перистые взбросы . Сместитель взбросов имеет те же характерные черты, что и сместитель сбросов, и направление движения по сместителю, амплитуда и возраст взбросов определяются так же, как и для сбросов.

Взбросы, как и сбросы, по отношению ко времени образования нарушенных ими осадочных толщ делятся на конседиментационные и постседиментационные . В первых перемещение крыльев происходит одновременно с накоплением осадков, и на опущенном крыле мощность пород оказывается большей, чем на приподнятом. Постседиментационные взбросы развиваются позже образования пород и не имеют изменений мощностей или фаций на крыльях.

Групповые сбросы и взбросы . Сбросы и взбросы развиваются группами, охватывающими значительные территории. Широко распространены системы смещенных блоков горных пород, разделенных сбросами или взбросами, называемых грабенами и горстами.

ГРАБЕНЫ

Грабенами называются структуры, образованные сбросами или взбросами, центральные части которых опущены и сложены на поверхности породами, более молодыми, чем породы, обнажающиеся в приподнятых краевых частях. Таким образом, грабены характеризуются погружением их центральных частей относительно периферических вдоль линий разрывов (рис. 25). Различают простые и сложные грабены. Простые грабены образуются двумя сбросами или взбросами; в сложных грабенах принимает участие большое количество разрывов.

Грабены планетарного размера, образованные сбросами, получили название рифтов , а грабены, в строении которых участвуют взбросы — рампы .

ГОРСТЫ

Горстами называются структуры, образованные сбросами или взбросами, центральные части которых приподняты и на поверхности сложены более древними породами, чем породы, обнаженные в их краевых частях (рис. 26).

СДВИГИ

Сдвигами называются разрывы, смещения по которым происходят в горизонтальном направлении — по простиранию сместителя (рис. 27). В сдвигах различаются крылья, сместитель, угол наклона сместителя и амплитуда смещения.

По углу наклона сместителя сдвиги делятся на горизонтальные (угол наклона от 0 до 10°), пологие (угол наклона от 10 до 45°), крутые (угол наклона от 45 до 80°), вертикальные (угол наклона сместителя от 80 до 90°).

По отношению к простиранию нарушенных пород сдвиги, так же как и сбросы, могут быть продольными , косыми , или диагональными , и поперечными . Различают правые и левые сдвиги.

РАЗДВИГИ

По предложению В. В. Белоусова, разрывы, в которых перемещение крыльев происходит перпендикулярно к поверхности отрыва, называют раздвигами . При раздвиге увеличивается зияние между крыльями разрыва.

НАДВИГИ

Разрывы взбросового характера, возникающие одновременно со складчатостью, называются надвигами .

ПОКРОВЫ

Тектоническими покровами , или шарьяжами , называются крупные надвиги, характеризующиеся перемещениями на километры и десятки километров по пологим, горизонтальным и волнистым поверхностям.

В покровах выделяются перемещенные массы висячего крыла, называемые аллохтоном, и оставшееся на месте лежачее крыло — автохтон. Поверхность, по которой перемещается аллохтон, называют поверхностью волочения.

Тектонические покровы относятся к числу наиболее сложных структурных форм земной коры.

Тектонические покровы (шарьяжи) – это крупные структуры перекрытия, когда один геологический комплекс пород лежит (залегает) на другом наподобие более молодой толщи, но отделен от него полого залегающим разрывным нарушением (рис. 28 ).

Породы, залегающие под покровом, называются автохтонными (автохтоном).

Породы, слагающие покровы (перемещенные, шарьированные), называются аллохтонными (аллохтоном).

Поверхность, разделяющая авто- и аллохтонные пластины, залегает полого, участками – горизонтально и обычно имеет сложную форму.

Останцы разрушенных (подвергшихся денудации) после своего формирования аллохтонных пластин называются клиппами (рис.28.)

Выходы пород автохтона среди аллохтонных (например, в долине реки, эродирующей тело шарьяжа) называются тектоническими окнами (рис.28.).

Типы тектонических покровов . Выделяют два типа покровов: 1) покровы течения и 2) покровы скалывания.

Первый тип покровов – шарьяжи, образованные сложно дислоцированными (смятыми в лежачие, опрокинутые складки и рассеченные разрывами (отложениями. Они сложены мощными толщами пластичных (в период шарьяжеобразования) пород: флишоидами, серпентинитами и др.

Второй тип покровов образован сравнительно слабо деформированными пластинами, сложенными твердыми, непластичными (в период формирования) хрупкими горными породами.

Мощность покровов достигает 3-4 км, пакетов покровов – 7-8 км.

Доказанные амплитуды горизонтальных перемещений шарьяжных пластин исчисляется многими десятками и сотнями погонных километров.

Время (нижний возрастной уровень) покровообразования определяется возрастом наиболее молодых пород, входящих в состав авто- и аллохтонных пластин, а также возрастом перекрывающих аллохтон осадочных отложений (верхний возрастной уровень).

Покровообразование происходит в наиболее крупных масштабах на коллизионной стадии развития подвижных поясов.

Покровообразование сопровождается формированием таких специфических геологических образований как меланжевые и олистостромовые комплексы (рис. 29).

Меланж (фр. – смесь) представляет собой породы неоднородного хаотического строения, содержащие обломки (угловатые и со сглаженными контурами) относительно жестких пород, окруженных пластичными породами, являющимися как бы матрицей первых.

Роль жестких (хрупких) блоков нередко играют габброиды, перидотиты, эффузивы и песчаники, в качестве пластичной матрицы могут выступать рассланцованные серпентиниты, глинистые и слюдистые породы.

Меланжевые комплексы образуются обычно в подошве (постели) тектонических покровов, сложенных офиолитами (серпентинит-терригенный меланж) и флишоидами (осадочно-терригенный меланж).

Олистостромы – это геологические образования морфологически, а нередко и по составу подобные меланжу, но имеющие первично нетектоническое происхождение. Они представляют собой пачки осадочных (глинистых, песчано-глинитсых) пород, содержащих большее или меньшее количество крупных глыб чужеродных пород (например, известняков, базальтов и др.), называемых обычно олистолитами.

Олистостромы образуются в зонах горообразования на земной поверхности в результате разрушения, подводного оползания и переотложения крупнообломочного материала в обрамлении положительных тектонических структур, какими являются, например, горстовые выступы или тектонические покровы. В последнем случае олистостромовые образования образуются обычно во фронте (внешней периферии) покровных (шарьяжных) пластин.

Мощность горизонтов олистостром составляет первые метры – первые километры, а размер обломков в их составе достигает многих сотен метров.

9. ФОРМЫ ЗАЛЕГАНИЯ ЭФФУЗИВНЫХ ПОРОД

Эффузивные образования в виде застывших лав, пепловых туфов, лавовых брекчий и других продуктов вулканических извержений чрезвычайно широко развиты в земной коре. Они составляют существенные части разрезов всех систем, начиная от древнейших и кончая четвертичной. Однако эффузивные породы, образовавшиеся еще в докембрии, обычно сильно изменены процессами метаморфизма и превращены в кристаллические сланцы, порфироиды и порфиритоиды.

УСЛОВИЯ НАКОПЛЕНИЯ

Извержения вулканического материала происходят из вулканических аппаратов — вулканов, построенных весьма сложно и разнообразно. Различают вулканы центрального, трещинного и ареального типов.

При извержениях центрального типа образуется четко выраженный крутой либо пологий слоистый конус — стратовулкан. Склоны таких вулканов нередко имеют крутизну 20—30° и сложены из переслаивающихся лав, туфов, лавовых брекчий, осадочных пород морского или континентального происхождения. Эти образования покрывают склоны неравномерно, а их мощность убывает по мере удаления от центра извержения.

При трещинных извержениях выделение вулканических продуктов происходит из многих вулканов, приуроченных к одной трещине или разрыву земной коры. Часто вулканы возникают в месте пересечения разрывов разных направлений.

При извержениях ареального типа вулканические аппараты располагаются без определенного порядка, а выделяющиеся из них вулканиты соединяются вместе, покрывая обширные площади.

Характер извержения магмы из вулкана зависит от многих причин, но основной из них является газовый режим. Различают извержения трех видов: эффузивные, эксплозивные и экструзивные.

При эффузивных извержениях лава относительно спокойно изливается на поверхность и застывает в виде покрова или потока той или иной формы. Обычно такие вулканы извергают лаву основного или среднего состава.

Эксплозивные извержения представляют собой взрывы, сопровождающиеся выбросами в воздух либо в водный бассейн под большим давлением газов и паров, увлекающих за собой затвердевшие или полужидкие куски лавы, имеющие форму брызг, сгустков или иную форму. Подобный тип извержения характеризует выделения лав кислого или щелочного состава.

При экструзивном типе извержения происходит выдавливание лавы, находящейся в вязком или уже затвердевшем состоянии, на поверхность.

В районах вулканической деятельности встречаются также тела, образованные лавами, застывшими вблизи земной поверхности. Породы, их слагающие, по составу и структуре очень близки к застывшим лавам. Они образуют некки, силлы, небольшие штоки, лакколиты. Некки представляют собой трубообразные, обычно расширяющиеся кверху тела, образующиеся в вулканических каналах.

10. ФОРМЫ ЗАЛЕГАНИЯ ИНТРУЗИВНЫХ ПОРОД

Интрузивные горные породы развиты в земной коре чрезвычайно широко. Они распространены в складчатых областях и играют большую роль в строении фундаментов платформ.

ФОРМЫ ИНТРУЗИВНЫХ ТЕЛ

Формы интрузивных тел весьма разнообразны. Батолитами (рис. 30) называются крупные массивы интрузивных пород, имеющие площадь выхода на поверхности не менее 100 км2 и секущие контакты с вмещающими породами.

Штоками называются интрузивные тела округлой или вытянутой формы, имеющие площадь выхода на поверхности менее 100 км2 . Штоки, образующие самостоятельные массивы, характеризуются всеми чертами строения, свойственными батолитам. Нередко штоки представляют собой боковые или верхние части батолитов, выступающие в виде куполов и гребней над их поверхностью.

Лакколитами (рис. 31) называются небольшие (до 3—6 км в поперечнике) грибообразные тела, границы которых согласны с поверхностями слоистости вмещающих их пород.

Магматические диапиры принадлежат к гипабиссальным интрузиям. Они характеризуются резко вытянутой веретенообразной или грушевидной формой в плане и в разрезе, относительно небольшими размерами (от десятков метров до нескольких километров) и секущими контактами с вмещающими породами. Магматические диапиры при своем образовании вызывают в окружающих толщах появление разрывов и интенсивных смятий.

Лополитами называются блюдцеобразные тела, залегающие согласно с вмещающими породами, образованные главным образом основными, ультраосновными или щелочными породами, а также гранитоидами.

Факолитами называются небольшие интрузии, имеющие серповидную форму в разрезе. Они образуются в ядрах антиклинальных или реже синклинальных складок (рис. 32).

Вулканические жерла (некки) представляют собой каналы, по которым магма при вулканических извержениях поднимается на поверхность.

Дайки , часто не вполне правильно называемые также жилами, представляют собой плитообразные тела, размещающиеся в трещинах земной коры. Они могут быть выполнены различными по составу породами как интрузивными, так и эффузивными. Размеры даек очень различны.

Интрузивные залежи, или силлы (рис. 33), образуются при внедрении магмы вдоль поверхностей наслоения.

Апофизы (языки) представляют собой небольшие, слепо заканчивающиеся ответвления от крупных магматических тел.

Приведенные выше формы интрузивных тел гранитного состава по отношению к слоистости вмещающих их пород делятся на две группы: согласные и несогласные. Ограничивающие поверхности у согласных интрузий параллельны слоистости. Несогласные интрузии прорывают вмещающие слоистые толщи, и их контакты имеют отличную от слоистости форму и иное залегание. К согласным интрузиям относятся: лакколиты, факолиты, интрузивные залежи; к несогласным — батолиты, штоки, некки, жилы.

11. ФОРМЫ ЗАЛЕГАНИЯ МЕТАМОРФИЧЕСКИХ ПОРОД.

ОСОБЕННОСТИ ТЕКСТУРЫ МЕТАМОРФИЧЕСКИХ ПОРОД

К метаморфическим толщам относятся исходные осадочные или магматические породы, в той или иной степени измененные и преобразованные в породы иного состава под влиянием процессов метаморфизма.

Метаморфические комплексы подвижных поясов и фундамента древних платформ характеризуются наличием в них ориентированных (упорядоченных) структур, сложнопостроенных складчатых структур, разрывных нарушений разного типа и трещиноватости.

К типу ориентированных (упорядоченных) деформационных структур относятся: сланцеватость (гнейсовидность), полосчатость и линейность.

Сланцеватость ( гнейсовидность) - это ориентированное расположение пластинчатых, чешуйчатых и листоватых минералов в метаморфической горной породе. Минералы названных габитусов в складках обычно ориентированы параллельно их осевым поверхностям. Интенсивное развитие сланцеватости затушевывает первичные осадочные текстуры пород (слоистость, слоеватость и др.) вплоть до полного их «уничтожения» (когда они становятся «нечитаемыми»).

Полосчатость – полосчатое (близпараллельно - полосчатое) расположение пород (минеральных агрегатов), отличающихся по минеральному составу, структуре и текстуре, в составе метаморфических комплексов.

Полосчатость обычно ориентирована параллельно сланцеватости, но может занимать и секущее положение, являясь более ранним образованием (структурным элементом). Полосчатость (отдельные «полосы», линзы) обычно не прослеживается на большие расстояния.

Линейность – ориентированное расположение зерен и их агрегатов линейно вытянутых (длинно-пластинчатых, игольчатых) минералов в составе метаморфических пород.

Линейность фиксирует направление наибольшего удлинения геологического тела (складчатой структуры, сланцевого комплекса и др.) и, как мы увидим позднее, совпадает (фиксирует) с ориентировкой оси σ1 (ось «растяжения») деформируемого метаморфического комплекса.

На ранних этапах (1940 – 1950 гг.) изучения геологии раннедокембрийских метаморфических комплексов (в это время преобладал чисто петрографический подход к их изучению) сложилось представление о достаточно простой их структуре. Считалось, что метаморфические породы образуют простые формы: пологие (или крутые) тупые складки, моноклинали и др. В это время полагали, что нередко наблюдаемые мелкие сложные складки представляют собой незначительные и локальные осложнения крупных относительно простых по строению структур.

В основе этих представлений лежало положение о том, что сланцеватость и полосчатость метаморфитов наследует первичную слоистость осадочных и вулканогенно-осадочных пород, за счет преобразования которых они сформированы.

Позднее (при проведении детальных и крупномасштабных геологических съемок) выявилось значительно более сложное строение этих, как считалось, ранее, простых складчатых форм древних метаморфитов).

В результате проведения полевых структурных и экспериментальных исследований была обоснована модель перестройки первичных слоистых структур в полосчатые и сланцеватые.

Как показывает анализ этой модели, слоистость и полосчатость ─ это, как говорят в Одессе, «две большие разницы». Иначе говоря, названные структуры представляют собой результат проявления разновременных и генетически разнотипных геологических процессов.

ИЗУЧЕНИЕ ВНУТРЕННЕЙ СТРУКТУРЫ МЕТАМОРФИЧЕСКИХ ПОРОД

Складчатость, развитая в метаморфических толщах, весьма различна по своей форме и размерам. Широко распространены просто построенные плавные складки с поперечными размерами в десятки километров, очень сложные и непостоянные по форме складки течения и очень мелкая складчатость, переходящая в плойчатость.

При образовании складок нередко пласты, обладающие достаточной пластичностью, разрываются на отдельные части. При этом из них образуются цилиндрические или четкообразные тела, заключенные в измененную массу более податливых пластических слоев. Эти структуры носят название будинаж-структур .

Будинаж возникает в толщах, состоящих из неоднородных по механическим свойствам пород. Более твердые пласты, залегающие среди пластичных пород, испытывают разрывы, превращаясь в пластины-блоки, которые в процессе движения отрываются друг от друга, закатываясь в подвижную «текучую» массу, обтекающую блоки. Вследствие подобного обтекания в толще, вмещающей блоки, образуются мелкие складки смятия, ядрами которых оказываются блоки-«закатыши».

В метаморфических толщах докембрийского возраста широко распространены образования, состоящие из метаморфизованных пород с включенными в них жилами пегматита, аплита и гранитоидов. Такие образования называются мигматитами . В мигматитах другого типа привнесенное вещество частью или целиком может быть тонко рассеяно в перекристаллизованном и химически измененном субстрате.

12. ОБЩИЕ ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ЗЕМНОЙ КОРЫ

ОБЗОР СТРОЕНИЯ ЗЕМНОЙ КОРЫ

Поверхность нашей планеты имеет сложное строение. Большая часть ее (5/8) покрыта океаническими бассейнами и лишь 3/8 представляют собой возвышающуюся над уровнем океанов сушу, образующую шесть крупных материковых массивов. На основании глубинного сейсмического зондирования и гравиметрических данных в настоящее время с полной уверенностью можно говорить о резких принципиальных отличиях в строении земной коры океанических впадин и континентов.

Земная кора по различию в скоростях прохождения сейсмических волн и плотности слагающего ее вещества делится на три условных слоя: нижний — со скоростью прохождения продольных сейсмических волн от 6,5 до 7 км/сек — базальтовый (габбровый по составу), средний — со скоростями продольных волн 5,5—6,1 км/сек — гранитный (гнейсово-гранитный) , верхний слой осадочных пород со скоростями продольных волн от 3,5 до 5 км/сек. Переход от гранитного слоя к базальтовому (раздел Конрада) характеризуется скачкообразным повышением скоростей волн от 5 до 5,5 км/сек.

Соотношения этих слоев под океанами и на материках неодинаковы.

Океанический тип строения земной коры развит во внутренней части Тихого океана и на огромных пространствах Атлантического и Индийского океанов. Осадочный слой под океанами или отсутствует, или имеет толщину не более 1 км; легкого гранитного слоя под океанами также почти нет, и только цепи подводных возвышенностей представляют собой узкие полосы и ленты относительно легких магматических пород, толщина которых не превышает 5—8 км. Основная часть пространства океанического ложа представлена базальтовым слоем, толщина которого в среднем 5 км.

Материковый тип земной коры характеризуется почти повсеместным развитием всех трех слоев. Мощность осадочного и гранитного слоев на материках достигает 35—40 км, а базальтового 25—40 км. При этом наибольшие мощности слоя отмечаются под высокогорными областями (Средняя Азия, Кавказ), а пониженные значения характерны для областей с равнинным рельефом.

Помимо океанического и материкового типов земной коры существует еще промежуточный тип , свойственный областям, переходным от океанического ложа к континентам. В промежуточном типе коры гранитный слой либо слабо развит, либо совсем отсутствует, и сразу же под мощным (до 15 км) осадочным слоем располагается базальтовый. Кора промежуточного типа развита под островными дугами западных окраин Тихого океана, а также под некоторыми внутренними морями: Черным, южной частью Каспийского.

Ниже поверхности Мохоровичича расположена мантия Земли, сложенная в верхних своих частях улътрабазитами (перидотит — дунит).

ОКЕАНИЧЕСКИЕ ВПАДИНЫ

Строение океанических впадин изучено еще далеко недостаточно и может быть намечено в самых общих чертах.

Изучение рельефа океанического дна, состава и возраста осадков и геофизические материалы позволяют выделить в земной коре под океанами следующие структуры: океанические платформы, валы, внутриокеанические подвижные поясы, срединные хребты, глубоководные желоба и глубинные разломы.

СТРОЕНИЕ КОНТИНЕНТОВ

Основными структурными элементами земной коры на континентах, в областях архипелагов и неглубоких морей, являются складчатые области (орогены) и платформы (кратогены). Эти две важнейшие категории материковых структур отчетливо выделяются в позднем докембрии, палеозое, мезозое и кайнозое.

Ядрами современных платформ являются докембрийские или палеозойские и мезозойские консолидированные массивы, окончившие свое геосинклинальное развитие еще в докембрии или палеозое.

13. СТРОЕНИЕ СКЛАДЧАТЫХ ОБЛАСТЕЙ

ОБЩАЯ ХАРАКТЕРИСТИКА

По определению А. Д. Архангельского, складчатые области — это такие участки земной коры, которым свойственна особенно интенсивная и многообразная подвижность.

Складчатым областям свойственно также широкое развитие вулканизма, проявляющегося как в эффузивной, так и в интрузивной форме. В связи с наличием резко выраженного рельефа и существованием горных массивов отложение осадков во впадинах складчатых областей (происходит ли оно в море или на суше) совершается весьма интенсивно, и здесь накапливаются особенно мощные толщи осадочных пород.

Таким образом, основные признаки складчатых областей следующие:

1. Высокая подвижность, т. е. проявление интенсивных вертикальных и горизонтальных движений отдельных участков земной коры. Движения характеризуются большими градиентами скоростей, амплитудами и быстрой сменой знака. Скорости достигают нескольких миллиметров, а в отдельных случаях и сантиметров в год. Горизонтальные движения проявляются в образовании линейной складчатости и перемещений вдоль разрывов.

2. Раздробленность земной коры.

3. Напряженная складчатость.

4. Большая мощность осадочных пород.

5. Интенсивная эффузивная и интрузивная деятельность.

6. Особый состав формаций горных пород.

7. Широкое развитие процессов метаморфизма.

8. Проявление металлогенических процессов, связанных с интрузивной деятельностью.

9. Резкий горный рельеф.

ФОРМАЦИИ

В осадочных и вулканогенных толщах отчетливо выделяются комплексы пород, образующиеся при сходном тектоническом режиме и имеющие одинаковое происхождение. Такие комплексы называются формациями . По Н. С. Шатскому, каждая формация характеризуется определенным составом слагающих ее пород, мощностью, областью распространения и отношением к прилегающим формациям в вертикальном разрезе и горизонтальном направлении. Чрезвычайно важна связь отдельных видов полезных ископаемых с определенными формациями.

В складчатых областях, наиболее широко распространены следующие формации:

1) аспидная, или граувакковая, состоящая из чередования граувакковых песчаников и сланцев с подчиненным количеством вулканических и кремнистых пород;

2) флишевая, состоящая из тонкоритмичного чередования песчаников, алевролитов, мергелей и известняков. В зависимости от состава выделяется песчано-глинистый, песчано-глинисто-карбонатный и глинисто-карбонатный флиш;

3) глинистых сланцев, состоящая в основном из глинистых сланцев или аргиллитов с подчиненными прослоями алевролитов и песчаников;

4) яшмовая, сложенная яшмами, песчаниками, туфами и глинистыми сланцами;

5) джеспилитовая, состоящая из железных руд (гематита), кремнистых пород и железистых кварцитов;

6) глинистых известняков, мергелей и рифовых известняков, сложенная чередующимися пластами известняков, мергелей и иногда доломитов;

7) офиолитовая, состоящая из сложного комплекса основных лав, чередующихся с кремнистыми породами и туфами;

8) основных и средних лав (базальты, андезиты);

9) кислых лав (в основном липариты);

10) молассовая, состоящая из обломочных сероцветных и красноцветных пород и частично известняков, образовавшихся в прибрежных морских или континентальных условиях.

В вертикальных разрезах складчатых областей в расположении формаций одного геосинклинального этапа обычно наблюдается определенная последовательность. В начальные стадии их развития возникают офиолитовая и другие эффузивные формации. В средние фазы этапа образуются яшмовая формация, затем аспидная и флишевая. Место яшмовой формации могут занимать формации глинистых сланцев или известняков; в заключительные фазы возникает молассовая формация. Чрезвычайно важно также свойство различных одновозрастных формаций замещать друг друга в горизонтальном направлении.

СТРУКТУРНОЕ РАСЧЛЕНЕНИЕ СКЛАДЧАТЫХ ОБЛАСТЕЙ

Синклинорием называется сложный комплекс складок, имеющий в поперечном сечении общую форму крупной синклинали. Складки, составляющие антиклинорий , наоборот, имеют общую форму антиклинали (рис. 34).

Заслуживают особого внимания синклинории, получившие название межгорных прогибов . Межгорные прогибы заполняются порфировой наземной вулканогенной и молассовой формациями. В основании их, как правило, располагаются морские тонкообломочные осадки (глины, алевролиты, тонкозернистые пески, нередко прослои и пачки известняков), часто с правильной повторяемостью слоев (нижняя молассовая формация), а также вулканогенные породы (порфировая формация), выше залегают лагунные образования, угленосные или соленосные толщи и заканчивается разрез красноцветными континентальными грубообломочными породами — верхней молассовой формацией.

КРАЕВЫЕ ПРОГИБЫ

Краевые прогибы , по определению Н. С. Шатского, представляют собой очень крупные и нередко сложные впадины, располагающиеся на границе между складчатыми областями и платформами и имеющие строение синклинориев.

Формации краевых прогибов во многом отличаются от формаций складчатых областей и платформ как по составу, так и по заключающимся в них полезным ископаемым. Особенность условий образования формаций краевых прогибов выражена в том, что они накапливаются перед превращением складчатых областей в платформу, при интенсивно формирующихся и воздымающихся складчатых сооружениях складчатых областей и компенсированном осадконакоплении в самих прогибах. Наиболее распространены в краевых прогибах следующие формации.

Молассовая формация , сложенная мощными толщами терригенных пород с неправильным чередованием слоев с неравномерным распределением в них обломочного материала. Эти породы состоят в основном из песчаников, конгломератов и аргиллитов, нередко красноцветных; иногда в них заключены линзы углей. Молассы обычно обладают огромными мощностями и образуются за счет обломочного материала, снесенного с развивающихся поднятий в складчатых областях. В молассах нередко заключены залежи углей, нефти и газа. Различают нижние и верхние молассы.

Угленосная формация , развитая в краевых прогибах очень широко (Кузбасс и др.). Она представляет собой чередование песчаников, аргиллитов, известняков и пластов угля.

Галогенная формация , состоящая из соленосных песчано-глинистых пород или соленосных толщ с залежами каменных и калийных солей.

Формация барьерных рифов , состоящая из известняков, часто заключающих залежи нефти и газа.

Существенной особенностью краевых прогибов является отсутствие в них проявлений магматической деятельности. Вследствие этого в краевых прогибах не встречаются месторождения полезных ископаемых, связанных обычно с различными формами интрузивной деятельности.

ГЛУБИННЫЕ РАЗЛОМЫ

Глубинные разломы характеризуются глубиной заложения и огромным пространственным протяжением. Они, по-видимому, во многих случаях проникают в глубину на многие десятки и, вероятно, сотни километров. Развиваясь в течение длительного времени, охватывающего несколько периодов или даже эр, глубинные разломы контролируют распределение формаций осадочных пород и играют главную роль в размещении в земной коре вулканогенных и интрузивных пород и рудных месторождений.

МАГМАТИЗМ

Интенсивное проявление магматической деятельности как в эффузивной, так и в интрузивной формах составляет одну из самых характерных особенностей развития складчатых областей.

Г. Штилле выделяет четыре следующие одна за другой стадии магматизма:

1) начальный (инициальный) геосинклинальный магматизм;

2) синорогенный магматизм орогенических фаз;

3) субсеквентный (посторогенный) магматизм квазикратонных периодов;

4) конечный магматизм вполне кратонных периодов.

Начальный магматизм связан с мантией и проявляется главным образом в виде основного вулканизма в начальные этапы развития складчатых областей. При этом образуются также силлы, штоки и другие гипабиссальные тела. Синорогенный магматизм тесно связан с главными фазами складчатости и является коровым. Выражается в формировании крупных массивов гранитоидов. Субсеквентный магматизм также обусловлен процессами в земной коре. При этом происходит накопление вулканитов андезитового, дацитового и липаритового состава в последние стадии геосинклинального развития. Конечный магматизм подкоровый и проявляется на платформах в виде образования «платобазальтов», траппов и иных накоплений основных вулканитов, а также щелочных пород (трахитов, риолитов, фонолитов).

14. СТРОЕНИЕ ПЛАТФОРМ

ОБЩАЯ ХАРАКТЕРИСТИКА

Выше отмечалось, что с окончанием геосинклинального режима складчатые области или их отдельные части превращаются в платформы, после чего их дальнейшее геологическое развитие идет по пути, свойственному платформенным областям.

Платформы характеризуются двухъярусным строением. Их фундаментом или цоколем служат в той или иной степени метаморфизованные и пронизанные интрузивными породами складчатые образования, возникшие при геосинклинальном развитии; верхний ярус составляет покров осадочных пород, накопившихся при платформенном режиме. Осадочный чехол отделен от фундамента резко выраженным несогласием, и слагающие его породы, как правило, неметаморфизованы и слабо нарушены, залегают горизонтально или почти горизонтально.

ФОРМАЦИИ

Наибольшим распространением в осадочном чехле платформ пользуются следующие ассоциации формаций:

1) карбонатные и глауконито-карбонатные, сложенные органогенными и хемогенными известняками, мергелями с примесью глауконита, доломитами и в подчиненном количестве глинистыми породами. Образуются в открытых морях и лагунах;

2) красноцветная и галогенная, состоящие из красноцветных песчаников, аргиллитов и конгломератов, фациально замещающихся солями, гипсами и доломитами;

3) морские обломочные, сложенные толщами мелкозернистых песков, песчаников, глин, реже конгломератов и мергелей. Для песков характерно присутствие глауконита;

4) континентальные, среди которых различаются формации влажных равнин, аридных равнин и комплекс ледниковых образований. Среди формаций влажных низких равнин наибольшее значение имеют угленосные толщи, аллювиальные отложения и кора выветривания;

5) трапповая, представленная сложным комплексом пластовых интрузий и залежей основного состава (долериты, порфириты, габбро) заключенных среди туфов, туффитов и осадочных пород. Траппы широко развиты в осадочном чехле Сибирской платформы, где имеют возраст от среднего карбона до нижней юры.

СТРУКТУРНОЕ РАСЧЛЕНЕНИЕ ПЛАТФОРМ

Наиболее последовательное и детальное расчленение платформ на отдельные структурные элементы предложено Н. С. Шатским. Им выделяется несколько групп структур. Наиболее крупные из них носят название щитов и плит. Среди них в свою очередь могут быть выделены подчиненные им структуры: синеклизы, антеклизы и авлакогены. К мелким структурам платформ относятся отдельные складки, валы, флексуры, разрывы и трещины. Особое место на платформах занимают глубинные разломы.

Щитами называются части платформ, складчатое основание которых отличается относительно высоким положением, благодаря чему на щитах часто отсутствует осадочный покров или он имеет незначительную мощность.

Плиты в противоположность щитам представляют собой отрицательные тектонические структуры (опущенные), вследствие чего их осадочный чехол достигает значительной мощности.

Синеклизы представляют собой чрезвычайно плоские прогибы, имеющие синклинальное строение с едва заметным падением слоев на крыльях (от долей метра до 2, реже 3—4 м на километр). Эти прогибы занимают всегда очень большую площадь и имеют различную форму.

Антеклизами , в отличие от синеклиз, называются положительные структуры, представляющие собой пологие поднятия, имеющие форму сводов. Антеклизы и синеклизы тесно связаны друг с другом; крылья синеклиз являются также крыльями соседних антеклиз.

Под названием «авлакогены » Н. С. Шатский выделил узкие, линейные впадины на платформах, ограниченные крупными разломами и сопровождающиеся опусканиями в фундаменте и глубокими прогибами в платформенном чехле.

МАГМАТИЗМ ПЛАТФОРМ

Магматическая деятельность в пределах платформ, как уже указывалось, проявляется в слабой степени.

Интрузии кислого и щелочного состава, известные на платформах, имеют незначительные размеры и сконцентрированы главным образом на их окраинах.

Значительно шире на платформах распространены магматические процессы, приводящие к образованию основных пород, получивших название «трапповой формации».

Начальные и средние фазы траппового магматизма, по А. П. Лебедеву, были главным образом эффузивными. В это время возникли покровы базальтов и долеритов и накопилось значительное количество туфов. Заключительная фаза выражена в образовании пластовых залежей (силлов), образующих многоэтажные внедрения и реже секущие тела в виде жил, даек, столбообразных штоков, трубок и иногда сети тонких неправильных жил (штокверков). Время образования трапповой формации на платформах связывается с периодами их общего растяжения.

Слабая интрузивная деятельность на платформах является основной чертой их развития, отличающей платформы от складчатых областей. Возможно, что переход из геосинклинальной стадии в платформенную вызывается главным образом прекращением образования кислой магмы.

15. ПРИМЕНЕНИЕ ГЕОФИЗИЧЕСКИХ МЕТОДОВ В СТРУКТУРНОЙ ГЕОЛОГИИ И ПРИ ГЕОЛОГИЧЕСКОМ КАРТИРОВАНИИ

Геофизические методы основаны на изучении на поверхности Земли или вблизи нее (в воздухе, горных выработках, скважинах, на поверхности воды или под водой) различных физических полей и явлений, распределение или характер протекания которых отражают влияние среды — горных пород, слагающих толщу земной коры на том или ином участке исследований. Возможности решения геологических задач геофизическими методами определяются тем, что горные породы в зависимости от состава и условий залегания характеризуются определенными физическими свойствами — плотностью, магнитностью, электропроводностью, упругостью, радиоактивностью и др., различаясь между собой численными значениями соответствующих физических констант. Одно и то же по своей физической сущности поле в зависимости от свойств той геологической среды, в которой оно наблюдается, будет различно по интенсивности и структуре. Таким образом, изучая физические поля и выявляя особенности их проявления на данном участке, мы получаем возможность установить характер влияния и особенности пространственного распределения пород и других геологических образований, различающихся по своим физическим свойствам.

При геологическом картировании и структурно-геологических исследованиях наблюдения ведутся таким образом, чтобы выявлять особенности полей (так называемые аномалии), обусловленные контактами, разломами, складчатыми структурами, интрузиями и т. д., т. е. теми геологическими объектами, обнаружение и нанесение которых на карту и является важнейшим этапом изучения геологического строения исследуемых территорий.

Геофизические методы обладают рядом специфических особенностей, без понимания и учета которых невозможно эффективно и полноценно использовать полученные с их помощью данные.

Прежде всего следует иметь в виду, что четкость и интенсивность проявления наблюдаемых аномальных эффектов прямым образом зависит от того, в какой мере порода, слагающая отдельное геологическое тело или пласт, отличается по физическим свойствам от пород, слагающих вмещающую толщу или смежные пласты. Эти различия могут проявляться в самых разных соотношениях и, как правило, в различной степени. Поэтому для более всестороннего изучения района применяется чаще не один, а комплекс геофизических методов, хотя это и осложняет и удорожает проведение геофизических работ.

Общие закономерности в распределении физических свойств пород уже достаточно хорошо изучены. Так, плотность горных пород определяется главным образом их минеральным составом и пористостью. Поэтому более плотными являются магматические и сильно метаморфизованные породы, менее плотными — рыхлые осадочные породы; среди магматических пород плотность возрастает от кислых разностей (гранитов) к ультраосновным.

Удельное сопротивление пород почти не зависит от минерального состава и определяется их пористостью, влажностью, а также минерализацией содержащейся в порах породы воды. Поэтому магматические и метаморфические породы, как правило, имеют более высокое сопротивление, чем осадочные. Среди осадочных пород более высоким сопротивлением обладают карбонатные и хемогенные отложения, а более низким — терригенные. В последней группе пород сопроти­вление уменьшается по мере возрастания содержания глинистых частиц и увеличения пористости. Лишь небольшая группа рудных минералов (главным образом сульфидных), в том числе и графит, обладают высокой электропроводностью, благодаря чему рудные тела и жилы могут в ряде случаев выявляться электроразведочными методами как естественные проводники.

Магнитные свойства пород в основном определяются наличием в них ферромагнитных минералов — магнетита, ильменита, гематита, пирротина, которые, как правило, не являются породообразующими и присутствуют в породах в виде акцессориев. Наиболее магнитными породами среди магматических являются ультраосновные, а среди метаморфических — железистые кварциты. Осадочные породы в целом менее магнитны, чем породы двух предыдущих групп, но среди них относительно более магнитны песчаные отложения и наименее магнитны известняки, мергели, каменные соли.

Радиоактивность пород целиком зависит от присутствия в них минералов радиоактивных элементов (и радиоактивных изотопов). Радиоактивность магматических пород возрастает от ультраосновных разностей к кислым, среди осадочных пород — от карбонатных отложений к глинистым.

Упругие свойства пород зависят от механических связей между частицами породы и возрастают от рыхлых разностей осадочных образований в сторону магматических пород, среди которых наибольшей упругостью обладают ультраосновные разности.

Четкость и интенсивность наблюдаемых геофизических полей и аномалий прямым образом зависит и от геометрических факторов — размеров и глубины залегания создающих их геологических объектов.

Разные по геологической природе (по составу пород и происхождению), как и разные по размеру и глубине залегания геологические объекты могут создавать одинаковые геофизические поля; следовательно, одна и та же наблюденная геофизическая аномалия может быть объяснена наличием разных как по геологической природе, так и по размеру и глубине залегания тел.

По характеру получаемых результатов интерпретацию геофизических наблюдений принято подразделять на качественную и количественную. Качественная интерпретация отвечает на вопросы о наличии или отсутствии того или иного искомого геологического тела, оценки его общей конфигурации, состава пород, слагающих отдельные тела и пласты, т. е. на вопросы установления природы выявленных аномалий. Количественная интерпретация предусматривает получение количественных показателей — местоположения (координат) объекта, его размеров или мощности, глубины, элементов залегания и т. д.

При качественной интерпретации неоднозначность более всего проявляется при определении геологической природы аномалеобразующих тел; при количественной интерпретации в определении глубины и размеров объектов.

Сложность реальных геологических условий зачастую столь велика, что в ряде случаев они не поддаются количественному учету из-за математических трудностей. В этих случаях геологическую обстановку схематизируют, заменяя реальные, сложные по форме и строению геологические тела телами более простой геометрической формы с однородным распределением физических параметров (пласты и жилы представляют — аппроксимируют — в виде параллелепипедов или призм, рудные тела и интрузивы — цилиндров, эллипсоидов, сфер и т. д.).

В практике геофизических съемок преобладают случаи, когда наблюдаемые геофизические поля отражают наличие в геологическом разрезе не одиночных, а нескольких геологических объектов.

Для правильного использования материалов геофизических исследований следует строго придерживаться единых способов графического изображения геофизических наблюдений. Их представляют в виде графиков и карт, построение которых выполняется по общим для всех геофизических методов правилам.

Наблюдения по отдельному профилю изображаются в виде графика, по горизонтальной оси которого откладывают точки наблюдений, а по вертикальной — значение наблюденной величины.

Для построения геофизической карты на план наносят профили и точки наблюдений, выписывают около каждой значение наблюденной или вычисленной в результате интерпретации величины и в полученном таким образом числовом поле проводят линии равных значений последних, так называемые изолинии.

Геофизические методы при геологическом картировании и структурно-геологических исследованиях, проводящихся в неразрывной связи с прогнозированием и поисками полезных ископаемых, позволяют от картирования поверхности коренных пород переходить к картированию объемному. Они дают представление о глубинном строении изучаемых участков в пределах глубин, часто недоступных бурению, или во всяком случае позволяют более рационально определить места заложения глубоких структурных или поисковых скважин. В закрытых районах они значительно облегчают проведение съемок, а целесообразное сочетание сети геофизических наблюдений с сетью картировочных выработок и скважин позволяет существенно повысить эффективность и экономичность работ. Наконец, во всех случаях геофизические методы, вовлекая в сферу исследований геофизические поля и физические свойства пород, позволяют более всесторонне изучать строение земной коры и увеличивают тот суммарный объем информации, на основании которой геолог приходит к окончательным выводам, представляемым им в виде геологических карт и прогнозно-поисковых оценок.

Несогласия.

При изучении и картировании несогласий геофизические методы применяются широко. Однако следует иметь в виду, что ими отмечаются только те несогласия, которые одновременно являются и геофизическими границами, т. е. поверхностями раздела пород, различающихся по тем или иным физическим свойствам. Таким образом, несогласия в общем случае фиксируются как контакты разнородных пород. Является ли этот контакт нормальным, отвечающим согласному залеганию пород, или несогласием, установить по одним только геофизическим данным, как правило, невозможно.

Изучение поверхностей несогласия, которые разделяют структурные этажи платформенных участков земной коры, может осуществляться гравиразведкой, методами ВЭЗ, теллурических токов, частотных зондирований, сейсмическими методами и в некоторых случаях аэромагнитной съемкой. Наиболее детальное изучение осуществляется сейсморазведкой.

Первоочередной задачей при этом является изучение рельефа и глубины залегания поверхности кристаллического или складчатого фундамента под осадочным чехлом платформ или в отдельных межгорных депрессиях. Исследования такого рода обычно совмещают с изучением строения толщи фундамента с целью выявления отдельных литологических комплексов, интрузивных образований и разрывных нарушений, по которым фундамент разбит на отдельные тектонические блоки.

Горизонтально залегающие слои.

При горизонтальном залегании слоев с помощью геофизических методов обычно решаются следующие задачи:

1) расчленение толщи слоев на отдельные горизонты и определение их мощности;

2) выявление и прослеживание фациальных изменений слоев. Для решения этих задач в первую очередь можно привлекать методы ВЭЗ и сейсморазведки, а для оценки суммарной мощности горизонтальнослоистой толщи при средне- и мелкомасштабных съемках — методы зондирования становлением поля и теллурического поля.

Фациальные изменения отдельных слоев устанавливаются обычно по изменению удельного сопротивления, граничных и пластовых скоростей в горизонтальном направлении (от точки к точке наблюдений).

В тех случаях, когда литологические границы в разрезе изучаемого района, которым отвечают геоэлектрические и сейсмические границы, прослеживаемые электрическими зондированиями и сейсморазведкой, не совпадают со стратиграфическими, на картах и разрезах их показывают как некоторые условные горизонты. Последующим анализом или сопоставлением с данными структурного бурения устанавливается геологическая приуроченность этих условных границ горизонтов.

В помощь прослеживанию отдельных горизонтов, обнажающихся на склонах долин, оврагов, но перекрытых делювиальными отложениями, можно привлекать симметричное или дипольное профилирование, магнитометрию, при небольшой мощности делювия гамма-съемку, а в случае наличия в разрезе битуминизированных и графитизированных прослоев или пластов углей — метод естественного поля.

Наклонно залегающие слои.

При небольших углах наклона слоев задачи, решаемые геофизическими методами, аналогичны тем, которые выдвигаются при изучении горизонтальных напластований, и решаются они тем же комплексом методов по той же методике. Несмотря на то, что интерпретация кривых ВЭЗ проводится по палеткам теоретических кривых, рассчитанных для горизонтально залегающих слоев, применение их при углах наклона пластов до 5—10° не вызывает сколько-нибудь заметных ошибок. При дальнейшем же возрастании углов наклона условия применения электроразведочных методов существенно меняются; соответственно меняется и комплекс привлекаемых частных методов. Ведущим методом становится электропрофилирование, создаются благоприятные возможности для применения метода индукции (дипольно-индуктивного профилирования), метода радиокип.

При сейсмических же наблюдениях наклонное залегание пластов изменяет только геометрию путей распространения сейсмических волн, что автоматически отражается в изменении значений регистрируемых кажущихся скоростей и соответственно формы годографов. В программу интерпретации последних уже заложено определение углов наклона пластов, и поэтому на получаемом сейсмогеологическом разрезе сейсмогеологические границы отражают истинную картину залегания пород. Однако в отличие от электроразведки, эффективность применения которой растет вместе с ростом угла падения пластов вплоть до вертикального залегания, сейсмические методы удается применять при углах наклона пород не свыше 30-40°.

При наклонном залегании пластов возможно применять и такие методы, как магниторазведку, гамма-съемку (при небольшой мощности четвертичных отложений).

По мере укрупнения масштаба съемок и увеличения детальности расчленения разреза предпочтение среди методов электроразведки следует отдавать электрическому профилированию с дипольными установками.

Для определения элементов залегания пластов, перекрытых четвертичными отложениями, рекомендуется применять методику кругового профилирования с дипольными установками.

Складчатые формы залегания.

Изучение складчатых структур относится к числу основных задач структурной геофизики. На их решение направлены ее основные глубинные методы — вертикального электрического зондирования, зондирования становлением поля, теллурического поля, преломленных и отраженных волн, гравиразведки, магниторазведки.

При изучении складчатых районов применяют понятие о так называемых опорных горизонтах. Под опорным горизонтом понимают хорошо выделяющийся по тому или иному физическому свойству пласт или толщу пород, который обладает также достаточной мощностью для четкого проявления в соответствующем физическом поле. Этот горизонт должен занимать определенное стратиграфическое положение в разрезе, быть выдержанным по простиранию (по площади исследований) и принимать участие в строении изучаемых структур с тем, чтобы на основании данных того или иного метода по поведению этого горизонта можно было бы судить об исследуемых структурах. Особенно широко этим понятием пользуются при электрических зондированиях. Наилучшими опорными электрическими горизонтами среди терригенных пород являются глины, отличающиеся низким удельным сопротивлением; среди карбонатных пород — горизонты гипсов, ангидритов, а также массивных известняков, обладающие весьма высоким сопротивлением. За опорный горизонт принимают также и поверхность кристаллического фундамента.

Немаловажную роль играет характер самих складчатых структур.

Для сейсморазведки благоприятны структуры с углами наклона крыльев от 2 до 15°, и, во всяком случае, не свыше 35—40°. Для электрических зондирований доступны только пологие структуры с углами падения крыльев не более 5—10°. Для гравиразведки и магниторазведки благоприятен более резко выраженный структурный рельеф. В этих же условиях на смену электроразведке методом ВЭЗ приходит электропрофилирование. Поэтому электроразведка методами зондирований и сейсморазведка при изучении складчатых структур применяются на платформенных участках, в предгорных и межгорных прогибах, во внутренних зонах крупных депрессий. Гравиразведка, магниторазведка применяются как в платформенных условиях, так и в складчатых областях.

Следует иметь в виду, что изучение складчатых структур посредством геофизических методов в практике современных геофизических работ проводят в большинстве случаев неразрывно с изучением несогласий между структурными этажами и в первую очередь совместно с исследованием рельефа кристаллического или складчатого фундамента.

Трещины.

Изучение трещин в горных породах относится к числу детальных геолого-геофизических исследований. Но если геологические методы изучения трещиноватости требуют наблюдений на обнаженной поверхности пород, то геофизические методы позволяют выявлять основные закономерности пространственного распределения трещин и количественно оценивать степень трещиноватости пород, даже в случае залегания их на глубине нескольких десятков метров под четвертичными отложениями или пластами других коренных пород. Конечно, детальность и точность количественных оценок с глубиной уменьшается.

Основными геофизическими методами изучения трещиноватости являются круговое профилирование, круговые ВЭЗ и микромагнитная съемка.

Круговое профилирование и круговые ВЭЗ могут применяться на участках с горизонтально- или пологозалегающими осадочными породами или же для исследования отдельных массивов изверженных и эффузивных пород. Их применение обусловлено возникновением у пород анизотропии по удельному сопротивлению за счет трещиноватости в том случае, когда трещины в трещиноватой породе пространственно ориентированы преимущественно в одном или нескольких направлениях. Эта анизотропия может быть выявлена, если, не меняя положения центра измерительной установки, располагать линию разносов последней под разными азимутами.

Разрывные нарушения.

Разрывные нарушения обычно отмечаются как контакты и несогласия, так как часто по их линиям приведены в соприкосновения разные комплексы пород с различными физическими свойствами.

Часто разрывные нарушения могут быть зафиксированы либо понижением сопротивления пород в зоне дробления, либо благодаря образовавшейся по линии разрыва жиле или дайке, отличающейся по физическим свойствам от окружающих пород. Выявление таких нарушений обычно проводится посредством электропрофилирования симметричным методом или дипольными установками, методом радиокип, магнитной съемкой, а при малой мощности четвертичных отложений и гамма-съемкой. Зоны дробления могут картироваться методом эманационной съемки, так как они в ряде случаев служат путями вывода радиоактивных эманаций с глубины. Достоинством эманационной съемки является ее большая глубинность в сравнении с гамма-съемкой.

Благодаря совершенствованию электронной измерительной техники появилась возможность применения метода теллурических токов в закрытых районах с развитием мощных толщ четвертичных отложений и коры выветривания для картирования тектонических нарушений. Последние в результате дробления и увлажнения пород часто представляют собой линейно вытянутые проводящие зоны.

Изучение формы и внутреннего строения грабенов и горстов может проводиться широким комплексом методов. Определение общего характера самой структуры и ее оконтуривание обычно производится гравиметрической съемкой, а при относительно небольших размерах — электропрофилированием. Детализация строения прибортовых частей выполняется электропрофилированием, магнитной съемкой, методом индукции, гамма-съемкой, что позволяет выявить и закартировать зоны разломов, обрамляющих структуру, а также изучить строение самого складчатого обрамления.

Эффузивные породы.

Ведущим геофизическим методом изучения условий и форм залегания эффузивных горных пород является магниторазведка. Объясняется это тем, что эффузивы, как правило, отличаются повышенной магнитностью, особенно эффузивы основного состава.

Расчленению эффузивов, выявленных магнитной съемкой, может помочь электропрофилирование, а иногда и гамма-съемка, так как с возрастанием основности эффузивов значительно уменьшается их гамма-активность.

Мощность эффузивных покровов может определяться методом ВЭЗ, а также сейсморазведкой.

Микромагнитная съемка широко применяется и при изучении отдельных массивов эффузивных пород. По характеру «роз направлений» удается выделить отдельные текстурные зоны в пределах одного массива, различать эффузивы, принадлежащие к разным фазам магматического процесса.

Интрузивные породы.

При изучении интрузивных пород геофизическими методами обычно решаются следующие задачи: 1) выявление и оконтуривание отдельных интрузивных массивов; 2) определение формы подземного продолжения массивов; 3) изучение особенностей их внутреннего строения.

Выявление и оконтуривание интрузивных массивов проводится преимущественно посредством магниторазведки (воздушной или наземной, в зависимости от размеров искомых интрузивов и масштаба съемок) и гравиразведки.

Все способы установления формы интрузивных тел являются в конечном счете приближенными, так как основаны на аппроксимации интрузивов телами простейших геометрических форм с гладкими (плоскими или криволинейными) боковыми поверхностями — цилиндрами, усеченными конусами, призмами.

Имеется ряд попыток изучать форму боковых поверхностей интрузивных тел посредством сейсморазведки, по аналогии с соляными куполами. Однако менее благоприятные соотношения скоростей и резкая дислоцированность и неоднородность вмещающих пород не благоприятствуют применению сейсмических наблюдений.

Изучение особенностей строения самих массивов выполняется обычно методами электропрофилирования, магнитной и микромагнитной съемкой, гравиразведкой, гамма- и эманационной съемками. Этими методами можно выделять зоны разломов (электропрофилирование, магниторазведка, эманационная съемка), дайки аплитов, гранит-порфиров, лампрофиров и других пород (гамма-съемка, магнитная съемка, дипольное профилирование), зоны грейзенизации (гравиразведка, магнитная съемка, эманационная и гамма-съемка), зоны гидротермального изменения пород массива (магниторазведка, электропрофилирование). Посредством магнитной съемки отчетливо выделяются зоны развития скарнов, обогащенные магнетитом. Микромагнитная съемка в приконтактной области интрузивов позволяет в отдельных случаях выявлять флюидальные структуры, установление которых может помочь изучению процессов формирования массива и оценить величину современного эрозионного среза.

Детальная высокоточная магнитная съемка в ряде случаев позволяет по ослаблению магнитного поля выявлять неглубоколежащие пегматитовые тела. С этой же целью не без успеха начали применять сейсмоэлектрический метод.

Посредством детальной высокоточной магнитной съемки в сочетании с гамма-съемкой в некоторых случаях в пределах одного массива удается выделять отдельные его части, относящиеся к разным фазам общего тектоно-магматического цикла, так как зачастую эти фазы характеризуются разным составом акцессорных минералов и различиями в соотношениях породообразующих минералов. А это в результате приводит к различиям в намагничении и гамма-активности массива в разных его частях.

Метаморфические породы.

Картирование и изучение структур и форм залегания метаморфических пород проводится теми же геофизическими методами и на той же принципиальной основе, что и структур, образуемых осадочными и магматическими породами.

Но при этом геофизические методы позволяют решать и некоторые специфические задачи. Так, при мелко- и среднемасштабных съемках данные об изменении в горизонтальном направлении (по площади) тех или иных физических параметров — плотности, удельного сопротивления, пластовых скоростей и т.д., устанавливаемые геофизическими наблюдениями, позволяют судить о характере и особенностях проявления регионального метаморфизма.

При крупномасштабных работах посредством магнитной съемки и электропрофилирования устанавливаются проявления контактового метаморфизма, ожелезнения пород. Методы круговых исследований и микромагнитной съемки помогают изучению слоистости и сланцеватости метаморфических толщ.

Магнитной и гравиметрической съемкой успешно картируются площади развития железистых кварцитов, как, например, в районах Курской магнитной аномалии, в Тургайском прогибе.

В зависимости от условий залегания метаморфизованных пород комплексом различных методов их можно расчленить на отдельные горизонты, отличающиеся по физическим свойствам и, следовательно, по литолого-петрографическим характеристикам. Так, например, в районах развития разнообразных сланцев удается выделять свиты кремнистых, известковистых, железистых, глинистых сланцев на основании их различной плотности, магнитности, удельного сопротивления или гамма-активности. Эти задачи решаются посредством крупномасштабных детальных съемок методами дипольного профилирования, радиокип, магнитометрии, гамма-съемки.

16. ПОЛЕВЫЕ ГЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Полевой период делится на три последовательных этапа. В первый из них, охватывающий по продолжительности 2—3 недели, производится знакомство с районом работ и его общий обзор. Во второй этап выполняется основной объем полевых работ. В третий, заключительный этап производится увязка всего полевого материала, составляются дополнительные описания разрезов и по возможности осуществляется детальное изучение наиболее перспективных из выявленных рудоносных участков.

ВИДЫ ГЕОЛОГИЧЕСКИХ СЪЕМОК

В зависимости от масштаба, целей и условий работ геологическую съемку проводят различными методами. Наибольшим распространением пользуются следующие съемки: маршрутная, площадная и инструментальная.

Маршрутная съемка применяется при картировании в масштабах 1 : 1 000 000 и 1 : 500 000. Она заключается в пересечении района работ маршрутами, большая часть которых располагается вкрест простирания пород или складчатых комплексов. При картировании интрузивных образований маршруты должны пересекать как краевые, так и центральные части массивов.

Наблюдения, проделанные в маршруте, наносятся на топографическую основу, а при наличии аэрофотоснимков и на них.

Геологическое строение пространств, заключенных между маршрутами, устанавливается путем интерполяции данных смежных маршрутов; значительную помощь при этом может оказать дешифрирование аэрофотоматериалов.

Маршрутными исследованиями пользуются также при составлении опорных стратиграфических разрезов, изучении четвертичных отложений и геоморфологических наблюдениях. Ими с успехом можно пользоваться и при сравнительном анализе тектонического строения отдельных районов как для решения общих вопросов, так и при изучении складок, разрезов, трещин и т. п.

Площадная съемка производится при детальном геологическом картировании в масштабах 1 : 200 000 — 1 : 25 000. Точками наблюдения покрывается вся территория съемки, густота которых зависит от степени сложности геологического строения, условий обнаженности, проходимости, фотогеничности. Наблюдения ведутся также по маршрутам, которые заранее намечаются исходя из строения района и условий обнаженности.

Геологические границы при площадной съемке могут быть точно установлены на местности или их положение определено приближенно. Для выявления точного положения границ используются прямые геологические наблюдения, горные выработки и буровые скважины или аэрофотоснимки. Также тщательно привязываются к местным ориентирам и закрепляются на местности места находок полезных ископаемых и пункты отбора проб с повышенным содержанием полезных ископаемых.

Точность установления границ при геологической съемке масштаба 1 : 50 000 не должна быть менее 200 м и для карт масштаба 1 : 25 000 не менее 100 м. В зависимости от обоснованности геологические границы делят на достоверные и предполагаемые.

Инструментальная съемка применяется при геологическом картировании, начиная от масштаба 1 : 10 000 и крупнее. Она представляет собой площадную съемку, при которой нанесение геологических объектов на топографическую основу производится интрументально. Способы проведения инструментальной съемки весьма различны.

При инструментальной съемке необходимо иметь достаточную сеть естественных обнажении или горных выработок, вскрывающих коренные породы. Контуры последних должны быть совершенно точно указаны на топографической карте. Следует тщательно изучить аэрофотоснимки, найти и отметить реперами все отдешифрированные объекты на местности.

ГЕОФИЗИЧЕСКИЕ РАБОТЫ

Геологосъемочным работам должен предшествовать комплекс наземных геофизических исследований, а также аэромагнитная и аэродиометрическая съемка в масштабе геологосъемочных работ и гравиметрическая съемка масштаба 1 : 200 000.

Кроме того, для решения конкретных геологических задач и детализации ранее известных геофизических аномалий до или в процессе полевых работ на отдельных участках могут быть проведены сейсморазведочные, гравиразведочные, электроразведочные и другие виды работ, выполняемые раздельно или в различных сочетаниях.

ИЗУЧЕНИЕ И ОПИСАНИЕ ОБНАЖЕНИЙ

Обнажение представляет собой ту часть горных пород, находящихся в естественных условиях, которая изучается геологом. К этому понятию в равной мере относятся выходы на дневную поверхность горных пород различного происхождения и возраста, включая образования четвертичного периода. Даже при сплошной обнаженности для изучения горных пород необходимо выбирать наиболее характерные участки.

При описании осадочных горных пород устанавливается состав, отражающийся в определении названия породы; указываются цвет, текстура, включения, мощность, трещиноватость, характеристика выветрелых и свежих поверхностей, переход к вышележащим и подстилающим слоям. Определяются мощности каждого из слоев и их общая мощность в обнажении. Устанавливаются элементы залегания пород, направление наиболее резко выраженных трещин.

К отбору образцов из описываемых пород следует относиться с большой внимательностью. Каждый взятый образец должен быть достаточно представительным со свежими поверхностями. Средний размер образца не должен превышать площади ладони.

Обнажения магматических пород описываются несколько иначе. Наблюдения следует вести от контактов интрузивного тела к его центральным частям, внимательно следя за изменениями состава, структуры и текстуры пород. Очень важно установить ориентировку поверхностей интрузивных тел. Во многом в этом может помочь изучение трещин. Контакты магматических тел с вмещающими породами могут быть либо интрузивными, либо трансгрессивными. При интрузивных контактах во вмещающих породах наблюдаются приконтактовые изменения, вызванные воздействием магмы; при трансгрессивном контакте интрузивные породы несут следы выветривания и разрушения, а налегающие на их размытую поверхность осадочные отложения в нижнем базальном слое заключают обломки подстилающих интрузивных образований.

Образцы из интрузивных пород подбираются так, чтобы они давали представление о строении как основной части интрузивных тел, так и о строении их эндо- и экзоконтактовых зон. При описании интрузивных массивов должны быть указаны их размеры, а для жил и даек — мощность, направления простирания и падения.

Описание эффузивных образований — застывших лав и туфов — близко к порядку описания осадочных пород. При характеристике застывших лав особое внимание должно быть обращено на характеристику структуры и текстуры и форму отдельности.

При изучении складок рекомендуется начинать с характеристики пород, в которых они развиты; далее описываются: строение замка и крыльев с указанием углов их наклона, измеряется простирание оси и направление погружения шарниров. Определяется морфологический тип складки, ее высота и размер крыльев.

При описании разрывов со смещениями приводятся элементы залегания сместителя; состав пород и условия их залегания на крыльях. Для определения направления движения крыльев разрыва тщательно изучают строение сместителя: борозды и зеркала трения, тектонические брекчии, деформации пород, примыкающих к сместителю.

Следует стремиться установить амплитуды смещения вдоль сместителя, а также тип разрыва. Следует отметить, что сместители разрывов с перемещениями в сотни метров могут иметь брекчии трения мощностью в десятки и более метров. Среди перетертых обломков нередко могут встретиться и крупные блоки — отторженцы от пород, слагающих крылья разрыва.

По результатам геолого-съемочных работ составляются геологический отчет и комплект геологических карт, включающий карту фактического материала, геологическую карту с геологическими разрезами и стратиграфической колонкой, карты полезных ископаемых, тектоническую, геоморфологическую, гидрогеологическую карты, карту четвертичных отложений.

ЛИТЕРАТУРА

Ажгирей Г. Д. Структурная геология. Изд. МГУ, 1966.

Белоусов В. В. Структурная геология. Изд. МГУ, 1971.

Буялов Н. И. Практическое руководство по структурной геологии и геологическому картированию. Гостоптехиздат, 1955.

Михайлов А. Е. Структурная геология и геологическое картирование. Изд. «Недра», 1973.

 

 

 

 

 

 

 

содержание   ..  91  92  93   ..