Nissan X-Trail 32. Manual - part 928

 

  Главная      Nissan     Nissan X-Trail 32 - Service Manual

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  926  927  928  929   ..

 

 

Nissan X-Trail 32. Manual - part 928

 

 

SYSTEM

EC-841

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC

N

P

O

The ECM limits a engine torque in case of malfunction of engine component or ECM.
Depending on the engine components, ECM activates the fail-safe mode of the torque limitation level 1 (low
limitation), the level 2 (mean limitation), or the level 3 (strong limitation function of vehicle speed).

FAST SET-POINTS TO COMPLETE TORQUE REQUEST

For each combustion mode (the normal combustion mode, the regeneration combustion mode, and the pro-
tection combustion mode), a torque model is designed to calculate the total fuel mass quantity, the estimated
mean effective torque, the combustion efficiency and the current fuel consumption for the final torque set-point
and the engine current speed.
The total fuel mass quantity is corrected to take into account the main injection advance deviation and the
mass air flow deviation.
For each combustion mode, the after and the post injection relative efficiencies are calculated to determine the
fuel mass quantity needed to perform the engine inner torque.
The after injection relative efficiency is equal to one in normal combustion mode and to zero in a regeneration
combustion mode or in a protection combustion mode.
The post injection relative efficiency is function of the post injection timing and the difference between the cur-
rent and the basic post injection timing.

FINAL TORQUE REQUESTS SETTING

The final torque requests are computed by the arbitration with the driver request, the intersystem torque
request (VDC/ESP), the torque limitations and the curative anti-jerk correction.
The set-point torque is used for fuel mass calculation. It is filtered by the preventive anti-jerk and corrected by
the curative anti-jerk.

COMBUSTION CONTROL

COMBUSTION CONTROL : System Description

INFOID:0000000010935568

SYSTEM DESCRIPTION

The torque set-point is converted into a total fuel quantity injected. This quantity is split in various injections
according to a mapped injection pattern. Thus, a fuel quantity and an initial phasing of injection are allocated
for each injection. The choice of the number of injection (limited to five maximum) is given with different con-
straints such as acoustic, performance and emissions.
In the DPF (Diesel Particulate Filter) regeneration phase, post injections do not contribute to the torque elabo-
ration but to the increase of the DPF temperature. Therefore, the fuel consumption increases in the DPF
regeneration phase.

FUEL SUPPLY AND PRESSURE CONTROL SYSTEM

Fuel Supply System

The fuel supply system consists of two circuits: the fuel low and high-pressure circuit.
The fuel low-pressure circuit brings fuel from the tank to the high-pressure fuel pump through the fuel filter
(with fuel heater).
The high-pressure circuit function is to put the fuel under pressure and distribute it to the injectors:
• High-pressure fuel pump
• Fuel flow actuator
• Common rail
• Fuel injectors
The low-pressure fuel (coming from low-pressure circuit) is transferred to the high-pressure pump part via the
fuel flow actuator, which regulates the fuel flow quantity. The high-pressure fuel pump consists of a three-pis-
ton pump.
The fuel under pressure goes to the common rail, which distributes the fuel equally to each injector.
Finally, the commanded injectors deliver the fuel flow entering the cylinder.

Fuel Pressure Control

The combustion quality is influenced by the size of the droplets sprayed into the cylinder. In the combustion
chamber, smaller fuel droplets will have enough time to burn completely and will produce less smoke and less
unburnt particulate matter. To meet pollution requirements, the size of the droplets needs to be reduced and
hence so too do the injection orifices.
Since these orifices are smaller, less fuel can be injected for a given pressure, which in turn limits the power.
To counter this drawback, it is necessary to increase the quantity of injected fuel, which involves raising the
pressure (and the number of orifices on the injector nozzles). The pressure is continuously regulated to high

EC-842

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

pressure in the rail. The measurement circuit consists of an pressure sensor on the rail and transmits the pres-
sure signal to ECM.
The high-pressure pump is self-supplied by an integrated gear pump. This supplies the rail, whose pressure is
controlled for loading by the fuel flow actuator. The flow regulation actuator allows the high-pressure fuel pump
to supply only the necessary quantity of diesel for maintaining pressure in the rail.
Pressure regulation can be done with one actuator in case of magnetic injectors because of their natural leak
during injector closing.

INJECTION CONTROL

The injection control parameters are the quantities to inject and their respective advances. The system per-
forms one to five injections.
The injectors are magnetic injectors. An electrical current (pulse) is sent to each injector holder based on the
previously computed data.
To control injector, ECM punctually drivers energy to obtain actuator deformation and the injector opening.
During the injection time, the length of electrical pulse is computed with the fuel flow demand and injectors cor-
rections. The system has three injector corrections:
• Injector adjustment value registration
• Zero fuel calibration
• Pressure wave correction

Injector Adjustment Value Registration

Injector adjustment value indicates manufacturing tolerance. The injector adjustment value which is correctly
stored in ECM is needed for precise fuel injection control. A performance of emission control and a driveability
may effect when there is a mismatch between the following two values.
• The injector adjustment value stored in ECM
• The injector adjustment value of the injector which is installed on the vehicle

Zero Fuel Calibration (ZFC)

During the lifetime of an injector, it is subject to thermal and mechanical constraints that modify the injection
characteristics. This wear-and-tear on the orifices (blocked or expanded holes) causes drift in the quantity of
injected fuel, which can lead to smoke generation or increased noise. To compensate for this drift, ECM imple-
ments a teach-in in the raised foot phase and under certain condition, which allows it to regulate the ZFC cor-
rector parameter.

Pressure Wave Correction:

The first injection causes a pressure wave in the pipe between rail and injector and the bores in the injector
itself. The quantity of the next injections is influenced by this pressure wave.
Main parameters of this influence are:
• Rail pressure
• Distance between the two injections
• Fuel temperature
• Injection quantities of both injections
The pressure wave correction minimizes the influence of the first injection on the next injections with simple
structure and parameters which can be measured.

TEMPERATURE BEFORE TURBINE CONTROL

Upstream turbine temperature control sequentially uses injection parameters:
• Main injection phasing
• Post injection fuel mass
• Total fuel mass quantity
• Maximum torque
In normal combustion mode (without regeneration), the regulation aims to protect the turbine. If the tempera-
ture exceeds the recommended limits, the regulation is able to limit total fuel mass quantity and torque
demand.
In regeneration mode, to increase the temperature in exhaust line, the regulation controls main injection phas-
ing and post injection.
The purpose is to obtain the highest temperature while respecting the recommended limits. In addition, the
regulation protects the turbine when the temperature is too hot.

WATER IN FUEL FUNCTION

The water in fuel detection sensor is an optional sensor integrated in the fuel filter. This function prevents seri-
ous damages on the common-rail system caused by water presence.

AFTER TREATMENT SYSTEM

SYSTEM

EC-843

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC

N

P

O

AFTER TREATMENT SYSTEM : System Description

INFOID:0000000010935569

DESCRIPTION

This system has two main functions:
• Use the present oxygen in exhaust gases to transform the CO in CO2, and the HC in CO2 and H2O.
• Increase the temperature of exhaust gases (with the exothermal energy of the oxidation reaction) to allow

the regeneration in the DPF (Diesel Particulate Filter).

To be effective, the catalytic converter must reach the working temperature of 350 to 400

°

C (662 to 752

°

F).

NOX TRAP

On diesel engines, it is possible to reduce the NOx produced by the engine by inserting a NOx-trap into the
exhaust line. This system works by alternating phase of load and phases of purges.
There are two types of purge, depending on the pollutant type:
• NOx purge
• SOx purge
These purges are made of alternative rich and lean phases, so in order to control them a O2 downstream pro-
portional sensor is added to the system.
The management of these requests has to manage the compromise between:
• Improve the NOx emission (objective leading to increase the number of purges)
• Do not impact on the customer on the fuel consumption and of the oil change interval (objective leading to

decrease the number of purges)

DPF (DIESEL PARTICULATE FILTER)

The DPF filters up to 99% of the soot particulates that have not been filtered out up to this point. These partic-
ulates consist essentially of aggregates of variable size. The quantity of particulates and their composition
depend on:
• The combustion process (an homogeneous air/fuel mixture minimizes particulate formation)
• The quantity of diesel (increasing the cetane index limits the number of particulates formed)
• The post-processing efficiency (only filtration allows the particulates to be removed efficiently)
The DPF is a porous structure with channels set out in such a way as to force the exhaust gases through the
chamber walls.
In normal operation, DPF captures all the particulates emitted by the engine and so fills up progressively. It
therefore becomes necessary to eliminate all the accumulated particulates, which is done by combustion
(regeneration).

REGULATION OF TEMPERATURE BEFORE DPF

Regulation of the exhaust gas temperature before DPF is needed to complete a secure regeneration. This
strategy uses both exhaust line injectors and late post injections (fuel injectors).
ECM computes the fuel mass flow injected by injectors (post injection) according to several parameters:
• Exhaust line temperature before DPF
• Atmospheric pressure
• Intake air temperature
• Differential pressure of the CSF
• Minimum level of fuel
• Engine speed
• Engine torque

COOLING FAN CONTROL

COOLING FAN CONTROL : System Description

INFOID:0000000010935570

SYSTEM DESCRIPTION

The cooling of the engine is done by a double speed motor driven fan unit (FAN1: small speed; FAN2: high
speed). The ECM controls cooling fan relays through CAN communication line.

When the engine is running

To cool the engine, a request for FAN1 activation is sent when the engine coolant temperature exceeds 94

°

C

(201

°

F) and a deactivated request is sent when the engine coolant temperature becomes lower than 92

°

C

(197

°

F).

When the engine coolant temperature continues to increase, a request for FAN2 activation is sent when the
engine coolant temperature exceeds 100

°

C (212

°

F) and a deactivated request is sent when the engine cool-

ant temperature becomes lower than 98

°

C (208

°

F).

EC-844

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

When the engine coolant temperature continues to increase and exceeds the alert threshold, ECM judges the
engine is over temperature.
In case of an abnormally high engine coolant temperature, the maximum engine torque is reduced; the driver
will then feel a lack of engine power.

When the engine is not running

Only a FAN1 activation request can be sent for anti-percolation purpose (engine stopped with high engine
coolant temperature). The anti-percolation function is active after ignition switch OFF for a defined maximum
time. At ignition switch OFF, a FAN1 activation request is sent if the engine coolant temperature exceeds
specified temperature and a cutting request is sent when the engine coolant temperature becomes lower.
When there is a default on the engine coolant temperature signal, the FAN1 activation is permanently
requested (engine running).
In addition to this, depending on the equipment mounted on the vehicle, the ECM can also send an activation
request for air conditioning needs or automatic transmission needs or DPF (Diesel Particulate Filter) regener-
ation needs.

THERMOSTAT CONTROL

THERMOSTAT CONTROL : System Description

INFOID:0000000010935571

SYSTEM DRAWING

For system drawing of the thermostat control, Refer to 

CO-59, "Engine Cooling System"

.

DESCRIPTION

This engine has an engine coolant bypass valve and a thermoplunger and uses them for improving a warm-up
time.

Thermoplunger

The thermoplunger is installed to the engine coolant line and directly warms up engine coolant.
ECM transmits a thermoplunger operating signal to the thermoplunger control unit when engine coolant tem-
perature is low.
The thermoplunger control unit applies power to the thermoplunger according to the received signal and
warms up engine coolant.
In addition, ECM activates the thermoplunger during DPF (Diesel Particulate Filter) regeneration and
increases electric load for get more engine load to perform normal DPF regeneration.
ECM controls thermoplunger based on the following information.
• Engine coolant temperature
• Battery voltage
• Engine speed
• Alternator load

Engine Coolant Bypass Valve

The engine coolant bypass valve circulates engine coolant within a narrow range and accelerates a warm-up
by closing the valve and cutting off the engine coolant passage.
ECM applies power to the engine coolant bypass valve control solenoid valve when engine coolant tempera-
ture is low.
The engine coolant bypass valve control solenoid valve switches the passage of negative pressure (vacuum)
sent from the vacuum pump. When power is applied to the solenoid valve, negative pressure is applied to the
engine coolant bypass valve. Accordingly, the engine coolant bypass valve closes.

GLOW CONTROL

GLOW CONTROL : System Description

INFOID:0000000010935572

SYSTEM DESCRIPTION

Glow control system operates at engine starting and after engine starting. The system energizes glow plug
according to engine coolant temperature to improve engine starting function.
When the ignition switch is turned ON, the glow control system starts Pre-glow and the glow indicator lamp
turns ON. When the engine starts, the glow indicator lamp turns OFF and the glow control state changes to
After-glow.
Glow time varies according to engine coolant temperature, barometric pressure and battery voltage.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

 

 

 

 

 

 

 

содержание   ..  926  927  928  929   ..