Главная      Учебники - Производство     Лекции по производству - часть 5

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  298  299  300   ..

 

 

Системный анализ системы газотурбинного двигателя

Системный анализ системы газотурбинного двигателя

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

4. Перель Л. Я. Справочник - Подшипники качения (1983 г.)

Список сокращений

А) ФПШ - фильтр последнего шанса.

Б) ТМТ – топливно-масляный теплообменник.

В) ВМТ - воздушно-масляный теплообменник.

Г) ГТД – газотурбинный двигатель.


Приложения

Приложение А

1.1 Особенности проектирования

Рассмотрим особенности проектирования маслосистемы на примере создания маслосистемы ГТД[1].

Проектирование ведется с учетом существующих конструкций отечественных и иностранных аналогов, особенностей работы двигателя, для которого предназначена маслосистема, технологических возможностей производства. Маслосистема должна удовлетворять заданным требованиям, обеспечивать эксплуатационную эффективность, легкость и простоту технического обслуживания, достаточные ресурсы и сроки хранения, безопасность работы, эргономические требования, патентную чистоту, минимальную стоимость.

В техническом задании на разработку ГТД, как правило, задается часть исходных данных для маслосистемы, например величина безвозвратных потерь масла.

Условия эксплуатации ГТД также служат основанием для разработки технического задания на маслосистему. От температуры окружающей среды при запуске двигателя зависит выбор марки масла. При низких отрицательных температурах только отдельные сорта масла могут обеспечить приемлемую вязкость.

К исходным данным для проектирования маслосистемы также относятся:

- величина теплоотдачи в масло;

-температуры масла в полостях опор газогенератора и коробки приводов агрегатов;

-максимальные температуры поверхностей деталей, соприкасающихся с маслом;

- длительность полетного цикла самолета;

- максимальная высота полета самолета;

- максимальные нагрузки в парах трения.

Иногда разработчики самолета задают марку

применяемого масла

Для обеспечения возможности заправки масла в любых аэропортах применяемые масла должны быть взаимозаменяемы с отечественными и зарубежными аналогами.

Современные синтетические масла, например ИПМ-10, допускают запуск ГТД без их подогрева от внешних источников при температуре минус 40о С. Если температура опускается ниже, то необходим подогрев от внешних источников (специальных подогревателей) элементов маслосистемы и самого ГТД. Для эксплуатации ГТД в жарких климатических условиях требуется эффективное охлаждение откачиваемого масла.

Температура масла, откачиваемого из опор и других узлов ГТД, не должна превышать допустимые пределы во всем диапазоне режимов работы. Масло не должно терять смазочные свойства, окисляться, образовывать смолы и кокс. Применяемые синтетические масла обладают высокой термостабильностью и не теряют ее при температуре до 200о С.

Расчет тепловых режимов трущихся пар

Необходимые данные для расчета.

Геометрические размеры подшипника (в м) — диаметры вала dB , окружности центров тяжести роликов йцл и ролика dv .

Число тел качения т. Если размер роликов и их число неизвестны, то принимается т= 16, a dp рассчитывается по формуле

dp =l = 0, 1875 dB м, (1)

где I — длина ролика в м.

Радиальный люфт /град (суммарный радиальный зазор) в мм.

Число оборотов подшипника п в минуту.

Радиальная нагрузка на подшипник Р в дан.

Максимальная температура масла на входе в подшипник tт . вх в °С

Ожидаемая (необходимая) температура подшипника tu подш. в °С или прокачка масла qM в кг/час.

Расчет включает в себя следующие пункты:

Определение окружной скорости сепаратора подшипника

м/сек. (2)

Оценка по справочным данным тепловых параметров масла

при tm. вых≈ tподш, где tm. вых — температура масла на выходе из подшипника:

а) коэффициента кинематической вязкости v в ж2 /сек;

б) плотности (объемной массы) q в кг/ж3 ;

в) критерия Прандтля Рг= ,

где а — коэффициент температуропроводности масла в м2 /сек~,

г) удельной теплоемкости ср в дж/кг • град.

д) Расчет критерия Рейнольдса

Re= (3)

е) Оценка центробежной силы ролика

Рцб = 1225 дан. (4)

ж) Определение осредненной нагрузки на образующую ролика


P ср = (5)

з) Расчет критерия Эйлера

Eu = (6)

и) Оценка суммарного коэффициента сопротивлений

С =4 Re- °, 5 Еu0, 5 + 46, 5 * 103 Re-1 Pr-°, 8 (7)

и коэффициента p, учитывающего влияние радиального зазора на потерн мощности:

3=1 + 1, 7(0, l-hрад ) (8)

к) Определение суммарного теплового потока, эквивалентного затраченной мощности на привод подшипника:

∑Q=C ßmcl2 u3 bm (9)

л) Расчет потребной оптимальной прокачки масла qM через корпус подшипника

qm = кг/час. (10)

м) Расчет рабочей температура подшипника (при заданной прокачке масла qm)


tподщ=tм. вх + (11)

Пункт (м) предполагает проведение расчета методом последовательных приближений, когда необходимо задаться значением tподщ = tм. вых для расчета ∑Q. При получении существенного расхождения в значении принятойtподщ и полученной расчетом в п. (м) необходимо найти следующее приближение.

Особую задачу представляет выбор материала для подшипников качения и выбор масла для них при высоких скоростях полета самолета (Ms3), вызывающих высокие температурные режимы работы двигателя. При температуре нагрева до 200° С для подшипников следует применять сталь ШХ15 со специальной термообработкой. При температуре нагрева, лежащей в пределах 250—450° С, следует применять сталь ЭИ347, а свыше 450° С — специальные теплостойкие сплавы.

Масло для . таких условий работы должно иметь надлежащую вязкость при рабочей температуре, хорошо смачивать поверхность нагретых деталей без разрыва масляной пленки.

При повышенных температурах применяются масла на основе сложных эфиров со специальными присадками.

Основные размеры подшипников приведены в каталогах, которыми и следует пользоваться при проектировании.

1.2 Расчет теплового баланса в подшипниках

Трение в подшипнике может привести к возникновению значительного перепада температур AT = Тп — Т0 (где Тn и Т0 — температура подшипника и окружающей среды соответственно), заклиниванию тел качения и выходу подшипника из строя. [4] При относительно небольшом трении в подшипнике перепад температур может и не достигнуть критической величины благодаря естественному охлаждению из-за отвода тепла через корпус и другие элементы механизма. Однако для целого ряда высокоскоростных или тяжелонагруженных опор возникает необходимость в принудительном охлаждении подшипников с помощью жидкой циркуляционной смазки. Возможность ограничился в данном конкретном случае только средствами естественного охлаждения подшипника может быть определена по величине перепада температур. При необходимости принудительного охлаждения определяются потребное количество масла и диаметр отверстий, через которые смазка должна поступать к подшипнику.

Тепловой баланс в подшипнике может быть установлен как по моменту трения М (Н • мм), так и по мощности трения N (Вт) или выделившейся при этом теплоты W(Дж).

Мощность трения при установившемся режиме работы

N= (12)

Количество теплоты, образовавшейся при трении,

W=3600N.

При естественных условиях охлаждения подшипника вследствие отвода тепла через корпус (без учета возможности охлаждения подшипника смазкой) перепад температур АТ, образовавшийся при установившемся режиме работы, определяется с помощью коэффициента охлаждения К, представляющего собой количество теплоты, выделившейся в результате трения и переданной в окружающую среду при повышении температуры на 1 °С.

Коэффициент охлаждения (Вт/°С)

К = (3 ÷ 7)10-5 A (13)

Потребное количество охлаждающей жидкости (л/мин) при отводе теплоты с помощью циркуляционной системы смазки.


Q= 0. 98*10-5 * 10-4 . (14)

Тепловой расчет топливно-масляного теплообменника

Проводится для определения охлаждения и температуры масла

Переменные величины теплообменника. Безразмерные и размерные. Для обычного теплообменника, через который проходят дна потока, существенны следующие параметры, характеризующие процесс теплопередачи;

к [ккал/м2 *ч*град)| — общин коэффициент теплопередачи;

F [м2 ] поверхпость теплообмена, к которой относя общий коэффиент теплопередачи

tr1 —температура горячем жидкости, °С;

tx2 — температура холодной жидкости, °С;

Wr = (Gcp )r [ккал/ч -град] — водяной эквивалент горячей жидкости;.

Wr = (Gcp )x [ккал/ч-град]— водяной эквивалент холодной жидкости»

Характер движения потоков — противоток, прямоток, перекрестный ток, смешанный ток пли комбинация этих типов относительного движения потоков.

Сочетание параметров является основой для расчета теплопередачи в аппарате.

Значение всех перечисленных параметров, за исключением общего- коэффициента теплопередачи к, очевидно. Смысл общего коэффициента теплопередачи, объединяющего перепое тепла конвекцией и теплопроводностью, вытекает из общего уравнения теплопередачи, которое аналогично закону Ома для 'постоянного тока:

= k(tr -tx ) (15)

В этом уравнении

=[ккал/ч*м2 ] —тепловой поток па единицу поверхности теплообмена в сечении теплообменника, где имеется температурная разность.

Из этой связи очевидно, что к является общей термической проводимостью, основанной па температурном потенциале (tг —tХ ) и единице поверхности теплообмена. Величина, обратная к, представляет собою полное термическое сопротивление, которое слагается из следующих компонентов:

1) конвективная составляющая па стороне горячего потока, учитывающая фактическую эффективность развитой поверхности;

2)составляющая, связанная с теплопроводностью степкп;

3) конвективная составляющая на стороне холодного потока, учитывающая фактическую эффективность развитой поверх, поста;

4) составляющая, связанная с наличием слоя загрязнений на обеих сторонах теплообмсииой поверхности.

Пренебрегая для простоты влиянием слоев загрязнений, уравнение, выражающее полное термическое сопротивление, можно записать в следующем виде:

= + + (16)

Где

kr -отнесено к единице полной поверхности теплообмена па стороне горячего потока (включая ребра пли любую развитую поверхность);

k х - отнесено к единице полной поверхности теплообмена па стороне холодного потока;

Fст- соответствует средней величине основной (первичном) поверхности (например, поверхности разграничивающих листов в пластинчатом теплообменнике.) ;

— эффективность (к. п. д.) полной поверхности теплообмена Ft или Fx соответственно.

Коэффициенты теплоотдачи ах и ur являются сложной функцией геометрии поверхности, свойств топ л опое и геля и условии движения. За исключением некоторых геометрически простых случаев с ламинарным движением, коэффициенты теплоотдачи могут быть определены только экспериментальным путем.

Если на обеих сторонах теплообменника отсутствует дополнительная развитая поверхность, равны 1.


Приложение B

Методика расчета теплового режима роликоподшипников турбинных опор ГТД и прокачки масла

Необходимые исходные данные здесь те же, что и в приведенной выше методике теплового расчета компрессорных роликоподшипников. Особенностью расчета является задание максимально допустимой температуры подшипника, замеренной по наружному кольцу и равной 120° С.

Расчет состоит из следующих пунктов:

Оценка температуры масла на выходе из подшипника

tм . вых = 101, 2+0, 15(tм . вх -60) °С (17)

Затем ведется расчет внутреннего теплового потока ∑Q по методике для компрессорных роликоподшипников, где тепловые параметры масла оцениваются по рассчитанному значению tм. вых

Расчет минимально допустимой оптимальной прокачки масла

M min= кг/час. (18)

При проведении поверочного теплового расчета, когда прокачка масла qM задана, определяется располагаемая температура масла на входе в подшипник

tм. вх. расп =1, 175(92, 2- - ) °С (19)

Входящий в формулу внутренний тепловой поток Q рассчитывается при tм. вых, найденной в п. 1 расчета[2].

Если tм. вх. расп окажется при qм. зад существенно отличной (больше или меньше) от tм. вх. расп то в обоих случаях надо принять tм . вых — = 85÷90°С и при этом ее значении рассчитать qmin по приведенной выше методике. Полученное значение qminбудет обеспечивать темпера- туру подшипника tподщ ≤120° С.

Наконец, если читать, что в отдельных случаях при работе на двигателях внешний тепловой поток будет больше принятого в опытах, на основании которых была разработана предлагаемая методика, и, значит, tподщ > 120°С, то рассчитанное значение qmin остается неизменным для обеспечения практически наименьшей температуры подшипника при любом внешнем подогреве.


Приложение C

Методика расчета потребной прокачки масла

Расчет потребной прокачки масла

Важным параметром маслосистемы является прокачка масла через двигатель, которая напрямую зависит от величины теплоотдачи в масло. Тепло в масло передается от соприкасающихся с ним нагретых деталей и узлов трения ГТД. Часть тепла в масляную систему поступает с воздухом, которым надуваются лабиринтные уплотнения роторов и валов приводов агрегатов.

Потребная прокачка масла определяется, как:

G m=Qm /(Ср ∆ tm) (20)

гдеQ - теплоотдача в масло;

Ср - удельная теплоемкость масла;

tm - разность температуры масла на выходе из двигателя и на входе в него.

Исходя из требуемой прокачки масла через двигатель, выполняется выбор, расчет и конструирование нагнетающего и откачивающих насосов.

Теплоотдача в масло определяется расчетным методом с учетом имеющихся экспериментальных данных и опыта проектирования. Выбор системы охлаждения масла авиационного двигателя осуществляется на основании проведенных расчетов теплового состояния масляной и топливной систем, так как охлаждение масла в большинстве авиационных двигателей осуществляется в топливомасляных теплообменниках.

Важно, чтобы безвозвратные потери масла из маслосистемы ГТД не были высокими.

От их величины и заданной продолжительности полета зависит объем маслобака. Увеличение объема маслобака и заправляемого в него масла ведет к сокращению полезной нагрузки летательного аппарата. У двигателей малой размерности маслобаки иногда отсутствуют и их функции выполняют маслосборники.

Безвозвратные потери это, в основном, масло, которое удаляется в атмосферу через суфлер. Они слагаются из удаляемого вместе с воздухом масла в жидкой, каплеобразной и парообразной фазах.

Масло в жидкой и каплеобразной фазах отделяется от воздуха с помощью суфлера, пары же масла свободно проходят через него. Снижение парообразной составляющей безвозвратных потерь масла достигается уменьшением его испарения и конденсацией паров в устанавливаемом на входе в суфлер конденсаторе. Конденсатор представляет собой обычный теплообменник. Применение конденсатора является нежелательным. Целесообразно при проектировании ГТД предусмотреть мероприятия по обеспечению минимального испарения масла.

В циркуляционных маслосистемах ГТД безвозвратные потери масла, как правило, незначительны и приблизительно равны 0, 1 л/ч на каждые 10 кН тяги

Количество масла, расходуемое за полет в ГТД или за определенное время работы ГТД наземного применения, определяют опытным путем по изменению уровня масла в баке и приводят в соответствующих инструкциях. [1]

Общий объемный циркуляционный расход масла у вновь проектируемых двигателей можно находить по формуле

W= (З÷10)*i л/мин, (21)

где i — число подшипников (опор) в двигателе.

Следует иметь в виду, что эта зависимость справедлива только при определении количества масла, необходимого для двигателя в целом, т. е. для определения производительности масляного насоса. Для отдельных подшипников, находящихся в повышенных температурных условиях, количество масла может быть больше приведенной средней величины.

Циркуляционный расход масла в ТВД может быть определен таким же образом по числу опор, имеющихся в двигателе, с учетом прокачки масла, необходимого для смазки редуктора.

Циркуляционный расход масла, необходимого для смазки и охлаждения планетарного редуктора, можно определить по следующим формулам:

Wред ≈(1, 1÷1, 6) л/мин, (22)

для редуктора на два винта

Wред ≈(1, 1÷2, 0) л/мин, (25)

где N — мощность, передаваемая редуктором, в квт.

Полный циркуляционный расход масла в ТВД с числом опор i:

W = (З÷10)i + Wред л\мин. (26)

Потребную прокачку масла в системе двигателя можно также определить по удельной теплоотдаче в масло: вТРД

W= d (27)

для ТВД

W= d (28)

В этих формулах

Q — удельная теплоотдача в масло, равная 80—200 кдж/мин на каждые 1000 дан стендовой тяги в ТРД и 680—850 кдж/мин на каждые 1000 квт стендовой мощности в ТВД; R и N — тяга и мощность соответственно в дан и квт;

— перепад температур масла на входе и выходе из двигателя;

=30÷50°С;

с м — теплоемкость масла;

d—относительная плотность масла.

Производительность нагнетающего масляного насоса WH для обеспечения равномерной подачи масла на всех режимах работы двигателя должна быть больше величины W в 1, 5—2 раза. Постоянное давление масла в магистрали двигателя поддерживается с помощью редукционного клапана и определяется силой затяжки пружины последнего. Этот же редукционный клапан служит предохранительным клапаном и не допускает чрезмерного повышения давления при работе двигателя на холодном (непрогретом) масле.

Производительность насоса

Wнас=2*10-6 𝞹d*m*l3 *n*𝞰w (29)

Где d – диаметр делительной окружности шестерен, мм;

m- модуль, мм;

n – частота вращения шестерен;

l3 – длина зуба, мм;

𝞰w – коэффициент наполнения.

Зная потребную производительность насоса, и задаваясь величинам n, 𝞰w и двумя из трех размер шестерен( d, m, l3 ), определяют третий размер. Для масляных насосов 𝞰w принимают равным 0, 75…0, 85

Сорт масла, применяемого масла в ГТД, определяется нагрузками, действующими на подшипники, типом подшипников и их рабочими температурами. На двигателях, устанавливаемых на самолетах с дозвуковыми скоростями полета, рабочая температура масла не превышает 120— 140° С. Для них применяют минеральные масла с небольшой вязкостью и низкой температурой застывания. При малой вязкости масла оно лучше обволакивает нагретые детали и хорошо снимает с них тепло.

Величина кинематической вязкости применяемых масел лежит в пределах 8- 106 —17- 106 м2 /сек (8—17 сст) при 50° С, а температура застывания ниже — 40° С.

К маслам добавляют различные присадки. Они применяются для нескольких целей: понижения температуры застывания, уменьшения склонности к пенообразованию, повышения вязкости при высоких температурах и т. п.

Вал турбины и подшипники нагреваются от диска турбины, в особенности при остановке двигателя, когда движение охлаждающего воздуха прекращается; поэтому масла, применяемые для смазки ГТД, не должны коксоваться при высоких температурах.

Давление масла в системе двигателя выбирается в пределах 1—4 дан/см2 ; оно определяется гидравлическим сопротивлением масло- системы и необходимым количеством масла.

На двигателях, предназначенных для сверхзвуковых скоростей полета, рабочая температура масла может достигать 250—400° С. Для таких подшипников необходимо применять стали и жаростойкие сплавы, имеющие высокую твердость при повышенных температурах, например инструментальные стали. Для смазки деталей при указанных температурах применяют различные присадки к существующим маслам или применяют специальные синтетические масла.

Расчет маслопроводов на колебания

Маслопроводы, как и другие трубопроводные системы газотурбинных двигателей (топливные, дренажные, воздушные, противопожарные и др. ), должны быть рассчитаны на колебания для устранения опасных резонансных режимов.

Целесообразно при проектировании трубопроводов определять частоту собственных поперечных колебаний в зависимости от расстояния между точками крепления трубопроводовL [2]

F= (30)

а — коэффициент, зависящий от условий закрепления краевых сечений участка трубопровода, а также от формы колебаний пролета;

К — коэффициент, учитывающий влияние скорости и давления жидкости в трубопроводе;

EJ— изгибная жесткость трубопровода; mтр, mж — масса единицы длины пролета трубопровода и заключенной в нем жидкости.

Значения коэффициента а определяются по формуле [2] исходя из абсолютно жесткой заделки концов участка трубопровода, что соответствует частоте собственных поперечных колебаний жесткого участка fЖ :

а = (31)

Здесь i— номер формы колебаний участка трубопровода.

При шарнирной заделке концов участка трубопровода собственная частота поперечных колебаний fжснижается:

fш= (32)

Коэффициент К определяется по формуле:


K= (33)

Здесь р — давление жидкости в трубопроводе;

F — поперечное сечение трубопровода (в свету);

v — скорость движения жидкости по трубопроводу.

Однако двигатель может иметь несколько опасных резонансных режимов, избежать которых изменением расстояния между точками крепления трубопровода невозможно.

Поэтому целесообразно вводить конструктивные мероприятия для повышения надежности трубопровода.

Эффективным средством для обеспечения надежности трубопроводов является применение гибких компенсаторов, выполненных в виде тонкостенной металлической или фторопластовой оболочки с оплеткой ее наружной поверхности проволокой. Гибкая вставка позволяет производить монтаж трубопроводов при перекосах и несовпадениях осей их участков компенсировать термические удлинения (перемещения) без нарушения герметичности, а также работать при малом уровне вибрации благодаря проволочной оплетке, имеющей хорошие демпфирующие качества.

Гибкий трубопровод можно представить в виде отдельного шланга (металлорукава) или упругой вставки Гибкие трубопроводы также необходимо рассчитывать на колебания.

Собственные поперечные колебания металлорукава [2]

f = (34)

где п — число, определяющее пространственную форму колебаний металлорукава; / — длина гибкого элемента; mi — масса единицы длины гибкого элемента; Т— сила натяжения рукава.

Частота собственных поперечных колебаний трубопровода с гибкой вставкой [2], расположенной симметрично относительно двух консолей жесткого трубопровода:

f = (35)

Здесь т — сумма приведенной массы свободной консоли и '/з массы компенсатора;

 

 

 

 

 

 

 

содержание   ..  298  299  300   ..

 

Обозначение Наименование количество свойств описание
1 а1 Маслобак 3 1(1) Сообщается с источником масла; 2(1)Хранит масло ;3(1) Обеспечивает подачу масла в блок маслонасосов.
2 а2 Блок маслонасов 2 1(2) Обеспечивает ступень нагнетания; 2(2) Обеспечивает ступень откачки
3 а3 Предохранительный клапан 1 1(3) Возвращает масло в масло бак
4 а4 фильтр грубой очистки 1 1(4) Очищает масло
5 а5 сигнализатор максимального перепада давления на фильтре 1 1(5) Обеспечивает передачу сигнала
6 а6 ТМТ 1 Обеспечивает охлаждение масла
7 а7 ВМТ 1 Обеспечивает охлаждение масла
8 а8 Слив масла 2 1(8) Обеспечивает транспортировку масла; 2(8) Соединяет агрегаты охлаждения с баком .
9 Воздухоотделитель 2 1(9) Обеспечивает отделение воздуха от масла; 2(9) Сообщается с атмосферой.
Обозначение Наименование Количество свойств описание
10 а10 Суфлер 3 1(10) Выводит излишки воздуха; 2(10) сообщается с атмосферой; 3(10) Возвращает масло содержавшееся в выводимом воздухе.
11 а11 Датчик перепада давления между откачкой и нагнетанием 1 1(11)Обеспечивает регулировку давления между откачкой и нагнетанием
12 а12 ФПШ 1 1(12) Обеспечивает защиту жиклерных соединений ;
13 а13 Фильтр защитный 1 1(13) Обеспечивают задержку крупных частиц
14 а14 Магнитный сигнализатор 1 1(14) Подают сигнал при загрязнении защитного фильтра