Большая книга занимательных наук (Яков Перельман) - часть 24

 

  Главная      Учебники - Разные     Большая книга занимательных наук (Яков Перельман)

 

поиск по сайту            правообладателям  

 

 

 

 

 

 

 

 

содержание   ..  22  23  24  25   ..

 

 

Большая книга занимательных наук (Яков Перельман) - часть 24

 

 


Перенося в комнате с места на место горящую свечу, мы замечаем, что пламя вначале движения отклоняется назад. Куда отклонится оно, если переносить свечу в закрытом фонаре?

Куда отклонится пламя свечи в фонаре, если равномерно кружить фонарь вокруг себя вытянутой рукой?

Думающие, что пламя свечи, переносимой в закрытом фонаре, вовсе не будет отклоняться при движении фонаря, ошибаются. Сделайте опыт с горящей спичкой; вы убедитесь, что если двинуть ее, защитив рукой, то пламя отклонится, и притом, сверх ожиданий, не назад, а вперед. Причина отклонения вперед та, что пламя обладает меньшей плотностью, чем окружающий ее воздух. Одна и та же сила телу с меньшей массой сообщает большую скорость, чем телу с большей массой. Поэтому пламя, двигаясь быстрее воздуха в фонаре, отклоняется вперед.

Та же причина – меньшая плотность пламени, нежели окружающего воздуха, – объясняет и неожиданное поведение пламени при круговом движении фонаря: оно отклоняется внутрь, а не наружу, как можно было, пожалуй, ожидать. Явление станет понятно, если вспомним, как располагаются ртуть и вода в шаре, вращаемом на центробежной машине: ртуть располагается дальше от оси вращения, чем вода; последняя словно всплывает в ртути, если считать низом направление от оси вращения (то есть направление, в котором падают тела под действием центробежного эффекта). Более легкое, чем окружающий воздух, пламя свечи при круговом движении фонаря всплывает в воздухе вверх, то есть по направлению к оси вращения.


Провисающая веревка


С какой силой надо натягивать веревку, чтобы она не провисала?

Как бы сильно веревка ни была натянута, она неизбежно будет провисать. Сила тяжести, вызывающая провисание, направлена отвесно, натяжение же веревки не имеет вертикального направления. Такие две силы ни при каких условиях не могут уравновеситься, то есть их равнодействующая не может равняться нулю. Эта-то равнодействующая и вызывает провисание веревки.

Никаким усилием, как бы велико оно ни было, нельзя натянуть веревку строго прямолинейно (кроме случая, когда она направлена отвесно). Провисание неизбежно; можно уменьшить его величину до желаемой степени, но нельзя свести его к нулю. Итак, всякая неотвесно натянутая веревка, всякий передаточный ремень должны провисать.

По той же причине невозможно, между прочим, натянуть и гамак так, чтобы веревки его были горизонтальны. Туго натянутая проволочная сетка кровати прогибается под грузом лежащего на ней человека. Гамак же, натяжение веревок которого гораздо слабее, при лежании на нем человека

превращается в свешивающийся мешок.



Куда бросить бутылку?


В какую сторону надо из движущегося вагона выбросить бутылку, чтобы опасность разбить ее при ударе о землю была наименьшая?

Так как прыгать из движущегося вагона безопаснее вперед по направлению движения, то может казаться, что бутылка ударится о землю слабее, если ее кинуть вперед. Это неверно: вещи надо бросать назад, против движения поезда. Тогда скорость, сообщенная бутылке бросанием, будет отниматься от той, какую бутылка имеет вследствие инерции; в итоге бутылка встретит землю с меньшей скоростью. При бросании вперед произошло бы обратное: скорости сложились бы и удар получился бы сильнее.

То, что для человека безопаснее все же прыгать вперед, а не назад, объясняется совсем другими причинами: падая вперед, мы меньше расшибаемся, чем при падении назад.


Пробка


В бутылку с водой попал кусок пробки. Он достаточно мал, чтобы свободно пройти через горлышко. Но, сколько вы ни наклоняете или опрокидываете бутылку, выливающаяся вода почему-то не выносит пробочного куска. Только когда бутылка опоражнивается вся, пробка покидает бутылку с последней порцией воды. Отчего так происходит?

Вода не выносит пробки по простой причине: пробка легче воды и потому держится всегда на ее поверхности. Очутиться внизу, у отверстия бутылки, пробка может лишь тогда, когда почти вся вода выльется. Оттого она и выскальзывает из бутылки только с последней порцией воды.



Как задувать свечу?


Казалось бы, простое дело – задуть свечу, но не всегда это удается. Попробуйте задуть свечу не прямо, а через воронку, и вы убедитесь, что это требует особой сноровки.

Поместите воронку против пламени свечи и дуйте в воронку, держа во рту тонкий ее конец. Но пламя даже не шелохнется, хотя вытекающая из воронки струя воздуха должна, казалось бы, направиться прямо к свече

(рис. 11).

image

Рис. 11

Решив, что воронка помещена чересчур далеко от пламени, вы приближаете ее к свече и снова начинаете дуть. Результат получается неожиданный: пламя наклоняется не от вас, а к вам, навстречу струе воздуха, исходящего из воронки (рис. 12).

image

Рис. 12

image

Рис. 13


Что же вы должны сделать, желая задуть свечу? Нужно поместить воронку так, чтобы пламя находилось не на линии оси воронки, а на продолжении ее раструба. Дуя тогда в воронку, вы без труда загасите свечу (рис. 13). Объясняется это тем, что воздушная струя, вытекая из узкой части воронки, не идет далее по ее оси, а растекается вдоль стенок раструба, образуя здесь своеобразный воздушный вихрь. Вдоль же оси воронки воздух разрежается, и оттого близ ее середины устанавливается обратное течение воздуха. Теперь понятно, почему пламя, помещенное против середины воронки, наклоняется к ней навстречу, а находясь против края – отклоняется вперед и гаснет.



Музыкальные бутылки


Если вы обладаете музыкальным слухом, вам нетрудно будет устроить из обыкновенных бутылок подобие музыкального джазового инструмента, на котором можно наигрывать несложные мелодии.

Рисунок 14 показывает, что и как вам нужно сделать. К двум шестам, укрепленным горизонтально на стульях, подвешивают 16 бутылок с водой. В первой бутылке вода налита почти доверху; в каждой следующей – немного меньше воды, чем в предыдущей; в последней бутылке воды очень мало.

image

Рис. 14

Ударяя по этим бутылкам сухой деревянной палочкой, вы будете извлекать из них тоны различной высоты. Чем меньше воды в бутылке, тем тон выше. Поэтому, прибавляя или отливая воду, вы сможете добиться,

чтобы тоны составили музыкальную гамму. Располагая двумя октавами, можно исполнять на этом бутылочном инструменте кое-какие несложные мелодии.


Шум в раковине


Почему шумит чашка или большая раковина, приложенные к уху?

Шум, который мы слышим, приставив к уху чашку или крупную раковину, происходит вследствие того, что раковина является резонатором, усиливающим многочисленные шумы в окружающей нас обстановке, обычно нами не замечаемые из-за их слабости. Этот смешанный звук напоминает гул моря, что и подало повод к различным легендам, сложившимся вокруг шума раковины.


Видеть сквозь ладонь


Возьмите в левую руку трубку, свернутую из бумаги, держите эту трубку против левого глаза и смотрите через нее на какой-нибудь далекий предмет. В то же время держите ладонь вашей правой руки против правого глаза так, чтобы она почти касалась трубки (рис. 15). Обе руки должны быть от глаза в 15–20 см. И тогда вы убедитесь, что правый глаз ваш отлично видит сквозь ладонь, словно в ладони вырезано круглое отверстие.

image

Рис. 15

В чем причина явления?

Причина неожиданного явления такова. Ваш левый глаз приготовился

рассмотреть сквозь трубку далекий предмет, и соответственно этому его хрусталик приспособился к рассматриванию далекой вещи (глаз, как говорят, установился). Глаза устроены и работают так, что устанавливаются всегда согласно – как один, так и другой.

В описанном опыте правый глаз тоже устанавливается на далекое зрение, и поэтому близкая ладонь видна ему неясно. Короче сказать, левый глаз ясно видит далекий предмет, правый – смутно видит ладонь. А в итоге вам кажется, что вы видите далекий предмет сквозь заслоняющую его ладонь вашей руки.


Рисование перед зеркалом


Нетождественность зеркального отражения с оригиналом еще заметнее выступает в следующем опыте.

Поставьте перед собой отвесно на стол зеркало, положите перед ним бумажку и попробуйте нарисовать на ней какую-нибудь фигуру, например прямоугольник с диагоналями.

Но не смотрите при этом прямо на свою руку, а следите лишь за движениями руки, отраженной в зеркале (рис. 16).

image

Рис. 16

Вы убедитесь, что столь легкая на вид задача почти невыполнима. В течение многих лет наши зрительные впечатления и двигательные

ощущения успели прийти в определенное соответствие. Зеркало нарушает эту связь, так как представляет глазам движения нашей руки в искаженном виде. Давнишние привычки будут протестовать против каждого вашего движения: вы хотите провести линию вправо, а рука тянет влево, и т. п.

Еще больше неожиданных странностей вы встретите, если вместо простого чертежа попробуете рисовать перед зеркалом более сложные фигуры или писать что-нибудь, глядя на строки в зеркале: выйдет комичная путаница.

Те отпечатки, которые получаются на пропускной бумаге, тоже изображения симметричные. Рассмотрите надписи, испещряющие вашу пропускную бумагу, и попробуйте прочесть их. Вам не разобрать ни одного слова, даже вполне отчетливого: буквы имеют необычный наклон влево, а главное – последовательность штрихов в них не та, к какой вы привыкли. Но приставьте к бумаге зеркало под прямым углом – и увидите в нем все буквы написанными так, как вы привыкли их видеть. Зеркало дает симметричное отражение того, что само является симметричным изображением обыкновенного письма.


image



notes


Примечания


1


Надо иметь в виду, к тому же, что в первую сотую долю первой секунды своего падения тело проходит не сотую часть


2


Здесь и далее – Ленинград (по первым книгам Я.И. Перельмана); ныне Ленинград – Санкт-Петербург.


3


Текст отрывка заимствован из «Лекций по зоологии» проф. Поля Бера; иллюстрации прибавлены составителем.


4


При этом идущий человек, отталкиваясь от опоры, оказывает на нее добавочное к весу давление – около 20 кг. Отсюда, между прочим, следует, что идущий человек сильнее давит на землю, чем стоящий. – Я. П.


5


Можно объяснить падение в этом случае также и с иной точки зрения (см. об этом «Занимательную механику», главу третью, статью «Когда горизонтальная линия не горизонтальна?»).


6


Ефимок (Joachimsthaler) – около рубля.


7


Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками).


8


Из других жидкостей удобен ортотолуидин – темнокрасная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую погружают ортотолуидин.


9


Дождевые капли опускаются ускоренно только в самом начале падения; уже примерно ко второй половине первой секунды падения устанавливается равномерное движение: вес капли уравновешивается силой сопротивления воздуха, которая возрастает с ростом скорости капли.


10


Но, завинчивая горелку наглухо, не забудьте проследить за тем, чтобы резервуар не был налит до самых краев: керосин при нагревании расширяется довольно значительно (он увеличивается в объеме на десятую долю при повышении температуры на 100°), и чтобы резервуар не лопнул, необходимо оставить место для расширения.


11


Первое его описание и правильное объяснение находим у древнего физика Филона Византийского, жившего около I века до н. э.


12


Чистая вода охлаждается при этом не до 0°, а только до температуры 4

°C, при которой она имеет наибольшую плотность. Но на практике и не встречается надобности охлаждать напитки до нуля.


13


Можно заметить также, что при лихорадке и вообще при повышенной температуре вертушка движется гораздо быстрее. Этому поучительному приборчику, когда-то многих смущавшему, было в свое время посвящено даже небольшое физикофизиологическое исследование, доложенное в Московском медицинском обществе в 1876 г. (Н.П. Нечаев, «Вращение легких тел действием тепла руки»).


14


Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее.

[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. – Примеч. ред.]


15


Но не всецело: другая важная причина заключается в неодинаковой продолжительности дня, т. е. того промежутка времени, в течение которого Солнце согревает Землю. Обе причины, впрочем, обусловлены одним астрономическим фактом: наклоном земной оси к плоскости обращения Земли вокруг Солнца.


16


В последующем тексте автор имеет в виду фотоаппараты таких типов, которые были распространены в период создания «Занимательной физики». – Примеч. ред.


17


Надо заметить, что умение видеть стереоскопически – даже и в стереоскоп – дается не всем людям; некоторые (например, косоглазые или привыкшие работать только одним глазом) совершенно неспособны к нему; другим оно дается после продолжительного упражнения; наконец, третьи, преимущественно молодые люди, научаются этому очень быстро – в четверть часа.


18


Скорость урагана – 40 м в секунду – 144 км в час. Земной же шар на широте, например, Ленинграда проносил бы нас через воздух со скоростью 230 м в секунду – 828 км в час!


19


механику» (глава первая).


20


0 законе противодействия см. также мою «Занимательную


21


Елачич, Е. «Инстинкт».


22


Опыт представляет некоторую опасность (скорлупа может вонзиться в руку) и требует осмотрительности.


23


Можно доказать, что сила S получает наибольшее значение тогда, когда плоскость паруса делит пополам угол между направлениями киля и ветра.


24


Под выражением «поднять Землю» мы будем подразумевать – чтобы внести определенность в задачу – поднятие на земной поверхности такого груза, масса которого равна массе нашей планеты.


25


О том, как она была определена, см. «Занимательную астрономию».


26


Греческий философ Зенон Элейский (Y в. до н. э.), учивший, что все в мире неподвижно и что только вследствие обмана чувств нам кажется, будто какое-либо тело движется.


27


Диоген.


28


Это, заметим кстати, объясняет, почему на закруглениях железнодорожного пути наружный рельс укладывают выше внутреннего, а также почему наклоняют внутрь трековую дорожку для велосипедов и мотоциклов и почему гонщики-профессионалы могут ехать по круто наклоненному круговому настилу.


29


Подробный разбор таких задач читатель может найти в моей книге

«Знаете ли вы физику?».


30


«Магдебургский локоть» равен 550 мм.


31


Берется площадь круга , а не поверхность полушария, потому что атмосферное давление равно указанной величине лишь при действии на поверхность под прямым углом; для наклонных поверхностей это давление меньше. В данном случае мы берем прямоугольную проекцию шаровой поверхности на плоскость, т. е. площадь большого круга.


32


При скорости 4 км в час. В среднем принимается, что сила тяги лошади составляет 15 % ее веса; весит же лошадь: легкая – 400 кг, тяжелая

– 750 кг. На очень короткое время (начальное усилие) сила тяги может быть в несколько раз больше.


33


Разъяснение того, почему требуется по 13 лошадей с каждой стороны, читатель найдет в моей «Занимательной механике».


34


В самом деле, если, как мы сказали раньше (статья «Суп из барометра»), точка кипения воды падает на 3° с поднятием на каждый километр, то для понижения температуры кипения до 66° нужно подняться на 34: 3 = около 11 км.


35


Это указывает на огромную силу электромагнита, потому что притягательное действие магнитов значительно ослабевает с увеличением расстояния между полюсом и притягиваемым телом. Подковообразный магнит, удерживающий при непосредственном соприкосновении груз в сотню граммов, уменьшает свою подъемную силу вдвое, когда между ним и грузом вводится листок бумаги. Вот почему концы магнита обычно не покрывают краской, хотя она и предохранила бы их от ржавчины.


36


Написано в 1774 г., когда электромагниты еще не были известны.


37


Полной невидимости совершенно прозрачного предмета мы можем добиться, если окружим его стенками, рассеивающими свет строго равномерно. Глаз, который смотрит внутрь через небольшое боковое отверстие, получит тогда от всех точек предмета как раз столько света, как если бы предмета вовсе не существовало: никакие блики или тени не обнаружат его присутствия.

Вот как может быть обставлен подобный опыт. Воронку, диаметром в полметра, из белого картона устанавливают на некотором расстоянии от 25- свечовой электрической лампочки. Снизу вводят стеклянную палочку, по возможности строго вертикально. Малейшее отклонение от вертикального положения делает то, что палочка кажется темной по оси и светлой по краям либо же, наоборот, светлой по оси и темной по краям. Обе картины освещения переходят одна в другую при легком изменении положения палочки. После ряда проб можно добиться совершенно равномерного освещения палочки, – и тогда она для глаза, смотрящего сквозь узкое (не шире 1 см) боковое отверстие, исчезает совершенно. При такой обстановке опыта достигается полная невидимость стеклянного предмета, несмотря на то, что его преломляющая способность сильно отличается от преломляющей способности воздуха.

Другой прием, с помощью которого можно сделать невидимым, например, кусок граненого стекла, состоит в том, чтобы поместить его в ящик, покрытый изнутри светящейся краской.


38


Чтобы вызвать какое-нибудь ощущение у животного, лучи света должны произвести в его глазу некоторые, хотя бы самые незначительные, изменения, т. е. выполнить определенную работу. Для этого лучи должны хотя бы в некоторой части задерживаться глазом. Но совершенно прозрачный глаз, конечно, не может задерживать лучи: иначе он не был бы прозрачен. У всех животных, которые защищаются тем, что они прозрачны, глаза, если они имеются, не бывают вполне прозрачны. «Непосредственно под поверхностью моря, – пишет известный океанограф Меррей, – большинство животных прозрачно и бесцветно; когда их извлекают сетью, их можно отличить только по маленьким черным глазам , так как кровь их лишена гемоглобина (красящего вещества) и совершенно прозрачна».


39


Возможно, что романист допустил этот существенный промах вполне сознательно. Известно, к какому литературному приему прибегает обычно Уэллс в своих фантастических произведениях: он заслоняет для читателей основной дефект фантастического построения обилием реалистических подробностей. В предисловии к американскому изданию его фантастических романов он прямо пишет: «Как только магический фокус проделан, нужно все прочее показать правдоподобным и обыденным. Надеяться нужно не на силу логических доводов, а на иллюзию, создаваемую искусством».

 

 

 

 

 

 

 

содержание   ..  22  23  24  25   ..