Qashqai J11. Engine control system (R9M) - part 2

 

  Index      Nissan     Qashqai J11. Engine control system (R9M). Service and Repair Manual

 

Search            copyright infringement  

 

 

 

 

 

 

 

 

 

Content      ..      1      2      3      ..

 

 

Qashqai J11. Engine control system (R9M) - part 2

 

 

COMPONENT PARTS

EC9-17

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

<Reference data>

Turbocharger Boost Sensor

INFOID:0000000010308923

The turbocharger boost sensor detects pressure in the charge air cooler outlet area. The sensor send to volt-
age signal to the ECM. As the pressure increases, the voltage rises.

Intake Air Temperature Sensor 2

INFOID:0000000010308924

The Intake Air Temperature (IAT) Sensor 2 is built-into the Turbocharger Boost Pressure Sensor. The sensor
detects intake air temperature and transmits a signal to the ECM.

<Reference data>

Air Fuel Ratio (A/F) Sensor

INFOID:0000000010308925

Air fuel ratio (A/F) sensor is installed on the upstream of the oxidation catalyst. A/F sensor measures the oxy-
gen level in the exhaust gas and converts it into a voltage signal. A/F sensor sends the signal to ECM. Based
on the signal from A/F sensor, ECM calculates the air fuel mixture ratio. ECM uses the calculated ratio for the
DPF (Diesel Particulate Filter) regeneration control.
A heater is integrated in A/F sensor to ensure the required operating temperature.

Engine Coolant Temperature Sensor

INFOID:0000000010308926

The engine coolant temperature (ECT) sensor is used to detect the engine coolant temperature.

<Reference data>

High Pressure Fuel Pump

INFOID:0000000010308928

High Pressure Fuel Pump is operated by high pressure fuel pump drive pinion, installed at camshaft. The high
pressure fuel pump inlets fuel transported through fuel filter and performs pressure feed to fuel rail. The pump
includes fuel flow actuator which enables adjustment of fuel rail pressure.

Fuel Pump

INFOID:0000000010456182

The fuel pump is installed in the fuel tank to start the engine faster. Fuel pump is controlled by FPCM (Fuel
Pump Control Module).

CAUTION:

Intake air temperature

°

C (

°

F)

Resistance (Approx.)

k

10 (14)

8.628 – 9.577

10 (50)

3.524 – 3.841

20 (68)

2.342 – 2.531

30 (86)

1.585 – 1.715

50 (122)

0.769 – 0.844

Intake air temperature

°

C (

°

F)

Resistance (Approx.)

k

10 (14)

9.395 – 9.775

10 (50)

3.791 – 3.927

20 (68)

2.499 – 2.583

30 (86)

1.706 – 1.760

50 (122)

0.833 – 0.857

Engine coolant temperature

°

(

°

F)

Resistance (Approx.)

k

10 (14)

11.33 – 13.59

25 (77)

2.140 – 2.364

80 (176)

0.274 – 0.290

110 (230)

0.112 – 0.117

EC9-18

< SYSTEM DESCRIPTION >

[R9M]

COMPONENT PARTS

Fuel pump is lubricated by the fuel in the tank. Never operate the pump for a long time without fuel in
the tank to prevent serious damages.

Fuel Injector

INFOID:0000000010308927

This injector is a magnetic type injector. It has a code exhibiting unique characteristics, and fuel injection quan-
tity can be controlled with more precision by writing the code into ECM.

Fuel Rail Pressure Sensor

INFOID:0000000010308931

The fuel rail pressure (FRP) sensor is placed to the fuel rail. It measures the fuel pressure in the fuel rail. The
sensor sends voltage signal to the ECM. As the pressure increases, the voltage rises. ECM operates fuel flow
actuator according to feedback signal from fuel rail pressure sensor, and controls fuel pressure inside fuel rail.

Fuel Pressure Sensor

INFOID:0000000010501531

The fuel pressure sensor detects the fuel pressure (actual pressure)
of the fuel pump.
The fuel pressure measured by a measuring capacitor coupled with
the fuel pressure sensor.
When fuel pressure increase, the gap between the capacitor elec-
trodes decreases. The capacitance, and therefore the signal voltage,
thus increase in proportion to the fuel pressure.
The signal voltage serves the FPCM as information about the fuel
pressure.

Fuel Temperature Sensor

INFOID:0000000010308932

Fuel temperature sensor measures fuel temperature inside fuel tube of engine room. The sensor uses a ther-
mistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases
as temperature increases.

<Reference data>

Fuel Heater With Water In Fuel Level Sensor

INFOID:0000000010308933

Fuel heater is installed on fuel filter and operated when fuel temperature is low in order to inhibit fuel solidifica-
tion caused by wax content separation in fuel.

FPCM (Fuel Pump Control Module)

INFOID:0000000010501530

FPCM (Fuel Pump Control Module) controls fuel pump discharge rate according to the actual fuel require-
ments of the engine and, as a result, the electric consumption of fuel pump is significantly reduced.
This is a power electronic unit controlled by ECM pulse width modulation (PWM).

Turbocharger Boost Control Solenoid Valve

INFOID:0000000010308934

Turbocharger boost control solenoid valve controls the turbocharger boost control actuator. By changing the
variable nozzle vane opening through the rods, the intake air volume is adjusted. The turbocharger boost con-
trol solenoid valve is moved by ON/OFF pulse from the ECM. The longer the ON pulse, the charge air pres-
sure rises.

JSBIA4055ZZ

Fuel temperature

°

C (

°

F)

Resistance (Approx.)

k

10 (14)

8.623 – 10.454

25 (77)

1.928 – 2.174

80 (176)

0.292 – 0.326

110 (230)

0.127 – 0.143

COMPONENT PARTS

EC9-19

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

High Pressure EGR Volume Control Valve

INFOID:0000000010308935

High pressure EGR Volume Control Valve controls the volume of EGR gas returning from the exhaust mani-
fold to the intake manifold.
The High Pressure EGR Volume Control Valve consists of High Pressure EGR Volume Control Valve Position
Sensor, High Pressure EGR Valve, and DC motor. The High Pressure EGR Volume Control Valve Position
Sensor consists of a permanent magnet and Hall IC, and senses the valve position and feeds the voltage sig-
nals to the ECM. The ECM judges the current opening angle of the valve from this signals, and controls the
DC motor to make the valve opening angle in response to driving conditions.
The valve is controlled by means of double regulation loop.
The first loop, the quicker of the two, is a position loop. It allows the valve to be adjusted to the desired position
by feedback based on the information derived from the sensor position.
The second loop (slower) is a mass air flow loop. The mass air flow set-point is set by reference maps
depending on engine working point, ambient condition corrections (air and coolant liquid temperatures, atmo-
spheric pressure), gear engaged and state of EGR cooler bypass. For a given operating point, the air flow is
obtained by modulating the quantity of exhaust gases passing through the EGR valve and the fresh air flow
passing through the intake flap. When EGR flow is increase, fresh air flow is decrease. The air flow measure-
ment is provided by the mass air flow sensor. The fresh air and EGR flow controller provides the EGR and inlet
throttle position set-points.

Low Pressure EGR Volume Control Valve

INFOID:0000000010308936

Low Pressure EGR Volume Control Valve controls the volume of EGR gas returning from the exhaust tube
(downstream of DPF) to the passage of intake air (upstream of turbocharger).
The Low pressure EGR Volume Control Valve consists of Low pressure EGR Volume Control Valve Position
Sensor, EGR Valve, and DC motor. The EGR Volume Control Valve Position Sensor consists of a permanent
magnet and Hall IC, and senses the valve position and feeds the voltage signals to the ECM. The ECM judges
the current opening angle of the valve from this signals, and controls the DC motor to make the valve opening
angle in response to driving conditions.

Low Pressure EGR Temperature Sensor

INFOID:0000000010308937

Low Pressure EGR Temperature Sensor is installed on the downstream of EGR cooler. The sensor detects
the low pressure EGR gas temperature. The sensor modifies a voltage signal from the ECM. The modified sig-
nal returns to the ECM as the exhaust gas temperature input. 

<Reference data>

Electric Throttle Control Actuator

INFOID:0000000010308938

The Electric Throttle Control Actuator consists of position sensor, throttle valve, and DC motor. The position
sensor consists of a permanent magnet and Hall IC, and senses the valve position and feeds the voltage sig-
nals to the ECM. The ECM judges the current opening angle of the valve from this signals, and controls the
DC motor to make the valve opening angle in response to driving conditions.
Throttle valve is fully open when in non-operating status. When EGR is Performed or the engine is stopped,
this valve operates in direction that closes itself.

Intake Manifold Runner Control Valve

INFOID:0000000010308939

Intake Manifold Runner Control Valve is located on the intake manifold. This valve has position sensor. It
senses the valve position and feeds the voltage signals to the ECM.

Exhaust Electric Throttle Control Actuator

INFOID:0000000010308940

Exhaust Electric Throttle Control Actuator is installed to the exhaust tube and activated only during low pres-
sure EGR.

Exhaust gas temperature

°

C (

°

F)

Resistance (Approx.)

k

0 (32)

148.9 – 175.5

20 (68)

57.1 – 65.9

100 (212)

3.167 – 3.433

130 (572)

0.062 – 0.068

EC9-20

< SYSTEM DESCRIPTION >

[R9M]

COMPONENT PARTS

DPF (Diesel Particulate Filter)

INFOID:0000000010308941

DPF (Diesel Particulate Filter) traps PM (Particulate Matter) in exhaust gas. DPF is formed in a honeycomb
form made of ceramic. This structure facilitates to trap particulate matter. When the amount of particulate mat-
ter in the DPF reaches the specified level, the particulate matter needs to be reduced through burning to main-
tain the DPF function. This reducing of particulate matter is called Regeneration and should be performed
periodically. DPF can be effective for a long time through the cycle of trapping particulate matter and regener-
ation.

Exhaust Gas Pressure Sensor

INFOID:0000000010308942

Exhaust gas pressure sensor measures exhaust gas pressure around turbocharger outlet, converts it to volt-
age signal and transmits it to ECM. ECM controls turbocharger boost pressure according to this signal.

DPF Differential Pressure Sensor

INFOID:0000000010308943

DPF (Diesel Particulate Filter) pressure sensor is connected to DPF
with tubes (upstream and downstream). DPF pressure sensor mea-
sures the difference between the exhaust pressure before and after
the DPF. DPF pressure sensor converts the difference pressure into
a voltage signal. ECM receives the signal and estimates the amount
of particulate matter in DPF.

Exhaust Gas Temperature Sensor 1

INFOID:0000000010308944

The exhaust gas temperature (EGT) sensor is built-into the Exhaust Pressure Sensor. The sensor detects the
exhaust gas temperature before turbocharger. The sensor modifies a voltage signal from the ECM. The modi-
fied signal returns to the ECM as the exhaust gas temperature input. 

PBIB3160E

PBIB3165E

COMPONENT PARTS

EC9-21

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

<Reference data>

Exhaust Gas Temperature Sensor 2

INFOID:0000000010308945

Upstream DPF Temperature Sensor is installed DPF (Diesel Particulate Filter). The sensor uses a thermistor
which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response
to the temperature rises.

<Reference data>

Glow Control Unit

INFOID:0000000010308946

Glow Control Unit performs PWM (Pulse Width Modulation) communication with ECM. It improves engine
starting function by performing glow control.

Glow Plug

INFOID:0000000010308947

The glow plug is located in the cylinder head, in order to stabilize combustion and keep good cold start perfor-
mance.
The glow plug glows in response to a signal sent from the ECM, allowing current to flow through the glow plug
via the glow control unit.

Glow Indicator Lamp

INFOID:0000000010308948

Glow indicator lamp illuminates when glow system is activated in order to inform it to the driver.

Cooling Fan

INFOID:0000000010503744

Cooling fan operates at each speed when the current flows in the cooling fan motor as follows.
Refer to 

EC9-34, "COOLING FAN CONTROL : System Description"

 for cooling fan operation.

Cooling Fan Resistor

INFOID:0000000010308949

Cooling Fan Resister is installed to the power circuit of Cooling Fan Motor and switches cooling fan speed
between LOW and HIGH.
When Cooling Fan Motor is rotated at LOW speeds, power is supplied to the cooling fan via Cooling Fan
Resistor.

Thermoplunger

INFOID:0000000010308950

Thermoplunger Unit is installed to the passage of engine coolant and has four thermoplungers. These ther-
moplungers increase engine coolant temperature by the passage of electric current through the Ther-
moplunger Control Unit.

Thermoplunger Control Unit

INFOID:0000000010308951

Thermoplunger Control Unit passes a current to Thermoplungers according to a signal transmitted from ECM.

Exhaust gas temperature

°

C (

°

F)

Resistance (Approx.)

k

0 (32)

5.671 – 6.118

25 (77)

1.99 – 2.123

100 (212)

0.097 – 0.103

130 (266)

0.087 – 0.091

Exhaust gas temperature

°

C (

°

F)

Resistance (Approx.)

k

0 (32)

159.8 – 309.4

20 (68)

89.3 – 159.8

100 (212)

15.2 – 22.1

300 (572)

1.307 – 1.562

400 (752)

0.606 – 0.697

EC9-22

< SYSTEM DESCRIPTION >

[R9M]

COMPONENT PARTS

Engine Coolant Bypass Valve

INFOID:0000000010308952

Engine Coolant Bypass Valve switches the flow passage of engine coolant. This valve is controlled by Engine
Coolant Bypass Valve Control Solenoid Valve.

Engine Coolant Bypass Valve Control Solenoid Valve

INFOID:0000000010308953

Engine coolant bypass valve control solenoid valve is controlled by ECM. The solenoid valve controls negative
pressure given to diaphragm of engine coolant bypass valve. When engine coolant bypass valve control sole-
noid valve is activated, it opens solenoid valve and gives negative pressure from vacuum pump to diaphragm
of engine coolant bypass valve.

Accelerator Pedal Position Sensor

INFOID:0000000010308954

The accelerator pedal position (APP) sensor is installed on the upper
end of the accelerator pedal assembly. The sensors detect the
accelerator pedal position and sends a signal to the ECM. The ECM
uses the signal to determine the amount of fuel to be injected.

Refrigerant Pressure Sensor 

INFOID:0000000010308955

The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor is used
to sense a refrigerant pressure.

Stop Lamp Switch

INFOID:0000000010308956

Stop lamp switch signal is sent to ECM via CAN communication line from BCM. This signal is used mainly to
decrease the engine speed when the vehicle is driving.

Brake Pedal Position Switch

INFOID:0000000010589773

Brake pedal position switch is installed to brake pedal bracket.
ECM detects the state of the brake pedal according to the input signal sent from brake pedal position switch.

Clutch Interlock Switch & Clutch Pedal Position Switch

INFOID:0000000010501522

Clutch interlock switch and clutch pedal position switch are installed to clutch pedal bracket.
ECM detects the state of the clutch pedal by those two types of input signal (ON/OFF).

ASCD Steering Switch

INFOID:0000000010308958

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation
of switch, and determines which button is operated.

PBIB1741E

Clutch pedal

Clutch interlock switch

Clutch pedal position switch

Released

OFF

ON

Depressed

ON

OFF

COMPONENT PARTS

EC9-23

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

Malfunction Indicator Lamp

INFOID:0000000010308959

The malfunction indicator Lamp (MIL) is located on the combination
meter. The MIL will illuminate when the ignition switch is turned ON
without the engine running (bulb check).
When the engine is started, the MIL should turn OFF. If the MIL
remains illuminated, the on board diagnostic system has detected an
engine system malfunction.

Information Display

INFOID:0000000010308960

The operation mode of the ASCD and speed limiter are indicated on the information display in the combination
meter.
ECM transmits the status signal to the combination meter via CAN communication according to ASCD and
speed limiter operation.

DC/DC Converter

INFOID:0000000010308962

The DC/DC converter is installed at the back of the glove box
assembly and supplies power to the electrical equipment.
This converter is connected to ECM via the engine communication
line and includes an internal voltage converter. When restarting the
vehicle from the stop/start system operating condition, the voltage
converter boosts the voltage conveyed from the battery and provides
stable power to the electrical equipment to prevent reset from occur-
ring. For further details, refer to 

EC9-39, "STOP/START SYSTEM :

System Description (M/T models)"

 or 

EC9-47, "STOP/START SYS-

TEM : System Description (CVT models)"

.

Engine Restart Relay

INFOID:0000000010308963

The engine restart relay is installed in the relay box and controlled by ECM when restarting the engine during
the stop/start system operation.

Engine Restart Bypass Control Relay

INFOID:0000000010308964

The engine restart bypass control relay is controlled by ECM and controls the engine restart bypass relay.

Engine Restart Bypass Relay

INFOID:0000000010308965

The engine restart bypass relay reduces battery voltage drop right
after the starter motor activation at an engine restart by switching the
electric circuit of the starter motor. For details, refer to 

EC9-39,

"STOP/START SYSTEM : System Description (M/T models)"

 or

EC9-47, "STOP/START SYSTEM : System Description (CVT mod-
els)"

.

Hood Switch

INFOID:0000000010308970

Hood switch is located around radiator core support. Hood switch detects open/close condition of hood and
input the hood switch signal to IPDM E/R.

JPNIA1882ZZ

JSBIA4574ZZ

JSBIA1994ZZ

EC9-24

< SYSTEM DESCRIPTION >

[R9M]

COMPONENT PARTS

Stop/Start Indicator Lamp

INFOID:0000000010308971

The stop/start indicator lamp is located on the combination meter.
The stop/start indicator lamp turns ON when the stop/start system is
operating.
When a malfunction is detected in the stop/start system, the stop/
start indicator lamp blinks at a slow speed to alert the driver to the
malfunction. When a driver

s operation is judged as dangerous one

during stop/start system operation, the stop/start indicator lamp
blinks at a high speed.

Stop/Start indicator lamp status

*1: Only in models with M/T
*2: Engine is stalled after alert for 1.5 seconds.

Stop/Start OFF Switch

INFOID:0000000010308972

The stop/start OFF switch is mounted on the switch panel of the
driver side lower instrument panel. When the stop/start OFF switch
is pressed, the indicator lump turns ON and the stop/start system
can be deactivated.
For further details, refer to 

EC9-57, "STOP/START SYSTEM :

Switch Name and Function"

.

JPBIA4266ZZ

System condition

Condition

Stop/start indicator lamp

Warning chime

Operate

Normal

Illuminate

Door (driver side) open 

and seat belt released

*1

High speed blinking

Sound

Hood open

High speed blinking

*2

Sound

*2

Fail-Safe

Starter motor operation 
counter: too much

Slow speed blinking

Malfunction of stop/start 
system

Slow speed blinking

JSBIA4078ZZ

SYSTEM

EC9-25

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

SYSTEM

ENGINE CONTROL SYSTEM

ENGINE CONTROL SYSTEM : System Diagram

INFOID:0000000010308973

ENGINE CONTROL SYSTEM : Vacuum Hose Drawing

INFOID:0000000010308974

For vacuum hose drawing, refer to 

EC9-404, "Vacuum Layout"

.

JSBIA5033GB

EC9-26

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

ENGINE CONTROL SYSTEM : System Description

INFOID:0000000010308975

ECM controls the engine by various functions.

ENGINE SPEED CONTROL

ENGINE SPEED CONTROL : System Description

INFOID:0000000010308976

SYSTEM DESCRIPTION

The engine speed control consists of the following functions:
• Curative anti-jerk
• Idle speed control
• Engine speed limitation
• Engine state

CURATIVE ANTI-JERK

This function aims to smooth the engine speed through torque corrections out of idle engine speed regulation.
The torque correction is made by the anti-jerk function to damp the engine speed vibrations caused by the
drive-line vibrations.

IDLE SPEED CONTROL

ECM calculates the engine idle speed set point and maintains the engine speed in order to follow the set point.
The engine idle speed set-point is computed for the following load and signal:
• Post treatment
- Diesel particulate filter
• Electric consumers
- Cooling fan
- Air heater (air conditioning system)

Function

Reference

Engine speed control

EC9-26, "ENGINE SPEED CONTROL : System Description"

Powertrain coordination control

EC9-27, "POWERTRAIN COORDINATION CONTROL : System 
Description"

Turbocharger boost control

EC9-28, "TURBOCHARGER BOOST CONTROL : System De-
scription"

EGR system

EC9-28, "EGR SYSTEM : System Description"

Throttle control

EC9-29, "THROTTLE CONTROL : System Description"

Swirl control system

EC9-29, "SWIRL CONTROL SYSTEM : System Description"

Engine torque control

EC9-30, "ENGINE TORQUE CONTROL : System Description"

Combustion control

EC9-32, "COMBUSTION CONTROL : System Description"

After treatment system

EC9-34, "AFTER TREATMENT SYSTEM : System Description"

Cooling fan control

EC9-34, "COOLING FAN CONTROL : System Description"

Thermostat control

EC9-35, "THERMOSTAT CONTROL : System Description"

Glow control

EC9-35, "GLOW CONTROL : System Description"

ASCD (Automatic Speed Control Device)

EC9-36, "AUTOMATIC SPEED CONTROL DEVICE (ASCD) : Sys-
tem Description"

Speed limiter

EC9-36, "SPEED LIMITER : System Description"

Gear shift indicator system

EC9-38, "GEAR SHIFT INDICATOR SYSTEM : System Descrip-
tion"

Stop/start system

EC9-39, "STOP/START SYSTEM : System Description (M/T mod-
els)"

EC9-47, "STOP/START SYSTEM : System Description (CVT mod-
els)"

Energy management system

EC9-54, "ENERGY MANAGEMENT SYSTEM : System Descrip-
tion"

CAN communication

EC9-54, "CAN COMMUNICATION : System Description"

SYSTEM

EC9-27

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

- Power window
- Alternator output current
• Automatic transmission
- Automatic transmission idle speed set point function (according to coolant temperature)
- Automatic transmission idle speed increase request
• Mechanical consumers
- Air conditioning
- Power steering
• Diagnosis and protection
- Diagnosis
- Engine protection by oil temperature survey
- CONSULT function
- Manifold absolute pressure sensor signal
The final engine idle speed set point is computed from each comsumer

s engine idle speed set point:

• The final corrective torque of the Idle Speed Regulation is obtained taking into account proportional, integral,

and derivative corrections.

ENGINE SPEED LIMITATION

ECM calculates the maximum engine speed set point and controls the maximum engine speed in order to fol-
low the set point.
• Fail-safe mode
• Maximum available engine speed

ENGINE STATE

ECM calculates the engine state from detected engine speed:
• Engine running
- Driving state
- Idling state
• Engine stalled
- Initial state
- Stalled state

POWERTRAIN COORDINATION CONTROL

POWERTRAIN COORDINATION CONTROL : System Description

INFOID:0000000010437573

SYSTEM DESCRIPTION

The powertrain coordination can be explained by following:
• Powertrain coordination inputs
• Preventive anti-jerk
• Gear shift indicator (for details, refer to 

EC9-38, "GEAR SHIFT INDICATOR SYSTEM : System Descrip-

tion"

.)

POWERTRAIN COORDINATION INPUTS

ECM detects following signals necessary to decide the torque set point:
• Gear position
• Torque request from automatic transmission
• Torque request from ABS system
• Brake pedal operation
• Status of Cruise Control System or Speed Limiter

PREVENTIVE ANTI-JERK

The main objective of the preventive anti-jerk function is to decrease discomforts of driver during depress the
accelerator pedal and during release the accelerator pedal.
The abrupt change of torque are delivered by engine excites a torsional natural frequencies of drive-line. It
causes vehicle jerking and acceleration fluctuations. And they are causes of perception and assessment of
performance and comfort for driver and the passengers.
The purpose of this function is to limit drive-line torque excitations. In fact, the engine torque set point is filtered
according to requirements of driveability.

TURBOCHARGER BOOST CONTROL

EC9-28

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

TURBOCHARGER BOOST CONTROL : System Description

INFOID:0000000010308979

DESCRIPTION

Turbocharger is used to increase the air pressure entering the engine. The turbocharger has two separate
chambers. The turbocharger consists of the following components:
• A chamber linked to the engine exhaust gas system
• A chamber linked to the engine air inlet system
• A turbine and a compressor, joined together by shaft.
The turbine, driven by exhaust gases, drives the compressor which compresses the inlet air.

CAUTION:

To stop the engine immediately after high-load driving, park the vehicle with the engine at idle before
turning OFF the ignition switch.
The boost pressure control is able to increase the manifold pressure with respect to the engine operating
point. The system has an electric solenoid valve connected on the vacuum circuit to control the flow of exhaust
gases through the turbine in order to generate high pressure in the boost circuit.

EGR SYSTEM

EGR SYSTEM : System Description

INFOID:0000000010308980

DESCRIPTION

EGR (Exhaust Gas Recirculation) system reduces NOx emissions and improves fuel efficiency by recirculat-
ing exhaust gas into the intake manifold.
This engine has two EGR systems (low pressure and high pressure), and one of them is selected depending
on condition.

JSBIA2009GB

SYSTEM

EC9-29

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

The purpose of the low pressure EGR is to decrease fuel consumption.
The low pressure EGR system and the high pressure EGR system are not activated simultaneously.

LOW PRESSURE EGR SYSTEM

The low pressure EGR system recirculates exhaust gasses in the downstream DPF (Diesel Particulate Filter)
to the upstream turbocharger of intake air passage.
If EGR conditions are satisfied when engine coolant temperature is more than 70

°

C (158

°

F) and intake air

temperature is 20

°

C (68

°

F), the opening angle of the exhaust throttle valve is reduced and the low pressure

EGR volume control valve angle is adjusted to control EGR for achieving an appropriate EGR rate.

HIGH PRESSURE EGR SYSTEM

High pressure EGR system recirculates exhaust gasses in the exhaust manifold to the intake manifold.
If EGR conditions are satisfied when engine coolant temperature is less than 30

°

C (86

°

F), the opening angle

of the throttle valve is reduced and the high pressure EGR volume control valve angle is adjusted to control
EGR for achieving an appropriate EGR rate.

EGR COOLING SYSTEM

The EGR cooler bypass is controlled by ON/OFF solenoid valve, connected to the vacuum circuit. Control is
determined according to the engine coolant temperature, intake air temperature, and the engine operating
point. The gases flow through the cooler during the EGR activation, except when the engine is cold; otherwise,
they go through the bypass. There is also a regular bypass activation function to prevent its clogging or jam-
ming.

THROTTLE CONTROL

THROTTLE CONTROL : System Description

INFOID:0000000010308981

DESCRIPTION

This engine has two throttle valves. One of them is installed to the upstream of the intake manifold on the air
intake line and used for the high pressure EGR control and smooth engine stop. The other throttle valve is
installed to the downstream of DPF (Diesel Particulate Filter) on the exhaust line and used for the low pres-
sure EGR control.
These valves are normally open.

ELECTRIC THROTTLE CONTROL ACTUATOR

• During high pressure EGR control, the electric throttle control actuator reduces the opening angle of the

throttle valve and lowers pressure around the EGR feed port so that intake EGR gasses can be efficiently
taken in.

• When ignition switch is turned OFF, throttle valve is closed to stop the engine smoothly.
• In DPF regeneration mode, fresh air flow control uses only electric throttle control actuator (EGR valve is

fully closed).

EXHAUST ELECTRIC THROTTLE CONTROL ACTUATOR

The exhaust electric throttle control actuator reduces the opening angle of the exhaust throttle valve and intro-
duces exhaust gasses to the low pressure EGR system.

SWIRL CONTROL SYSTEM

SWIRL CONTROL SYSTEM : System Description

INFOID:0000000010308982

DESCRIPTION

EC9-30

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

The intake manifold runner control valve mounted on the intake manifold generates swirl flow in the combus-
tion chamber. This swirl flow allows air mixture to become even, enabling the obtainment of the steady com-
bustion.

ENGINE TORQUE CONTROL

ENGINE TORQUE CONTROL : System Description

INFOID:0000000010308977

SYSTEM DESCRIPTION

The torque function can be explained by the following:
• Accessories torque management
• Engine torque losses
• Minimum available torque
• Maximum available torque
• Fast set-points to complete torque request
• Final torque requests setting

ACCESSORIES TORQUE MANAGEMENT

Air Conditioning Power

The amount of power absorbed by the air conditioning is useful for the engine control to compute the torque
requirement for air conditioning. Therefore, ECM can adapt dynamically the engine speed regulation depend-
ing on the load variations.
The power absorbed by the air conditioning depends on the refrigerant pressure and the compressor speed.
The air conditioning system power correction for idle speed regulation avoids engine speed undershoots and
overshoots at the compressor compressed volume variation.

JSBIA2015GB

SYSTEM

EC9-31

< SYSTEM DESCRIPTION >

[R9M]

C

D

E

F

G

H

I

J

K

L

M

A

EC9

N

P

O

Coolant heaters or air heaters

The air heater is activated on a driver request.
The thermoplunger are exclusively used to increase engine load during DPF (Diesel Particulate Filter) regen-
eration. When the vehicle is in a regenerating phase and the load is low,  the coolant heaters are activated to
increase the overall load.

ENGINE TORQUE LOSSES

The torque losses are the sum of three components: the rubbing, the pumping, and the torque losses caused
by accessories consumption.
• The basic friction torque loss uses the coolant liquid temperature sensor and the engine speed for the torque

correction.

• Accessories

 consumption is caused by additional electrical (alternator power) and mechanical (power steer-

ing and air conditioning) components.

MINIMUM AVAILABLE TORQUE

The minimum available torque is used for the minimum driver setpoint calculation and the intersystem informa-
tion.
The minimum torque is designed with a hyperbolic shape depending on the difference between the engine
speed and the idle speed set-point:
• When the engine speed is under the idle speed set-point, the minimum torque is equal to the hyperbolic

torque which increases to avoid an engine stalling.

• When the engine speed is over an engine speed threshold, the minimum torque reaches the engine torque

losses with a ramp.

When the engine starts, a specific torque set-point is calculated to ensure the engine start. This torque is
dependent of the engine speed and the coolant temperature.
At first, a calculation of the starting torque value is performed. In case of a difficult start (too long), this torque
may be increased thanks to ramp.
The start torque offset is progressively set to zero to ensure a transition with the current torque set-point.

MAXIMUM AVAILABLE TORQUE

The maximum available torque results of a minimum selection including all powertrain constraints:
• Transmission torque limitation
• Maximum engine torque
• Torque reduction for the heating protection
• Torque for smoke limitation
• Fail-safe

Transmission torque limitation

This limitation is the maximum torque to protect the transmission from a mechanical overload:
• For a manual transmission, the limitation value of the torque is function of the engine speed and the trans-

mission ratio.

• For an automatic transmission, the limitation value is directly supplied by the automatic transmission.

Maximum engine torque

The maximum torque depends on the engine speed and the manifold air pressure. It is corrected by:
• The soot mass value in order to take into account the limitations due to the particulate filter
• The atmospeeric pressure
• The upstream inlet throttle temperature.
The maximum engine also depends on the combustion mode (the normal or the regeneration combustion
mode). In some conditions (DPF clogging, etc.), this maximum available torque is reduced in order to keep the
engine within its safety working limits.

Torque for the heating protection

This torque limitation is dedicated to the protection of the engine from an overheating. This limitation calcula-
tion depends on the engine speed, the engine coolant temperature, the intake air temperature and the vehicle
speed.

Torque for the smoke limitation

This torque limitation is used to reduce the smoke emissions during a high torque driver request. The maxi-
mum fuel mass that can be injected is limited according to the maximum richness depending on the gear ratio,
the engine speed, and the intake air mass flow. This value is corrected depending on the vehicle speed and
the coolant temperature.

Fail-safe

EC9-32

< SYSTEM DESCRIPTION >

[R9M]

SYSTEM

The ECM limits a engine torque in case of malfunction of engine component or ECM.
Depending on the engine components, ECM activates the fail-safe mode of the torque limitation level 1 (low
limitation), the level 2 (mean limitation), or the level 3 (strong limitation function of vehicle speed).

FAST SET-POINTS TO COMPLETE TORQUE REQUEST

For each combustion mode (the normal combustion mode, the regeneration combustion mode, and the pro-
tection combustion mode), a torque model is designed to calculate the total fuel mass quantity, the estimated
mean effective torque, the combustion efficiency and the current fuel consumption for the final torque set-point
and the engine current speed.
The total fuel mass quantity is corrected to take into account the main injection advance deviation and the
mass air flow deviation.
For each combustion mode, the after and the post injection relative efficiencies are calculated to determine the
fuel mass quantity needed to perform the engine inner torque.
The after injection relative efficiency is equal to one in normal combustion mode and to zero in a regeneration
combustion mode or in a protection combustion mode.
The post injection relative efficiency is function of the post injection timing and the difference between the cur-
rent and the basic post injection timing.

FINAL TORQUE REQUESTS SETTING

The final torque requests are computed by the arbitration with the driver request, the intersystem torque
request (VDC/ESP), the torque limitations and the curative anti-jerk correction.
The set-point torque is used for fuel mass calculation. It is filtered by the preventive anti-jerk and corrected by
the curative anti-jerk.

COMBUSTION CONTROL

COMBUSTION CONTROL : System Description

INFOID:0000000010438173

SYSTEM DESCRIPTION

The torque set-point is converted into a total fuel quantity injected. This quantity is split in various injections
according to a mapped injection pattern. Thus, a fuel quantity and an initial phasing of injection are allocated
for each injection. The choice of the number of injection (limited to five maximum) is given with different con-
straints such as acoustic, performance and emissions.
In the DPF (Diesel Particulate Filter) regeneration phase, post injections do not contribute to the torque elabo-
ration but to the increase of the DPF temperature. Therefore, the fuel consumption increases in the DPF
regeneration phase.

FUEL SUPPLY AND PRESSURE CONTROL SYSTEM

Fuel Supply System

The fuel supply system consists of two circuits: the fuel low and high-pressure circuit.
The fuel low-pressure circuit brings fuel from the tank to the high-pressure fuel pump through the fuel filter
(with fuel heater).
The high-pressure circuit function is to put the fuel under pressure and distribute it to the injectors:
• High-pressure fuel pump
• Fuel flow actuator
• Common rail
• Fuel injectors
The low-pressure fuel (coming from low-pressure circuit) is transferred to the high-pressure pump part via the
fuel flow actuator, which regulates the fuel flow quantity. The high-pressure fuel pump consists of a three-pis-
ton pump.
The fuel under pressure goes to the common rail, which distributes the fuel equally to each injector.
Finally, the commanded injectors deliver the fuel flow entering the cylinder.

Fuel Pressure Control

The combustion quality is influenced by the size of the droplets sprayed into the cylinder. In the combustion
chamber, smaller fuel droplets will have enough time to burn completely and will produce less smoke and less
unburnt particulate matter. To meet pollution requirements, the size of the droplets needs to be reduced and
hence so too do the injection orifices.
Since these orifices are smaller, less fuel can be injected for a given pressure, which in turn limits the power.
To counter this drawback, it is necessary to increase the quantity of injected fuel, which involves raising the
pressure (and the number of orifices on the injector nozzles). The pressure is continuously regulated to high

 

 

 

 

 

 

 

Content      ..      1      2      3      ..