Chrysler Town, Dodge Caravan. Manual - part 534

 

  Index      Chrysler     Chrysler TOWN & COUNTRY, VOYAGER, Dodge Caravan - service repair manual 2001-2007 year

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  532  533  534  535   ..

 

 

Chrysler Town, Dodge Caravan. Manual - part 534

 

 

VALVE

DESCRIPTION

The EGR system consists of:
• EGR tube (connects a passage in the intake

manifold to the exhaust port in the cylinder head)

• EGR valve

• Electronic EGR Transducer

• Connecting hoses

OPERATION

Refer to Monitored Systems - EGR Monitor in this

group for more information.

The engines use Exhaust Gas Recirculation (EGR)

systems. The EGR system reduces oxides of nitrogen
(NOx) in engine exhaust and helps prevent detona-
tion (engine knock). Under normal operating condi-
tions, engine cylinder temperature can reach more
than 3000°F. Formation of NOx increases proportion-
ally with combustion temperature. To reduce the
emission of these oxides, the cylinder temperature
must be lowered. The system allows a predetermined
amount of hot exhaust gas to recirculate and dilute
the incoming air/fuel mixture. The diluted air/fuel
mixture reduces peak flame temperature during com-
bustion.

The electric EGR transducer contains an electri-

cally operated solenoid and a back-pressure trans-
ducer (Fig. 2). The Powertrain Control Module (PCM)
operates the solenoid. The PCM determines when to

energize the solenoid. Exhaust system back-pressure
controls the transducer.

When the PCM energizes the solenoid, vacuum

does not reach the transducer. Vacuum flows to the
transducer when the PCM de-energizes the solenoid.

When exhaust system back-pressure becomes high

enough, it fully closes a bleed valve in the trans-
ducer. When the PCM de-energizes the solenoid and
back-pressure closes the transducer bleed valve, vac-
uum flows through the transducer to operate the
EGR valve.

Fig. 1 EGR VALVE AND TUBE 2.4L

1 - EGR Tube
2 - EGR Valve

Fig. 2 EGR Valve and Transducer - Typical

1 - DIAPHRAGM
2 - PISTON
3 - SPRING
4 - EGR VALVE ASSEMBLY
5 - VACUUM MOTOR
6 - VACUUM MOTOR FITTING
7 - VACUUM OUTLET FITTING TO EGR VALVE
8 - EGR VALVE CONTROL ASSEMBLY
9 - ELECTRIC SOLENOID PORTION OF VALVE CONTROL
10 - VACUUM INLET FITTING FROM ENGINE
11 - BACK-PRESSURE HOSE
12 - TRANSDUCER PORTION OF VALVE CONTROL
13 - ELECTRICAL CONNECTION POINT
14 - EGR VALVE BACK-PRESSURE FITTING
15 - EXHAUST GAS INLET
16 - STEM PROTECTOR AND BUSHING
17 - BASE
18 - MOVEMENT INDICATOR
19 - POPPET VALVE
20 - SEAT
21 - EXHAUST GAS OUTLET

25 - 22

EXHAUST GAS RECIRCULATION

RS

De-energizing the solenoid, but not fully closing the

transducer bleed hole (because of low back-pressure),
varies the strength of vacuum applied to the EGR
valve. Varying the strength of the vacuum changes
the amount of EGR supplied to the engine. This pro-
vides the correct amount of exhaust gas recirculation
for different operating conditions.

This system does not allow EGR at idle.
A failed or malfunctioning EGR system can cause

engine spark knock, sags or hesitation, rough idle,
engine stalling and increased emissions.

REMOVAL - 2.4L

The EGR valve and Electrical EGR Transducer are

serviced as an assembly (Fig. 1).

(1) Disconnect vacuum tube from electric EGR

transducer. Inspect vacuum tube for damage.

(2) Remove electrical connector from solenoid.
(3) Remove EGR tube bolts from EGR valve.
(4) Remove EGR valve from cylinder head adaptor.
(5) Clean gasket surface and discard old gasket.

Check for any signs of leakage or cracked surfaces.
Repair or replace as necessary.

INSTALLATION - 2.4L

The EGR valve and Electrical EGR Transducer are

serviced as an assembly (Fig. 1).

(1) Assemble EGR valve with new gasket onto the

cylinder head adaptor.

(2) Loose assemble the bolts from EGR valve to

EGR tube.

(3) Loose assemble the bolts from EGR valve to

cylinder head.

(4) Tighten bolts from EGR valve to cylinder head

to 22.8 N·m (200 ±25 in. lbs.) torque.

(5) Tighten bolts from EGR valve to EGR tube to

11.9 N·m (105 ±20 in. lbs.) torque.

(6) Reconnect vacuum hose and electrical connec-

tor to electrical EGR transducer.

RS

EXHAUST GAS RECIRCULATION

25 - 23

VALVE (Continued)

ON-BOARD DIAGNOSTICS

TABLE OF CONTENTS

page

page

TASK MANAGER

DESCRIPTION

. . . . . . . . . . . . . . . . . . . . . . . . . 24

OPERATION

. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

TASK MANAGER

DESCRIPTION

The PCM is responsible for efficiently coordinating

the operation of all the emissions-related compo-
nents. The PCM is also responsible for determining if
the diagnostic systems are operating properly. The
software designed to carry out these responsibilities
is call the “Task Manager”.

OPERATION

The Task Manager determines when tests happen

and when functions occur. Many of the diagnostic
steps required by OBD II must be performed under
specific operating conditions. The Task Manager soft-
ware organizes and prioritizes the diagnostic proce-
dures. The job of the Task Manager is to determine if
conditions are appropriate for tests to be run, moni-
tor the parameters for a trip for each test, and record
the results of the test. Following are the responsibil-
ities of the Task Manager software:

• Test Sequence

• MIL Illumination

• Diagnostic Trouble Codes (DTCs)

• Trip Indicator

• Freeze Frame Data Storage

• Similar Conditions Window

Test Sequence

In many instances, emissions systems must fail

diagnostic tests more than once before the PCM illu-
minates the MIL. These tests are known as ’two trip
monitors.’ Other tests that turn the MIL lamp on
after a single failure are known as ’one trip moni-
tors.’ A trip is defined as ’start the vehicle and oper-
ate it to meet the criteria necessary to run the given
monitor.’

Many of the diagnostic tests must be performed

under certain operating conditions. However, there
are times when tests cannot be run because another
test is in progress (conflict), another test has failed
(pending) or the Task Manager has set a fault that
may cause a failure of the test (suspend).

• Pending

Under some situations the Task Manager will not

run a monitor if the MIL is illuminated and a fault is
stored from another monitor. In these situations, the
Task Manager postpones monitors pending resolu-
tion of the original fault. The Task Manager does not
run the test until the problem is remedied.
For example, when the MIL is illuminated for an
Oxygen Sensor fault, the Task Manager does not run
the Catalyst Monitor until the Oxygen Sensor fault is
remedied. Since the Catalyst Monitor is based on sig-
nals from the Oxygen Sensor, running the test would
produce inaccurate results.

• Conflict

There are situations when the Task Manager does
not run a test if another monitor is in progress. In
these situations, the effects of another monitor run-
ning could result in an erroneous failure. If this con-
flict 
is present, the monitor is not run until the
conflicting condition passes. Most likely the monitor
will run later after the conflicting monitor has
passed.
For example, if the Fuel System Monitor is in
progress, the Task Manager does not run the catalyst
Monitor. Since both tests monitor changes in air/fuel
ratio and adaptive fuel compensation, the monitors
will conflict with each other.

• Suspend

Occasionally the Task Manager may not allow a two
trip fault to mature. The Task Manager will sus-
pend 
the maturing of a fault if a condition exists
that may induce an erroneous failure. This prevents
illuminating the MIL for the wrong fault and allows
more precise diagnosis.
For example, if the PCM is storing a one trip fault
for the Oxygen Sensor and the catalyst monitor, the
Task Manager may still run the catalyst Monitor but
will suspend the results until the Oxygen Sensor
Monitor either passes or fails. At that point the Task
Manager can determine if the catalyst system is
actually failing or if an Oxygen Sensor is failing.

MIL Illumination

The PCM Task Manager carries out the illumina-

tion of the MIL. The Task Manager triggers MIL illu-
mination upon test failure, depending on monitor
failure criteria.

25 - 24

ON-BOARD DIAGNOSTICS

RS

The Task Manager Screen shows both a Requested

MIL state and an Actual MIL state. When the MIL is
illuminated upon completion of a test for a good trip,
the Requested MIL state changes to OFF. However,
the MIL remains illuminated until the next key
cycle. (On some vehicles, the MIL will actually turn
OFF during the thirdgood trip) During the key cycle
for the third good trip, the Requested MIL state is
OFF, while the Actual MIL state is ON. After the
next key cycle, the MIL is not illuminated and both
MIL states read OFF.

Diagnostic Trouble Codes (DTCs)

With OBD II, different DTC faults have different

priorities according to regulations. As a result, the
priorities determine MIL illumination and DTC era-
sure. DTCs are entered according to individual prior-
ity. DTCs with a higher priority overwrite lower
priority DTCs.

Priorities

• Priority 0 —Non-emissions related trouble codes.

• Priority 1 — One trip failure of a two trip fault

for non-fuel system and non-misfire. (MIL Off)

• Priority 2 — One trip failure of a two trip fault

for fuel system (rich/lean) or misfire. (MIL Off)

• Priority 3 — Two trip failure for a non-fuel sys-

tem and non-misfire or matured one trip comprehen-
sive component fault. (MIL On)

• Priority 4 — Two trip failure or matured fault

for fuel system (rich/lean) and misfire or one trip cat-
alyst damaging misfire. Catalyst damage misfire is a
2 trip MIL. The MIL flashes on the first trip when
catalyst damage misfire levels are present. (MIL On)

Non-emissions related failures have no priority.

One trip failures of two trip faults have low priority.
Two trip failures or matured faults have higher pri-
ority. One and two trip failures of fuel system and
misfire monitor take precedence over non-fuel system
and non-misfire failures.

DTC Self Erasure

With one trip components or systems, the MIL is

illuminated upon test failure and DTCs are stored.

Two trip monitors are components requiring failure

in two consecutive trips for MIL illumination. Upon
failure of the first test, the Task Manager enters a
maturing code. If the component fails the test for a
second time the code matures and a DTC is set.

After three good trips the MIL is extinguished and

the Task Manager automatically switches the trip
counter to a warm-up cycle counter. DTCs are auto-
matically erased following 40 warm-up cycles if the
component does not fail again.

For misfire and fuel system monitors, the compo-

nent must pass the test under a Similar Conditions
Window in order to record a good trip. A Similar Con-

ditions Window is when engine RPM is within ±375
RPM and load is within ±20% of when the fault
occurred.

NOTE: It is important to understand that a compo-
nent does not have to fail under a similar window of
operation to mature. It must pass the test under a
Similar Conditions Window when it failed to record
a Good Trip for DTC erasure for misfire and fuel
system monitors.

DTCs can be erased anytime with a DRBIII

t.

Erasing the DTC with the DRBIII

t erases all OBD II

information. The DRBIII

t automatically displays a

warning that erasing the DTC will also erase all
OBD II monitor data. This includes all counter infor-
mation for warm-up cycles, trips and Freeze Frame.

Trip Indicator

The Trip is essential for running monitors and

extinguishing the MIL. In OBD II terms, a trip is a
set of vehicle operating conditions that must be met
for a specific monitor to run. All trips begin with a
key cycle.

Good Trip
The Good Trip counters are as follows:
• Global Good Trip

• Fuel System Good Trip

• Misfire Good Trip

• Alternate Good Trip (appears as a Global Good

Trip on DRBIII

t)

• Comprehensive Components

• Major Monitor

• Warm-Up Cycles
Global Good Trip
To increment a Global Good Trip, the Oxygen sen-

sor and Catalyst efficiency monitors must have run
and passed, and 2 minutes of engine run time.

Fuel System Good Trip
To count a good trip (three required) and turn off

the MIL, the following conditions must occur:

• Engine in closed loop

• Operating in Similar Conditions Window

• Short Term multiplied by Long Term less than

threshold

• Less than threshold for a predetermined time
If all of the previous criteria are met, the PCM will

count a good trip (three required) and turn off the
MIL.

Misfire Good Trip
If the following conditions are met the PCM will

count one good trip (three required) in order to turn
off the MIL:

• Operating in Similar Condition Window

• 1000 engine revolutions with no misfire

RS

ON-BOARD DIAGNOSTICS

25 - 25

TASK MANAGER (Continued)

 

 

 

 

 

 

 

Content   ..  532  533  534  535   ..