Nissan Versa Note. Manual - part 263

 

  Index      Nissan     Nissan Versa Note (2014 year) - Service and Repair Manual

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  261  262  263  264   ..

 

 

Nissan Versa Note. Manual - part 263

 

 

EC-34

< SYSTEM DESCRIPTION >

[HR16DE]

SYSTEM

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for drivability and emission control.

The three way catalyst (manifold) can better reduce CO, HC and NOx emissions. This system uses A/F sen-

sor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the

injection pulse width according to the sensor voltage signal. For more information about A/F sensor 1, refer to

EC-19, "Air Fuel Ratio Sensor 1"

. This maintains the mixture ratio within the range of stoichiometric (ideal air-

fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching

characteristics of A/F sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated

oxygen sensor 2.

• Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback

control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration

- High-load, high-speed operation

- Malfunction of A/F sensor 1 or its circuit

- Insufficient activation of heated sensor 1 at low engine coolant temperature

- High engine coolant temperature

- During warm-up

- After shifting from N to D (CVT models)

- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1.

This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoret-

ical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally

designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes dur-

ing operation (i.e., fuel injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is

then computed in terms of “injection pulse duration” to automatically compensate for the difference between

the two ratios.

“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim

includes “short-term fuel trim” and “long-term fuel trim”.

“Short-term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical

value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-

oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in

fuel volume if it is lean.

“Long-term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation

of the “short-term fuel trim” from the central value. Such deviation will occur due to individual engine differ-

ences, wear over time and changes in the usage environment.

PBIB2793E

SYSTEM

EC-35

< SYSTEM DESCRIPTION >

[HR16DE]

C

D

E

F

G

H

I

J

K

L

M

A

EC

N

P

O

FUEL INJECTION TIMING

Two types of systems are used.

• Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used

when the engine is running.

• Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals

of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or oper-

ation of the vehicle at excessively high speeds.

ELECTRIC IGNITION SYSTEM
ELECTRIC IGNITION SYSTEM : System Diagram

INFOID:0000000009020611

ELECTRIC IGNITION SYSTEM : System Description

INFOID:0000000009020612

INPUT/OUTPUT SIGNAL CHART

SEF337W

JPBIA4883GB

EC-36

< SYSTEM DESCRIPTION >

[HR16DE]

SYSTEM

*1: M/T models

*2: CVT models

*3: ECM determines the start signal status by the signals of engine speed and battery voltage.

*4: This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

Firing order: 1 - 3 - 4 - 2

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the

engine. The ignition timing data is stored in the ECM.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-

ing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in

the ECM.

• At starting

• During warm-up

• At idle

• At low battery voltage

• During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed

within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not

operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.

The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

AIR CONDITIONING CUT CONTROL

Sensor

Input signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)

Engine speed

*3

Piston position

Ignition timing control

Ignition coil (with power transistor)

Camshaft position sensor (PHASE)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Park/neutral position (PNP) switch

*1

PNP signal

Transmission range switch

*2

Battery

Battery voltage

*3

Knock sensor

Engine knocking

Combination meter

Vehicle speed

*4

SYSTEM

EC-37

< SYSTEM DESCRIPTION >

[HR16DE]

C

D

E

F

G

H

I

J

K

L

M

A

EC

N

P

O

AIR CONDITIONING CUT CONTROL : System Diagram

INFOID:0000000009020613

AIR CONDITIONING CUT CONTROL : System Description

INFOID:0000000009020614

INPUT/OUTPUT SIGNAL CHART

*1: ECM determines the start signal status by the signals of engine speed and battery voltage.

*2: This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

• When the accelerator pedal is fully depressed.

• When cranking the engine.

• At high engine speeds.

• When the engine coolant temperature becomes excessively high.

• When operating power steering during low engine speed or low vehicle speed.

• When engine speed is excessively low.

• When refrigerant pressure is excessively low or high.

JSBIA0320GB

Sensor

Input signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)

Engine speed

*1

Piston position

A/C compressor request 
signal

IPDM E/R

Air conditioner relay

Compressor

Engine coolant temperature sensor

Engine coolant temperature

Accelerator pedal position sensor

Accelerator pedal position

Battery

Battery voltage

*1

Refrigerant pressure sensor

Refrigerant pressure

EPS control unit

EPS operation signal

*2

Combination meter

Vehicle speed signal

*2

BCM

A/C ON signal

*2

Blower fan signal

*2

 

 

 

 

 

 

 

Content   ..  261  262  263  264   ..