Большая книга занимательных наук (Яков Перельман) - часть 3

 

  Главная      Учебники - Разные     Большая книга занимательных наук (Яков Перельман)

 

поиск по сайту            правообладателям  

 

 

 

 

 

 

 



 

 

содержание   ..  1  2  3  4   ..

 

 

Большая книга занимательных наук (Яков Перельман) - часть 3

 

 


Аккумулятор Уфимцева


Насколько легко впасть в ошибку, если о «вечном» движении судить только по внешнему виду, показывал так называемый аккумулятор механической энергии Уфимцева. Курский изобретатель А. Г. Уфимцев создал новый тип ветросиловой станции с дешевым «инерционным» аккумулятором, устроенным по типу махового колеса. В 1920 г. Уфимцевым построена была модель его аккумулятора в виде диска, вращающегося на вертикальной оси с шариковым подшипником, в кожухе, из которого выкачан воздух. Будучи разогнан до 20 ООО оборотов в минуту, диск сохранял вращение в течение пятнадцати суток! Глядя на вал такого диска, целыми днями вращающийся без притока энергии извне, поверхностный наблюдатель мог заключить, что перед ним реальное осуществление вечного движения.


«Чудо и не чудо»

Безнадежная погоня за «вечным» двигателем многих людей сделала глубоко несчастными. Я знал рабочего, тратившего все свои заработки и сбережения на изготовление модели «вечного» двигателя и дошедшего вследствие этого до полной нищеты. Он сделался жертвой своей неосуществимой идеи. Полуодетый, всегда голодный, он просил у всех дать ему средства для постройки «окончательной модели», которая уже

«непременно будет двигаться». Грустно было сознавать, что этот человек подвергался лишениям единственно лишь вследствие плохого знания элементарных основ физики.

Любопытно, что если поиски «вечного» двигателя всегда оказывались бесплодными, то, напротив, глубокое понимание его невозможности приводило нередко к плодотворным открытиям.

Прекрасным примером может служить тот способ, с помощью которого Стевин, замечательный голландский ученый конца XVI и начала XVII века, открыл закон равновесия сил на наклонной плоскости. Этот математик заслуживает гораздо большей известности, нежели та, какая выпала на его долю, потому что он сделал много важных открытий, которыми мы теперь постоянно пользуемся: изобрел десятичные дроби, ввел в алгебру употребление показателей, открыл гидростатический закон, впоследствии вновь открытый Паскалем.

Закон равновесия сил на наклонной плоскости он открыл, не опираясь на правило параллелограмма сил, единственно лишь с помощью чертежа, который здесь воспроизведен (рис. 24). Через трехгранную призму перекинута цепь из 14 одинаковых шаров. Что произойдет с этой цепью? Нижняя часть, свисающая гирляндой, уравновешивается сама собой. Но остальные две части цепи – уравновешивают ли друг друга? Иными словами: правые два шара уравновешиваются ли левыми четырьмя? Конечно, да, – иначе цепь сама собой вечно бежала бы справа налево, потому что на место соскользнувших шаров всякий раз помещались бы другие и равновесие никогда бы не восстанавливалось. Но так как мы знаем, что цепь, перекинутая указанным образом, вовсе не движется сама собой, то, очевидно, два правых шара действительно уравновешиваются четырьмя левыми. Получается словно чудо: два шара тянут с такой же силой, как и четыре.


image

Рис. 24. «Чудо и не чудо»

Из этого мнимого чуда Стевин вывел важный закон механики. Он рассуждал так. Обе цепи – и длинная и короткая – весят различно: одна цепь тяжелее другой во столько же раз, во сколько раз длинная грань призмы длиннее короткой. Отсюда вытекает, что и вообще два груза, связанных шнуром, уравновешивают друг друга на наклонных плоскостях, если веса их пропорциональны длинам этих плоскостей.

В частном случае, когда короткая плоскость отвесна, мы получаем известный закон механики: чтобы удержать тело на наклонной плоскости, надо действовать в направлении этой плоскости силой, которая во столько раз меньше веса тела, во сколько раз длина плоскости больше ее высоты.

Так, исходя из мысли о невозможности вечного двигателя, сделано было важное открытие в механике.


Еще «вечные двигатели»


На рис. 25 вы видите тяжелую цепь, перекинутую через колеса так, что правая ее половина при всяком положении должна быть длиннее левой.

Следовательно, – рассуждал изобретатель, – она должна перевешивать и безостановочно падать вниз, приводя в движение весь механизм. Так ли это?

Конечно, нет. Мы сейчас видели, что тяжелая цепь может уравновешиваться легкой, если силы увлекают их под разными углами. В рассматриваемом механизме левая цепь натянута отвесно, правая же

расположена наклонно, а потому она, хотя и тяжелее, все же не перетягивает левую. Ожидаемого «вечного» движения здесь получиться не может.

image

Рис. 25. Вечный ли это двигатель?

Пожалуй, остроумнее всех поступил некий изобретатель «вечного» двигателя, показывавший свое изобретение в шестидесятых годах XIX века на Парижской выставке. Двигатель состоял из большого колеса с перекатывавшимися в нем шарами, причем изобретатель утверждал, что никому не удастся задержать движение колеса. Посетители один за другим пытались остановить колесо, – но оно немедленно же возобновляло вращение, как только отнимали руки. Никто не догадывался, что колесо вращается именно благодаря стараниям посетителей остановить его; толкая его назад, они тем самым заводили пружину искусно скрытого механизма…


«Вечный двигатель» времен Петра I


Сохранилась оживленная переписка, которую вел в 1715–1722 гг. Петр I по поводу приобретения в Германии вечного двигателя, придуманного неким доктором Орфиреусом. Изобретатель, прославившийся на всю Германию своим «самодвижущимся колесом», соглашался продать царю эту машину лишь за огромную сумму. Ученый библиотекарь Шумахер, посланный Петром на Запад для собирания редкостей, так доносил царю о притязаниях Орфиреуса, с которым он вел переговоры о покупке:

image

«Последняя речь изобретателя была: на одной стороне положите 100 000 ефимков[6], а на другой я положу машину».

О самой же машине изобретатель, по словам библиотекаря, говорил, что она «верна есть, и никто же оную похулить может, разве из злонравия, и весь свет наполнен злыми людьми, которым верить весьма невозможно».

В январе 1725 г. Петр собирался в Германию, чтобы лично осмотреть

«вечный двигатель», о котором так много говорили, но смерть помешала царю выполнить его намерение.

Кто же был этот таинственный доктор Орфиреус и что представляла собой его «знатная машина»? Мне удалось разыскать сведения и о том и о другой.

Настоящая фамилия Орфиреуса была Беслер. Он родился в Германии в 1680 г., изучал богословие, медицину, живопись и, наконец, занялся изобретением «вечного» двигателя. Из многих тысяч таких изобретателей Орфиреус – самый знаменитый и, пожалуй, самый удачливый. До конца дней своих (умер в 1745 г.) он жил в довольстве на доходы, которые получал, показывая свою машину.

На прилагаемом рис. 26, заимствованном из старинной книги, изображена машина Орфиреуса, какой она была в 1714 г. Вы видите большое колесо, которое будто бы не только вращалось само собой, но и поднимало при этом тяжелый груз на значительную высоту

Слава о чудесном изобретении, которое ученый доктор показывал сначала на ярмарках, быстро разнеслась по Германии, и Орфиреус вскоре приобрел могущественных покровителей. Им заинтересовался польский король, затем ландграф Гессен-Кассельский. Последний предоставил изобретателю свой замок и всячески испытывал машину.

Так, в 1717 г., 12 ноября, двигатель, находившийся в уединенной комнате, был приведен в действие; затем комната была заперта на замок, опечатана и оставлена под бдительным караулом двух гренадеров.

Четырнадцать дней никто не смел даже приближаться к комнате, где вращалось таинственное колесо. Лишь 26 ноября печати были сняты; ландграф со свитой вошел в помещение. И что же? Колесо все еще вращалось «с неослабевающей быстротой»… Машину остановили, тщательно осмотрели, затем опять пустили в ход. В течение сорока дней помещение снова оставалось запечатанным; сорок суток караулили у дверей гренадеры. И когда 4 января 1718 г. печати были сняты, экспертная комиссия нашла колесо в движении!

image

Рис. 26. Самодвижущееся колесо Орфиреуса, едва не приобретенное Петром I (со старинного рисунка)

Ландграф и этим не удовольствовался: сделан был третий опыт – двигатель запечатан был на целых два месяца. И все-таки по истечении срока его нашли движущимся!

Изобретатель получил от восхищенного ландграфа официальное удостоверение в том, что его «вечный двигатель» делает 50 оборотов в минуту, способен поднять 16 кг на высоту 1,5 м, а также может приводить в действие кузнечный мех и точильный станок. С этим удостоверением Орфиреус и странствовал по Европе. Вероятно, он получал порядочный доход, если соглашался уступить свою машину Петру I не менее чем за 100 000 рублей.

Весть о столь изумительном изобретении доктора Орфиреуса быстро разнеслась по Европе, проникнув далеко за пределы Германии. Дошла она

и до Петра, сильно заинтересовав падкого до всяких «хитрых махин» царя.

Петр обратил внимание на колесо Орфиреуса еще в 1715 г., во время своего пребывания за границей, и тогда же поручил А. И. Остерману, известному дипломату, познакомиться с этим изобретением поближе; последний вскоре прислал подробный доклад о двигателе, хотя самой машины ему не удалось видеть. Петр собирался даже пригласить Орфиреуса, как выдающегося изобретателя, к себе на службу и поручил запросить о нем мнение Христиана Вольфа, известного философа того времени (учителя Ломоносова).

Знаменитый изобретатель отовсюду получал лестные предложения. Великие мира сего осыпали его высокими милостями; поэты слагали оды и гимны в честь его чудесного колеса. Но были и недоброжелатели, подозревавшие здесь искусный обман. Находились смельчаки, которые открыто обвиняли Орфиреуса в плутовстве; предлагалась премия в 1000 марок тому, кто разоблачит обман. В одном из памфлетов, написанных с обличительной целью, мы находим рисунок, воспроизведенный здесь (рис. 27). Тайна «вечного двигателя», по мнению разоблачителя, кроется просто в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателей, на часть оси колеса, скрытую в стойке.

image

Рис. 27. Разоблачение секрета колеса Орфиреуса (со старинного рисунка)


Тонкое плутовство было раскрыто случайно только потому, что ученый доктор поссорился со своей женой и служанкой, посвященными в его тайну. Не случись этого, мы, вероятно, до сих пор оставались бы в недоумении относительно «вечного двигателя», наделавшего столько шума. Оказывается, «вечный двигатель» действительно приводился в движение спрятанными людьми, незаметно дергавшими за тонкий шнурок. Этими людьми были брат изобретателя и его служанка.

Разоблаченный изобретатель не сдавался; он упорно утверждал до самой смерти, что жена и прислуга донесли на него по злобе. Но доверие к нему было подорвано. Недаром он твердил посланцу Петра, Шумахеру, о людском злонравии и о том, что «весь свет наполнен злыми людьми, которым верить весьма невозможно».

Во времена Петра I славился в Германии еще и другой «вечный двигатель» – некоего Гертнера. Шумахер писал об этой машине следующее:

«Господина Гертнера Perpetuum mobile, которое я в Дрездене видел, состоит из холста, песком засыпанного, и в образе точильного камня сделанной машины, которая назад и вперед сама от себя движется, но, по словам господина инвентора (изобретателя), не может весьма велика сделаться». Без сомнения, и этот двигатель не достигал своей цели и в лучшем случае представлял собой замысловатый механизм с искусно скрытым, отнюдь не «вечным» живым двигателем. Вполне прав был Шумахер, когда писал Петру, что французские и английские ученые «ни во что почитают все оные перепетуи мобилес и сказывают, что оное против принципиев математических».


Чего не знали древние


Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.

Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рис. 28, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский

водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!

image

Рис. 28. Водопроводные сооружения древнего Рима в их первоначальном виде


Жидкости давят… вверх!


О том, что жидкости давят вниз, на дно сосуда, и вбок, на стенки, знают даже и те, кто никогда не изучал физики. Но что они давят и вверх, многие даже не подозревают. Обыкновенное ламповое стекло поможет убедиться, что такое давление действительно существует. Вырежьте из плотного картона кружок таких размеров, чтобы он закрывал отверстие

лампового стекла. Приложите его к краям стекла и погрузите в воду, как показано на рис. 29. Чтобы кружок не отпадал при погружении, его можно придерживать ниткой, протянутой через его центр, или просто прижать пальцем. Погрузив стекло до определенной глубины, вы заметите, что кружок хорошо держится и сам, не прижимаемый ни давлением пальца, ни натяжением нитки: его подпирает вода, надавливающая на него снизу вверх.

image

Рис. 29. Простой способ убедиться, что жидкость давит снизу вверх

Вы можете даже измерить величину этого давления вверх. Наливайте осторожно в стекло воду; как только уровень ее внутри стекла приблизится к уровню в сосуде, кружок отпадает. Значит, давление воды на кружок снизу уравновешивается давлением на него сверху столба воды, высота которого равна глубине кружка под водой. Таков закон давления жидкости на всякое погруженное тело. Отсюда, между прочим, происходит и та

«потеря» веса в жидкостях, о которой говорит знаменитый закон Архимеда. Имея несколько ламповых стекол разной формы, но с одинаковыми отверстиями, вы сможете проверить и другой закон, относящийся к жидкостям, именно: давление жидкости на дно сосуда зависит только от площади дна и высоты уровня, от формы же сосуда оно совершенно не зависит. Проверка будет состоять в том, что вы проделаете описанный сейчас опыт с разными стеклами, погружая их на одну и ту же глубину (для чего надо предварительно приклеить к стеклам бумажные полоски на

равной высоте).

image

Рис. 30. Давление жидкости на дно сосуда зависит только от площади дна и от высоты уровня жидкости. На рисунке показано, как проверить это правило


Вы заметите, что кружок всякий раз будет отпадать при одном и том же уровне воды в стеклах (рис. 30). Значит, давление водяных столбов различной формы одинаково, если только одинаковы их основание и высота. Обратите внимание на то, что здесь важна именно высота, а не длина, потому что длинный наклонный столб давит на дно совершенно так же, как и короткий отвесный столб одинаковой с ним высоты (при равных площадях оснований).


Что тяжелее?


На одну чашку весов поставлено ведро, до краев наполненное водой. На другую – точно такое же ведро, тоже полное до краев, но в нем плавает кусок дерева (рис. 31). Какое ведро перетянет?


image

Рис. 31. Оба ведра одинаковы и наполнены водой до краев; в одном плавает кусок дерева. Которое перетянет?

Я пробовал задавать эту задачу разным лицам и получал разноречивые ответы. Одни отвечали, что должно перетянуть то ведро, в котором плавает дерево, потому что «кроме воды, в ведре есть еще и дерево». Другие – что, наоборот, перетянет первое ведро, «так как вода тяжелее дерева».

Но ни то, ни другое не верно: оба ведра имеют одинаковый вес. Во втором ведре, правда, воды меньше, нежели в первом, потому что плавающий кусок дерева вытесняет некоторый ее объем. Но, по закону плавания, всякое плавающее тело вытесняет своей погруженной частью ровно столько жидкости (по весу), сколько весит все это тело. Вот почему весы и должны оставаться в равновесии.

Решите теперь другую задачу. Я ставлю на весы стакан с водой и рядом кладу гирьку. Когда весы уравновешены гирями на чашке, я роняю гирьку в стакан с водой. Что сделается с весами?

По закону Архимеда, гирька в воде становится легче, чем была вне воды. Можно, казалось бы, ожидать, что чашка весов со стаканом поднимется. Между тем в действительности весы останутся в равновесии. Как это объяснить?

Гирька в стакане вытеснила часть воды, которая оказалась выше первоначального уровня; вследствие этого увеличивается давление на дно сосуда, так что дно испытывает добавочную силу, равную потере веса гирькой.


Естественная форма жидкости

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него.

Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда «теряет» свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.

image

Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не всплывает и не тонет, а висит неподвижно[7] (рис. 32).

image

Рис. 32. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато)

Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.

Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет

от себя кольцо (рис. 33). Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

image

Рис. 33. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо


Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 34).


image

Рис. 34. Упрощение опыта Плато


За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75–85 °C легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой

image

шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли[8].



Почему дробь круглая?


image

Сейчас мы говорили о том, что всякая жидкость, освобожденная от действия тяжести, принимает свою естественную форму – шарообразную. Если вспомните о невесомости падающего тела и примете в расчет, что в самом начале падения можно пренебречь ничтожным сопротивлением воздуха[9], то сообразите, что падающие порции жидкости также должны принимать форму шаров. И действительно, падающие капли дождя имеют форму шариков. Дробинки – не что иное, как застывшие капли расплавленного свинца, который при заводском способе изготовления заставляют падать каплями с большой высоты в холодную воду: там они затвердевают в форме совершенно правильных шариков.

Так отлитая дробь называется «башенной», потому что при отливке ее заставляют падать с верхушки высокой «дроболитейной» башни (рис. 35). Башни дроболитейного завода – металлической конструкции и достигают в высоту 45 м; в самой верхней части располагается литейное помещение с плавильными котлами, внизу – бак с водой. Отлитая дробь подлежит еще сортировке и отделке. Капля расплавленного свинца застывает в дробинку еще во время падения; бак с водой нужен лишь для того, чтобы смягчить удар дробинки при падении и предотвратить искажение ее шарообразной формы. (Дробь диаметром больше 6 мм, так называемая картечь, изготовляется иначе: вырубкой из проволоки кусочков, потом обкатываемых.)


image

Рис. 35. Башня дроболитейного завода



«Бездонный» бокал


Вы налили воды в бокал до краев. Он полон. Возле бокала лежат булавки. Может быть, для одной-двух булавок еще найдется место в бокале? Попробуйте.

Начните бросать булавки и считайте их. Бросать надо осмотрительно: бережно погружайте острие в воду и затем осторожно выпускайте булавку из руки, без толчка или давления, чтобы сотрясением не расплескать воды. Одна, две, три булавки упали на дно – уровень воды остался неизменным. Десять, двадцать, тридцать булавок… Жидкость не выливается. Пятьдесят,

шестьдесят, семьдесят… Целая сотня булавок лежит на дне, а вода из бокала все еще не выливается (рис. 36).

image

Рис. 36. Поразительный опыт с булавками в бокале воды

Не только не выливается, но даже и не поднялась сколько-нибудь заметным образом над краями. Продолжайте добавлять булавки. Вторая, третья, четвертая сотня булавок очутилась в сосуде – и ни одна капля не перелилась через край; но теперь уже видно, как поверхность воды вздулась, возвышаясь немного над краями бокала. В этом вздутии вся разгадка непонятного явления. Вода мало смачивает стекло, если оно хотя немного загрязнено жиром; края же бокала – как и вся употребляемая нами посуда – неизбежно покрывается следами жира от прикосновения пальцев. Не смачивая краев, вода, вытесняемая булавками из бокала, образует выпуклость. Вздутие незначительно на глаз, но если дадите себе труд вычислить объем одной булавки и сравните его с объемом той выпуклости, которая слегка вздулась над краями бокала, вы убедитесь, что первый объем в сотни раз меньше второго, и оттого в «полном» бокале может найтись место еще для нескольких сотен булавок. Чем шире посуда, тем

больше булавок она способна вместить, потому что тем больше объем вздутия.

Сделаем для ясности примерный подсчет. Длина булавки – около 25 мм, толщина ее – полмиллиметра. Объем такого цилиндра нетрудно вычислить по известной формуле геометрии

image

; он равен 5 куб. мм.


Вместе с головкой объем булавки не превышает 5,5 куб. мм.

Теперь подсчитаем объем водяного слоя, возвышающегося над краями бокала. Диаметр бокала 9 см = 90 мм. Площадь такого круга равна около 6400 кв. мм. Считая, что толщина поднявшегося слоя только 1 мм, имеем для его объема 6400 куб. мм; это больше объема булавки в 1200 раз. Другими словами, «полный» бокал воды может принять еще свыше тысячи булавок! И действительно, осторожно опуская булавки, можно погрузить их целую тысячу, так что для глаз они словно займут весь сосуд и будут даже выступать над его краями, а вода все-таки еще не будет выливаться.


Любопытная особенность керосина


Кому приходилось иметь дело с керосиновой лампой, тот, вероятно, знаком с досадными неожиданностями, обусловленными одной особенностью керосина. Вы наполняете резервуар, вытираете его снаружи досуха, а через час находите его снова мокрым.

image

Дело в том, что вы недостаточно плотно завинтили горелку и керосин, стремясь растечься по стеклу, выполз на наружную поверхность резервуара. Если желаете оградить себя от подобных «сюрпризов», вы должны возможно плотнее завинчивать горелку[10].

Эта ползучесть керосина весьма неприятным образом ощущается на судах, машины которых потребляют керосин (или нефть). На подобных судах, если не приняты меры, положительно невозможно перевозить никакие товары, кроме тех же керосина или нефти, потому что жидкости эти, выползая из баков через незаметные скважины, растекаются не только по металлической поверхности самих баков, но проникают решительно всюду, даже в одежду пассажиров, сообщая всем предметам свой неистребимый запах. Попытки бороться с этим злом остаются часто

безрезультатными.

Английский юморист Джером не очень преувеличивал, когда в повести

«Трое в одной лодке» рассказывал о керосине следующее:

«Я не знаю вещества, более способного просачиваться всюду, чем керосин. Мы держали его на носу лодки, а он оттуда просочился на другой конец, пропитав своим запахом все, что попадалось ему по пути. Просачиваясь сквозь обшивку, он капал в воду, портил воздух и небо, отравлял жизнь. Иногда керосиновый ветер дул с запада, иногда с востока, а иной раз это был северный керосиновый ветер или, может быть, южный, но, прилетал ли он из снежной Арктики или зарождался в песках пустыни, он всегда достигал нас, насыщенный ароматом керосина. По вечерам это благоухание уничтожало прелесть заката, а лучи месяца положительно источали керосин… Привязав лодку у моста, мы пошли прогуляться по городу, но ужасный запах преследовал нас. Казалось, весь город был им пропитан». (На самом деле, конечно, пропитано было им лишь платье путешественников.)

Способность керосина смачивать наружную поверхность резервуаров подала повод к неправильному мнению, будто керосин может проникать сквозь металлы и стекло.


Копейка, которая в воде не тонет,


существует не только в сказке, но и в действительности. Вы убедитесь в этом, если проделаете несколько легко выполнимых опытов. Начнем с более мелких предметов – с иголок. Кажется невозможным заставить стальную иглу плавать на поверхности воды, а между тем это не так трудно сделать. Положите на поверхность воды лоскуток папиросной бумаги, а на него – совершенно сухую иголку. Теперь остается только осторожно удалить папиросную бумагу из-под иглы. Делается это так: вооружившись другой иглой или булавкой, слегка погружают края лоскутка в воду, постепенно подходя к середине; когда лоскуток весь намокнет, он упадет на дно, игла же будет продолжать плавать (рис. 37). При помощи магнита, подносимого к стенкам стакана на уровне воды, вы можете даже управлять движением этой плавающей на воде иглы.

При известной сноровке можно обойтись и без папиросной бумаги: захватив иглу пальцами посредине, уроните ее в горизонтальном положении с небольшой высоты на поверхность воды.


image

Рис. 37. Игла, плавающая на воде. Вверху – разрез иглы (2 мм толщины) и точная форма углубления на воде (увеличено в 2 раза). Внизу – способ заставить иглу плавать на воде с помощью лоскутка бумаги

Вместо иглы можно заставить плавать булавку (то и другое – не толще

2 мм), легкую пуговицу, мелкие плоские металлические предметы. Наловчившись в этом, попробуйте заставить плавать и копейку.

Причина плавания этих металлических предметов та, что вода плохо смачивает металл, побывавший в наших руках и потому покрытый тончайшим слоем жира. Оттого вокруг плавающей иглы на поверхности воды образуется вдавленность, ее можно даже видеть. Поверхностная пленка жидкости, стремясь распрямиться, оказывает давление вверх на иглу и тем поддерживает ее. Поддерживает иглу также и выталкивающая сила жидкости, согласно закону плавания; игла выталкивается снизу с силой, равной весу вытесненной ею воды.

Всего проще добиться плавания иглы, если смазать ее маслом; такую иглу можно прямо класть на поверхность воды, и она не потонет.


Вода в решете


Оказывается, что и носить воду в решете возможно не только в сказке.

Знание физики поможет исполнить такое классически невозможное дело. Для этого надо взять проволочное решето сантиметров 15 в поперечнике и с не слишком мелкими ячейками (около 1 мм) и окунуть его сетку в растопленный парафин. Затем вынуть решето из парафина: проволока окажется покрытой тонким слоем парафина, едва заметным для глаз. Решето осталось решетом – в нем есть сквозные отверстия, через которые свободно проходит булавка, – но теперь вы можете, в буквальном смысле слова, носить в нем воду. В таком решете удерживается довольно высокий слой воды, не проливаясь сквозь ячейки; надо только осторожно налить воду и оберегать решето от толчков.

Почему же вода не проливается? Потому что, не смачивая парафин, она образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду (рис. 38).

image

Рис. 38. Почему вода не выливается из парафинированного решета?

Такое парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, возможно не только носить воду в решете, но и плавать на нем. Этот парадоксальный опыт объясняет ряд обыкновенных явлений, к которым мы чересчур привыкли, чтобы задумываться об их причине. Смоление бочек и лодок, смазывание салом пробок и втулок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать непроницаемыми для воды, а также и прорезинивание тканей – все это не что иное, как изготовление решета вроде сейчас описанного. Суть дела и там и тут одна и та же, только в случае с решетом она выступает в необычном виде.

 

 

 

 

 

 

 

содержание   ..  1  2  3  4   ..