Большая книга занимательных наук (Яков Перельман) - часть 21

 

  Главная      Учебники - Разные     Большая книга занимательных наук (Яков Перельман)

 

поиск по сайту            правообладателям  

 

 

 

 

 

 

 



 

содержание   ..  19  20  21  22   ..

 

 

Большая книга занимательных наук (Яков Перельман) - часть 21

 

 


Ранее чем в 93/4 часа утра новость будет уже известна всему 50- тысячному населению города.

Еще быстрее распространится слух, если каждый, услышавший новость, передаст о ней 10 другим. Тогда получим такой любопытный, быстро возрастающий, ряд чисел:

в 8 ч. . . . . . = 1,

«8000/4». . . 1 + 10 = 11,

«8000/2». . . 11 + 100 = 111,

«83/4». . . 111 + 1000 = 1111,

«9». . . 1111 + 10000 = 11111.


Следующее число этого ряда, очевидно, 111 111 – это показывает, что весь город узнает про новость уже в самом начале 10-го часа утра. Слух разнесется почти в один час!


Лавина дешевых велосипедов


В дореволюционные годы были у нас, – а за рубежом, вероятно, и теперь еще находятся, – предприниматели, которые прибегают к довольно оригинальному способу сбывать свой товар, обычно посредственного качества. Начинали с того, что в распространенных газетах и журналах печатали рекламу такого содержания:


...


ВЕЛОСИПЕД ЗА 10 РУБЛЕЙ!


Каждый может приобрести в собственность велосипед, затратив только 10 рублей.

Пользуйтесь редким случаем. ВМЕСТО 50 РУБЛЕЙ – 10 РУБ.

Условия покупки высылаются бесплатно


Немало людей, конечно, соблазнялись заманчивым объявлением и просили прислать условия необычной покупки. В ответ на запрос они получали подробный проспект, из которого узнавали следующее.

За 10 руб. высылался пока не самый велосипед, а только 4 билета, которые надо было сбыть по 10 руб. своим четверым знакомым. Собранные таким образом 40 руб. следовало отправить фирме, и тогда лишь прибывал велосипед; значит, он обходился покупателю действительно всего в 10 руб., остальные 40 руб. уплачивались ведь не из его кармана. Правда, кроме уплаты 10 руб. наличными деньгами, приобретающий велосипед имел некоторые хлопоты по продаже билетов среди знакомых, – но этот маленький труд в счет не шел.

Что же это были за билеты? Какие блага приобретал их покупатель за 10 руб.? Он получал право обменять их у фирмы на 5 таких же билетов; другими словами, он приобретал возможность собрать 50 руб. для покупки велосипеда, который ему обходился, следовательно, только в 10 руб., т. е. в стоимость билета. Новые обладатели билетов в свою очередь получали от фирмы по 5 билетов для дальнейшего распространения, и т. д.

На первый взгляд во всем этом не было обмана. Обещание рекламного объявления исполнялось; велосипед в самом деле обходился покупателям всего лишь в 10 руб. Да и фирма не оказывалась в убытке, – она получала за свой товар полную его стоимость.

А между тем вся затея – несомненное мошенничество. «Лавина», как называли эту аферу у нас, или «снежный ком», как величали ее французы, вовлекала в убыток тех многочисленных ее участников, которым не удавалось сбыть дальше купленные ими билеты. Они-то и уплачивали фирме разницу между 50-рублевой стоимостью велосипедов и 10-рублевой

платой за них. Рано ли, поздно ли, но неизбежно наступал момент, когда держатели билетов не могли найти охотников их приобрести. Что так должно непременно случиться, вы поймете, дав себе труд проследить с карандашом в руке за тем, как стремительно возрастает число людей, вовлекаемых в лавину.

Первая группа покупателей, получившая свои билеты прямо от фирмы, находит покупателей обычно без особого труда; каждый член этой группы снабжает билетами четверых новых участников.

Эти четверо должны сбыть свои билеты 4 x 5, т. е. 20 другим, убедив их в выгодности такой покупки. Допустим, что это удалось, и 20 покупателей завербовано.

Лавина движется дальше: 20 новых обладателей билетов должны наделить ими 20 х 5 = 100 других.

До сих пор каждый из «родоначальников» лавины втянул в нее 1 + 4 + 20 + 100 = 125 человек,

из которых 25 имеют по велосипеду, а 100 – только надежду его получить, уплатив за эту надежду по 10 руб. Теперь лавина выходит уже из тесного круга знакомых между собою людей и начинает растекаться по городу, где ей становится, однако, все труднее и труднее отыскивать свежий материал. Сотня последних обладателей билетов должна снабдить такими же билетами 500 граждан, которым в свою очередь придется завербовать 2500 новых жертв. Город быстро наводняется билетами, и отыскивать охотников приобрести их становится весьма нелегким делом.

Вы видите, что число людей, втянутых в лавину, растет по тому же самому закону, с которым мы встретились, когда беседовали о распространении слухов. Вот числовая пирамида, которая в этом случае получается:

image

Если город велик и все его население, способное сидеть на велосипеде, составляет 62000/2 тысячи, то в рассматриваемый момент, т. е. на 8 «туре», лавина должна иссякнуть. Все оказались втянутыми в нее. Но обладает велосипедами только пятая часть, у остальных же 4/5 имеются на

руках билеты, которые некому сбыть.

Для города с более многочисленным населением, даже для современного столичного центра, насчитывающего миллионы жителей, момент насыщения наступит всего несколькими турами позднее, потому что числа лавины растут с неимоверной быстротой. Вот следующие ярусы нашей числовой пирамиды:

312 500

1 562 500

7 812 500

39 062 500

image

На 12-м туре лавина, как видите, могла бы втянуть в себя население целого государства. И 4/5 этого населения будет обмануто устроителями лавины. Подведем итог тому, чего собственно достигает фирма устройством лавины. Она принуждает 4/5 населения оплачивать товар, приобретаемый остальною 000/5 частью населения; иными словами – заставляет четырех граждан облагодетельствовать пятого. Совершенно безвозмездно приобретает фирма, кроме того, многочисленный штат усердных распространителей ее товара. Правильно охарактеризовал эту аферу один из наших писателей[74] как «лавину взаимного объегоривания». Числовой великан, невидимо скрывающийся за этой затеей, наказывает тех, кто не умеет воспользоваться арифметическим расчетом для ограждения собственных интересов от посягательства аферистов.


Награда


Вот что, по преданию, произошло много веков назад в Древнем Риме (рассказ в вольной передаче заимствован из старинной латинской рукописи, принадлежащей одному из частных книгохранилищ Англии).

1.

Полководец Теренций по приказу императора совершил победоносный поход и с трофеями вернулся в Рим. Прибыв в столицу, он просил допустить его к императору.

Император ласково принял полководца, сердечно благодарил его за военные услуги империи и обещал в награду дать высокое положение в сенате.

Но Теренцию нужно было не это. Он возразил:

  • Много побед одержал я, чтобы возвысить твое могущество, государь, и окружить имя твое славой. Я не страшился смерти, и будь у меня не одна,

    а много жизней, я все их принес бы тебе в жертву. Но я устал воевать; прошла молодость, кровь медленнее бежит в моих жилах. Наступила пора отдохнуть в доме моих предков и насладиться радостями домашней жизни.

  • Чего желал бы ты от меня, Теренций? – спросил император.

  • Выслушай со снисхождением, государь! За долгие годы военной жизни, изо дня в день обагряя меч свой кровью, я не успел устроить себе денежного благополучия. Я беден, государь…

  • Продолжай, храбрый Теренций.

  • Если хочешь даровать награду скромному слуге твоему, – продолжал ободренный полководец, – то пусть щедрость твоя поможет мне дожить мирно в достатке годы подле домашнего очага. Я не ищу почестей и высокого положения во всемогущем сенате. Я желал бы удалиться от власти и от жизни общественной, чтобы отдохнуть на покое. Государь, дай мне денег для обеспечения остатка моей жизни.

    Император – гласит предание – не отличался широкой щедростью. Он любил копить деньги для себя и скупо тратил их на других. Просьба полководца заставила его задуматься.

  • Какую же сумму, Теренций, считал бы ты для себя достаточной? – спросил он.

  • Миллион динариев, государь.

    Снова задумался император. Полководец ждал, опустив голову. Наконец император заговорил:

  • Доблестный Теренций! Ты великий воин, и славные подвиги твои заслужили щедрой награды. Я дам тебе богатство. Завтра в полдень ты услышишь здесь мое решение.

Теренций поклонился и вышел.


2.

На следующий день в назначенный час полководец явился во дворец императора.

ее к моим ногам. На другой день вновь пойдешь в казначейство, возьмешь монету, равную 2 брассам, и положишь здесь рядом с первой. В третий день принесешь монету, стоящую 4 брасса, в четвертый – стоящую 8 брассов, в пятый – 16, и так далее, все удваивая стоимость монеты. Я прикажу ежедневно изготовлять для тебя монеты надлежащей ценности. И пока хватит у тебя сил поднимать монеты, будешь ты выносить их из моего казначейства. Никто не вправе помогать тебе; ты должен пользоваться только собственными силами. И когда заметишь, что не можешь уже больше поднять монету – остановись: уговор наш кончится, но все монеты, которые удалось тебе вынести, останутся твоими и послужат тебе наградой.

Жадно впивал Теренций каждое слово, сказанное императором.

Ему чудилось огромное множество монет, одна больше другой, которые вынесет он из государственного казначейства.

– Я доволен твоею милостью, государь, – ответил он с радостной улыбкой. – Поистине щедра награда твоя!


3.

Начались ежедневные посещения Теренцием государственного казначейства. Оно помещалось невдалеке от приемной залы императора, и первые переходы с монетами не стоили Теренцию никаких усилий.

image

В первый день вынес он из казначейства всего один брасс. Это небольшая монета, 21 мм в поперечнике и 5 г весом[76].

Легки были также второй, третий, четвертый, пятый и шестой переходы, когда полководец выносил монеты двойного, тройного, 8- кратного, 16-кратного и 32-кратного веса.

image

Седьмая монета весила в наших современных мерах 320 граммов и имела в поперечнике 8000/2 см (точнее, 84 мм)[77].

На восьмой день Теренцию пришлось вынести из казначейства монету, соответствовавшую 128 единичным монетам. Она весила 640 г и была шириною около 10000/2 см.

На девятый день Теренций принес в императорскую залу монету в 256 единичных монет. Она имела 13 см в ширину и весила более 13/4 кг.

На двенадцатый день монета достигла почти 27 см в поперечнике и весила 10000/4 кг.

Император, до сих пор смотревший на полководца приветливо, теперь не скрывал своего торжества. Он видел, что сделано уже 12 переходов, а вынесено из казначейства всего только 2000 с небольшим медных монеток.

Тринадцатый день доставил храброму Теренцию монету, равную 4096 единичным монетам. Она имела около 34 см в ширину, а вес ее равнялся 20000/2 кг.

На четырнадцатый день Теренций вынес из казначейства тяжелую монету в 41 кг весом и около 42 см шириною.

  • Не устал ли ты, мой храбрый Теренций? – спросил его император, сдерживая улыбку.

  • Нет, государь мой, – хмуро ответил полководец, стирая пот со лба. Наступил пятнадцатый день. Тяжела была на этот раз ноша Теренция.

Медленно брел он к императору, неся огромную монету, составленную из 16 384 единичных монет. Она достигала 53 см в ширину и весила 80 кг – вес рослого воина.

На шестнадцатый день полководец шатался под ношей, лежавшей на его спине. Это была монета, равная 32 768 единичным монетам и весившая 164 кг; поперечник ее достигал 67 см.

Полководец был обессилен и тяжело дышал. Император улыбался… Когда Теренций явился в приемную залу императора на следующий

день, он был встречен громким смехом. Теренций не мог уже нести свою ношу в руках, а катил ее впереди себя. Монета имела в поперечнике 84 см и весила 328 кг. Она соответствовала весу 65 536 единичных монет.

Восемнадцатый день был последним днем обогащения Теренция. В этот день закончились его посещения казначейства и странствования с ношей в приемную залу императора. Ему пришлось доставить на этот раз монету, соответствовавшую 131 072 единичным монетам. Она имела более метра в поперечнике и весила 655 кг. Пользуясь своим копьем как рычагом, Теренций с величайшим напряжением сил едва вкатил ее в залу. С грохотом упала исполинская монета к ногам императора.

Теренций был совершенно измучен.

  • Не могу больше… Довольно, – прошептал он.

    Император с трудом подавил смех удовольствия, видя полный успех своей хитрости. Он приказал казначею исчислить, сколько всего брассов вынес Теренций в приемную залу.

    Казначей исполнил поручение и сказал:

  • Государь, благодаря твоей щедрости победоносный воитель Теренций получил в награду 262 143 брасса.

Итак, скупой император дал полководцу около 20-й части той суммы в миллион динариев, которую просил Теренций.

Проверим расчет казначея, а заодно и вес монет. Теренций вынес: в 1-й день. . 1 брасс весом. . 5 г

на 2». . . 2 брасса». . . 10»

«3». . . 4»». . . 20»

«4». . . 8»». . . 40»

«5». . . 16»». . . 80»

«6». . . 32»». . . 160»

«7». . . 64»». . . 320»

«8». . 128»». . . 640»

«9». . 256»». . 1 кг 280»

«10». . 512»». . 2» 560»

«11». . 1024»». . 5» 120»

«12». . 2048»». 10» 240»

«13». . 4096»». 20» 480»

«14». . 8192»». 40» 960»

«15». . 16 384»». 81» 920»

«16». . 32 768»». 163» 840»

«17». . 65 536»». 327» 680»

«18». . 131 072»». 655» 360»


Мы уже знаем, как можно просто подсчитать сумму чисел таких рядов: для второго столбца она равна 262 143, согласно правилу рассмотренному ранее. Теренций просил у императора миллион динариев, т. е. 5 000 000 брассов. Значит, он получил меньше просимой суммы в 5 000

000: 262 143 = 19 раз.



Легенда о шахматной доске


Шахматы – одна из самых древних игр. Она существует уже многие века, и неудивительно, что с нею связаны различные предания, правдивость которых, за давностью времени, невозможно проверить.

Одну из подобных легенд я и хочу рассказать. Чтобы понять ее, не нужно вовсе уметь играть в шахматы: достаточно знать, что игра происходит на доске, разграфленной на 64 клетки (попеременно черные и белые).

1.

Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений.

Узнав, что она изобретена одним из его подданных, царь приказал его

позвать, чтобы лично наградить за удачную выдумку.

Изобретатель, его звали Сета, явился к трону повелителя. Это был скромно одетый ученый, получавший средства к жизни от своих учеников.

  • Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал, – сказал царь.

    Мудрец поклонился.

  • Я достаточно богат, чтобы исполнить самое смелое твое пожелание, – продолжал царь. – Назови награду, которая тебя удовлетворит, и ты получишь ее.

    Сета молчал.

  • Не робей, – ободрил его царь. – Выскажи свое желание. Я не пожалею ничего, чтобы исполнить его.

  • Велика доброта твоя, повелитель. Но дай срок обдумать ответ.

    Завтра, по зрелом размышлении, я сообщу тебе мою просьбу.

    Когда на другой день Сета снова явился к ступеням трона, он удивил царя беспримерной скромностью своей просьбы.

  • Повелитель, – сказал Сета, – прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно.

  • Простое пшеничное зерно? – изумился царь.

  • Да, повелитель. За вторую клетку прикажи выдать 2 зерна, за третью 4, за четвертую – 8, за пятую – 16, за шестую – 32…

  • Довольно, – с раздражением прервал его царь. – Ты получишь свои зерна за все 64 клетки доски, согласно твоему желанию: за каждую вдвое больше против предыдущей. Но знай, что просьба твоя недостойна моей щедрости. Прося такую ничтожную награду, ты непочтительно пренебрегаешь моею милостью. Поистине, как учитель, ты мог бы показать лучший пример уважения к доброте своего государя. Ступай. Слуги мои вынесут тебе твой мешок с пшеницей.

Сета улыбнулся, покинул залу и стал дожидаться у ворот дворца.


2.

За обедом царь вспомнил об изобретателе шахмат и послал узнать, унес ли уже безрассудный Сета свою жалкую награду.

– Повелитель, – был ответ, – приказание твое исполняется.

Придворные математики исчисляют число следуемых зерен.

Царь нахмурился. Он не привык, чтобы повеления его исполнялись так медлительно.

Вечером, отходя ко сну, царь еще раз осведомился, давно ли Сета со своим мешком пшеницы покинул ограду дворца.

  • Повелитель, – ответили ему, – математики твои трудятся без устали и надеются еще до рассвета закончить подсчет.

  • Почему медлят с этим делом? – гневно воскликнул царь. – Завтра, прежде чем я проснусь, все до последнего зерна должно быть выдано Сете. Я дважды не приказываю.

    Утром царю доложили, что старшина придворных математиков просит выслушать важное донесение.

    Царь приказал ввести его.

  • Прежде чем скажешь о твоем деле, – объявил Шерам, – я желаю услышать, выдана ли, наконец, Сете та ничтожная награда, которую он себе назначил.

  • Ради этого я и осмелился явиться перед тобой в столь ранний час, – ответил старик. – Мы добросовестно исчислили все количество зерен, которое желает получить Сета. Число это так велико…

  • Как бы велико оно ни было, – надменно перебил царь, житницы мои не оскудеют. Награда обещана и должна быть выдана…

  • Не в твоей власти, повелитель, исполнять подобные желания. Во всех амбарах твоих нет такого числа зерен, какое потребовал Сета. Нет его и в житницах целого царства. Не найдется такого числа зерен и на всем пространстве Земли. И если желаешь непременно выдать обещанную награду, то прикажи превратить земные царства в пахотные поля, прикажи осушить моря и океаны, прикажи растопить льды и снега, покрывающие далекие северные пустыни. Пусть все пространство их сплошь будет засеяно пшеницей. И все то, что родится на этих полях, прикажи отдать Сете. Тогда он получит свою награду.

    С изумлением внимал царь словам старца.

  • Назови же мне это чудовищное число, – сказал он в раздумье.

    image

  • Восемнадцать квинтильонов четыреста сорок шесть квадрильонов семьсот сорок четыре триллиона семьдесят три биллиона[78] семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать, о повелитель!


3.

Такова легенда. Действительно ли было то, что здесь рассказано, неизвестно, – но что награда, о которой говорит предание, должна была выразиться именно таким числом, в этом вы сами можете убедиться терпеливым подсчетом.

Начав с единицы, нужно сложить числа: 1, 2, 4, 8 и т. д. Результат 63-го удвоения покажет, сколько причиталось изобретателю за 64-ю клетку

доски. Поступая, как было объяснено выше, мы без труда найдем всю сумму следуемых зерен, если удвоим последнее число и отнимем одну единицу. Значит, подсчет сводится лишь к перемножению 64 двоек:

2 х 2 х 2 х 2 х 2 х 2 х и т. д. (64 раза).

Для облегчения выкладок разделим эти 64 множителя на 6 групп по 10 двоек в каждой и одну последнюю группу из 4 двоек. Произведение 10 двоек, как легко убедиться, равно 1024, а 4 двоек – 16. Значит, искомый результат равен

1024 х 1024 х 1024 х 1024 х 1024 х 1024 х 16.

Перемножив 1024 х 1024, получим 1 048 576. Теперь остается найти

1 048 576 х 1 048 576 х 1 048 576 х 16,

отнять от результата одну единицу – и нам станет известно искомое число зерен:

18 446 744 073 709 551 615.

Если желаете представить себе всю огромность этого числового великана, прикиньте, какой величины амбар потребовался бы для вмещения подобного количества зерен. Известно, что кубический метр пшеницы вмещает около 15 миллионов зерен. Значит, награда шахматного изобретателя должна была бы занять объем примерно в 12 000 000 000 000 куб. м, или 12 000 куб. км. При высоте амбара 4 м и ширине 10 м длина его должна была бы простираться на 300 000 000 м, т. е. вдвое дальше, чем от Земли до Солнца!..

Индусский царь не в состоянии был выдать подобной награды. Но он легко мог бы, будь он силен в математике, освободиться от столь обременительного долга. Для этого нужно было лишь предложить Сете самому отсчитать себе зерно за зерном всю причитавшуюся ему пшеницу.

image

В самом деле: если бы Сета, принявшись за счет, вел его непрерывно день и ночь, отсчитывая по зерну в секунду, он в первые сутки отсчитал бы всего 86 400 зерен. Чтобы отсчитать миллион зерен, понадобилось бы не менее 10 суток неустанного счета. Один кубический метр пшеницы он отсчитал бы примерно в полгода: это дало бы ему всего 5 четвертей[79]. Считая непрерывно в течение 10 лет, он отсчитал бы себе не более 100 четвертей. Вы видите, что, посвятив счету даже весь остаток своей жизни, Сета получил бы лишь ничтожную часть потребованной им награды.


Перекладывание монет

image

В детстве старший брат показал мне, помню, занимательную игру с монетами. Поставив рядом три блюдца, он положил в крайнее блюдце стопку из 5 монет: вниз рублевую, на нее – 50-копеечную монету, выше – 20-копеечную, далее – 15-копеечную, на самый верх – 10-копеечную[80].

  • Нужно перенести эти монеты на третье блюдце, соблюдая следующие три правила. Первое правило: за один раз перекладывать только одну монету. Второе: никогда не класть большей монеты на меньшую. Третье: можно временно класть монеты и на среднюю тарелку, соблюдая оба правила, но к концу игры все монеты должны очутиться на третьем блюдце в первоначальном порядке. Правила, как видишь, не сложные. А теперь приступай к делу.

    Я принялся перекладывать. Положил 10-копеечную монету на третье блюдце, 15-копеечную на среднее и запнулся. Куда положить 20- копеечную? Ведь она крупнее и 10-копеечной, и 15-копеечной.

  • Ну что же? – выручил меня брат. – Клади 10-копеечную на среднее блюдце, поверх 15-копеечной. Тогда для 20-копеечной освободится третье блюдце.

    Я так и сделал. Но дальше – новое затруднение. Куда положить 50- копеечную монету? Впрочем, я скоро догадался: перенес сначала 10- копеечную на первое блюдце, 15-копеечную на третье и затем 10- копеечную тоже на третье. Теперь 50-копеечную монету можно положить на свободное среднее блюдце. Дальше, после длинного ряда перекладываний, мне удалось перенести также рублевую монету с первого блюдца и, наконец, собрать всю кучку монет на третьем блюдце.

  • Сколько же ты проделал всех перекладываний? – спросил брат, одобрив мою работу.

  • Не считал.

  • Давай сосчитаем. Интересно же знать, каким наименьшим числом ходов можно достигнуть цели. Если бы стопка состояла не из 5, а только из 2 монет —

    15-копеечной и 10-копеечной, то сколько понадобилось бы ходов?

  • Три: 10-копеечную на среднее блюдце, 15-копеечную – на третье и затем 10-копеечную на третье блюдце.

  • Правильно. Прибавим теперь еще монету – 20-копеечную – и сосчитаем, сколькими ходами можно перенести стопку из этих монет. Поступаем так: сначала последовательно переносим меньшие две монеты на среднее блюдце. Для этого нужно, как мы уже знаем, 3 хода. Затем перекладываем 20-копеечную монету на свободное третье блюдце – 1 ход. А тогда переносим обе монеты со среднего блюдца тоже на третье – еще 3

    хода. Итого всех ходов 3 + 1 + 3 = 7.

  • Для четырех монет число ходов позволь мне сосчитать самому. Сначала переношу 3 меньшие монеты на среднее блюдце – 7 ходов; потом 50-копеечную на третье блюдце – 1 ход и затем снова три меньшие монеты на третье блюдце – еще 7 ходов. Итого

    7 + 1 + 7= 15.

  • Отлично. А для пяти монет?

  • 15 + 1 + 15 = 31, – сразу сообразил я.

  • Ну вот ты и уловил способ вычисления. Но я покажу тебе, как можно его еще упростить. Заметь, что полученные нами числа 3, 7,15, 31 – все представляют собой двойку, умноженную на себя один или несколько раз, но без единицы. Смотри.

    И брат написал табличку: 3 = 2 x 2–1

    7=2 х 2 х 2–1

    15 = 2 x 2 x 2 x 2–1

    31 = 2 x 2 x 2 x 2 x 2–1.

  • Понимаю: сколько монет перекладывается, столько раз берется двойка множителем, а затем отнимается единица. Я мог бы теперь вычислить число ходов для любой стопки монет. Например, для 7 монет:

    2 х 2 х 2 х 2 х 2 х 2 х 2–1 = 128-1 = 127.

  • Вот ты и постиг эту старинную игру. Одно только практическое правило надо тебе еще знать: если в стопке число монет нечетное, то первую монету перекладывают на третье блюдце; если четное – то на среднее блюдце.

  • Ты сказал: старинная игра. Разве не сам ты ее придумал?

  • Нет, я только применил ее к монетам. Игра очень древнего происхождения и зародилась, говорят, в Индии. Существует интересная легенда, связанная с этой игрой. В городе Бенаресе будто бы имеется храм, в котором индусский бог Брама при сотворении мира установил три алмазные палочки и надел на одну из них 64 золотых кружка: самый большой внизу, а каждый следующий меньше предыдущего. Жрецы храма обязаны без устали, днем и ночью, перекладывать эти кружки с одной палочки на другую, пользуясь третьей как вспомогательной и соблюдая правила нашей игры: переносить за один раз только один кружок и не класть большего на меньший. Легенда говорит, что когда будут перенесены все 64 кружка, наступит конец мира.

  • О, значит, мир давно уже должен был погибнуть, если верить этому

    преданию!

  • Ты думаешь, кажется, что перенесение 64 кружков не должно отнять много времени?

  • Конечно. Делая каждую секунду один ход, можно ведь в час успеть проделать 3600 перенесений.

  • Ну и что же?

  • А в сутки – около ста тысяч. В десять дней – миллион ходов.

    Миллионом же ходов можно, я уверен, перенести хоть тысячу кружков.

  • Ошибаешься. Чтобы перенести всего 64 кружка, нужно уже круглым счетом 500 миллиардов лет!

  • Но почему это? Ведь число ходов равно только произведению 64 двоек без единицы, а это составляет… Погоди, я сейчас перемножу!

  • Прекрасно. А пока будешь умножать, я успею сходить по своим делам.

И брат ушел, оставив меня погруженным в выкладки. Я нашел сначала произведение 16 двоек, затем умножал этот результат – 65 536 – сам на себя, а то, что получилось, – снова на себя. Потом не забыл отнять единицу.

У меня получилось такое число: 18 446 744 073 709 551 615.

Брат, значит, был прав…

 

 

 

 

 

 

 

содержание   ..  19  20  21  22   ..