Главная      Лекции     Лекции (разные) - часть 8

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  250  251  252   ..

 

 

По у «Плазма четвертое состояние вещества»

По у «Плазма четвертое состояние вещества»

НОУ МОУ СОШ №10

СЕКЦИЯ ФИЗИКИ

ДОКЛАД

по у

«Плазма – четвертое состояние вещества».

Выполнил:

Денисов Артем

8 «Б» класс

Руководитель:

Ладанова Ольга Александровна

преподаватель физики

г. Чайковский

2003 год

ПЛАН.

1. Что такое плазма.

· Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, то есть, выполнено условие квазинейтральности

2. Плазма – наиболее распространенное состояние вещества в природе.

· В природе плазма — наиболее распространённое состояние вещества, на неё приходится около 99 % массы Вселенной, Солнце, большинство звёзд, туманности, внешняя часть земной атмосферы (ионосфера). Ещё выше располагаются радиационные пояса, содержащие плазму.

· Полярные сияния, молнии, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле.

3. Перспектива использование плазмы.

· область науки — плазменная химия

· Созданы плазменные двигатели

· магнитогидродинамические насосы

· магнитогидродинамические генераторы мощностью до 20 МВт с коэффициентом полезного действия 50 – 60%.

· Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза в естественных условиях

4. Применение плазмы в нашем городе.

· плазма - в светотехнике.

· плазма - разных газоразрядных приборах

· газовые лазеры на самом деле плазменные

· Для резки листового металла, металлоконструкций, металлических емкостей, получения металлических выкроек применяются плазменные резаки .

· Электродуговая плазменная наплавка позволяет сравнительно быстро получить слой наплавленного металла для восстановления размеров изношенных деталей.

· Плазменная металлизация или плазменное напыление обеспечивает: защиту от воздействия окислительной среды и механических нагрузок лопастей турбин, обеспечивает антикоррозионную защиту.

· Способ импульсной микроплазменной обработки разработан для получения защитных слоев на локальных областях. Сущность импульсной микроплазменной обработки сводится к нагреву и плавлению металла в течение импульса тока короткой длительности дугой прямой полярности

· Плазменная энергетика даст решение энергетической и экологической проблемы, откроет возможности развития науки, внедрения новых технологий ХХI века.

В 19 веке английский физик Уильям Крукс, изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

Ионизованный газ в газоразрядной трубке в 1929 г. американские физики Ирвинг Лёнгмюр и Леви Тонко назвали плазмой.

В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 °С - в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются, и газ превращается в плазму.

Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, то есть, выполнено условие квазинейтральности. (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

Чтобы перевести газ в состояние плазмы, нужно оторвать хотя бы часть электронов от атомов, превратив эти атомы в ионы. Такой процесс называют ионизацией. В природе и технике самые распространенные методы ионизации

· теплом.

· излучением.

· электрическим разрядом.

· давлением.

В природе плазма — наиболее распространённое состояние вещества, на неё приходится около 99 % массы Вселенной, Солнце, большинство звёзд, туманности, внешняя часть земной атмосферы (ионосфера). Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле.

И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды.

Выделяют плазму твёрдых тел и газовую плазму.

Газовую плазму разделяют на низкотемпературную — до 100 тысяч градусов и высокотемпературную — до 100 миллионов градусов.

Существуют генераторы низкотемпературной плазмы — плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть газ до 10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки — плазменная химия : многие химические реакции ускоряются или идут только в плазменной струе.

Плазмотроны применяются в горно-рудной промышленности.

Созданы плазменные двигатели . Для разгона плазмы в двигателях используют схемы скрещенных электрических и магнитных полей.

Современные плазменные движители используются в системе ориентирования космических кораблей.

По таким же принципам работают магнитогидродинамические насосы для перекачки проводящих жидкостей, например расплавленного металла.

Для получения электрической энергии созданы и применяются магнитогидродинамические генераторы мощностью до 20 МВт с коэффициентом полезного действия 50 – 60%.

Процессы, протекающие в плазменных генераторах, описываются законами магнитной гидродинамики, и потому такие аппараты называют магнитогидродинамическими или МГД – генераторами .

Разрабатываются различные схемы плазменного ускорения заряженных частиц. Централь ной задачей физики плазмы является проблема управляемого термоядерного синтеза.

В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии.

Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

Спасти человечество от энергетического голода и стать практически неисчерпаемым источником энергии могут управляемые термоядерные реакции в плазме. Так как разведанные запасы химического и ядерного топлива ограниченны.

Наиболее широко плазма применяется в светотехнике — в газоразрядных лампах, освещающих улицы нашего города, в световой рекламе светится неоновая или аргоновая плазма. Дома мы пользуемся лампами дневного света. Дуга электрической сварки, электрического замыкания между проводами тоже плазма.

Плазма применяется в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц.

Все так называемые газовые лазеры на самом деле плазменные, так как газовые смеси в них ионизованы электрическим разрядом.

Предприятия нашего города: ОАО «Чайковская ремонтно-эксплуатационная база флота», ОАО «Воткинская ГЭС», завод «Стройдеталь», ОАО «Уралоргсинтез», ОАО «Чайковский судоходный шлюз» следят за последними разработками новейших технологий и широко используют на практике приборы и инструменты.

Для резки листового металла, металлоконструкций, металлических емкостей, получения металлических выкроек применяются плазменные резаки . Способ плазменной резки используется для резки любых электропроводных материалов, но при этом качественные показатели скорость резки, толщина, чистота среза высоки.

Процесс плазменной резки можно описать следующим образом: газ под давлением, проходя через форсунку, под воздействием электрической дуги преобразуется в плазму, (то есть молекулы разъединяются, ионизируются и возбуждаются).

Высокотемпературный поток плазмы до 25 000 °С с огромной скоростью до 1000 метров в секунду вырывается из отверстия форсунки в форме цилиндрической струи небольшого сечения, воздействует на разрезаемый материал, плавит металл и удаляет расплавленную массу, оставляя ровный и гладкий разрез.

В настоящее время плазменная резка завоевала основную позицию, принадлежащую ранее другим способам механической или термической резки.

Электродуговая плазменная наплавка позволяет сравнительно быстро получить слой наплавленного металла для восстановления размеров изношенных деталей и одновременно изменить механические свойства поверхности.

Процесс электродуговой плазменной наплавки происходит в установках для плазменной наплавки, характеризуется тем, что частицы металлического порошка подогреваются и вводятся в расплавленную ванну, восстанавливая поверхность детали. Установки электродуговой плазменной наплавки широко используются при восстановлении деталей машин, судов и другой техники на промышленных предприятиях города.

Плазменная металлизация или плазменное напыление обеспечивает: защиту от воздействия окислительной среды и механических нагрузок лопастей турбин, обеспечивает антикоррозионную защиту шандор водосливной плотины ГЭС и металлических створок шлюза, защиту от воздействия агрессивных сред, и упрочнения поверхностей. Можно металлизировать баки, емкости и другие детали

В установках плазменного напыления или плазменной металлизации частицы металлического порошка цинка или алюминия разгоняются высокотемпературными потоками плазмы и осаждаются на основе в виде металлического покрытия, металлизации. Плазменное напыление основано на распылении двух металлических проволок, между которыми горит электрическая дуга.

Способ импульсной микроплазменной обработки относится к новейшим научным разработкам в области техники. Способ разработан для получения защитных слоев на локальных областях. Сущность импульсной микроплазменной обработки сводится к нагреву и плавлению металла в течение импульса тока короткой длительности дугой прямой полярности.

Физика – это мы и мир вокруг нас. Физика – неисчерпаемый кладезь познаний. Я сообщаю Вам об открытии особого, пятого, состояния вещества , добавившегося совсем недавно к известным - твердому, жидкому, газообразному и плазменному. Возможность перевода вещества в пятое состояние при охлаждении до температур, вплотную приближающихся к абсолютному нулю, была предсказана индийским физиком Ш. Бозе и знаменитым А. Эйнштейном еще в 1924 году. Однако получить на практике конденсат Бозе – Эйнштейна, а именно так называется пятое состояние вещества, физикам удалось лишь 7 лет назад. А совсем недавно в Институте квантовой оптики имени М. Планка был создан микрочип величиной в почтовую марку. Вероятно, такой микрочип может стать основой компьютеров шестого поколения с невиданными ранее возможностями по быстродействию.

Не приходится удивляться, что круг явлений, столь широко представленный в природе и технике, представляет предмет пристального внимания физиков. Главный аргумент, стимулирующий такое внимание, а по сути - становление современной физики плазмы – проблема управляемого термоядерного синтеза.

Плазменная энергетика даст решение энергетической и экологической проблемы, откроет возможности развития науки, внедрения новых технологий ХХI века. Уверен, что эти проблемы будет решать мое поколение.

 

 

 

 

 

 

 

содержание   ..  250  251  252   ..