Главная      Учебники - Производство     Лекции по производству - часть 3

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  603  604  605   ..

 

 

Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт

Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт

Привод ленточного транспортера, состоящего из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт

Содержание

1. Введение

2. Кинематический расчет

3. Расчёт цилиндрической передачи

3.1 Выбор материала и термообработки

3.2 Определение допускаемых напряжений

3.2.1 Допускаемые напряжения при расчёте на усталостную контактную прочность

3.2.2 Допускаемые напряжения при расчёте на изгибную усталостную прочность

3.3 Определение основных параметров передачи

3.4 Определение сил в зацеплении

3.5 Проверочный расчёт передачи на контактную усталостную прочность

3.6. Проверочный расчёт передачи на изгибную усталостную прочность

4. Предварительный расчёт валов

4.1 Выбор материала и допускаемых напряжений

4.2 Предварительный расчёт быстроходного вала

4.3 Предварительный расчёт промежуточного вала

4.4 Предварительный расчёт тихоходного вала

5. Выбор муфт

6. Выбор подшипников

6.1. Выбор типа и типоразмера подшипника

6.2. Выбор схемы установки подшипников

6.3. Проверка долговечности подшипников тихоходного вала

6.3.1 Составление расчётной схемы и определение реакций в опорах

6.3.2 Проверка долговечности подшипников

7. Конструирование элементов цилиндрической передачи

8. Расчёт шпонок

9. Уточнённый расчёт валов

9.1 Построение эпюр изгибающих и крутящих моментов

9.2. Проверка статической прочности вала

9.3. Проверка усталостной прочности тихоходного вала

10. Конструктивные элементы валов, допуски, посадки и шероховатости

11. Смазка редуктора

12. Конструирование крышек подшипников

13. Конструирование корпуса редуктора

14. Конструирование рамы

15. Сборка редуктора и монтаж привода

15.1 Сборка редуктора

15.2 Монтаж привода

Заключение

Список литературы

1. Введение

1.1 В данном проекте разрабатывается привод ленточного транспортёра. Транспортёр предназначен для перемещения отходов производства (древесная щепа).

1.2 Привод состоит из электродвигателя, цилиндрического двухступенчатого редуктора и соединительных муфт.

Электродвигатель в приводе создаёт вращающий момент и приводит редуктор в движение.

1.3 Редуктор представляет собой закрытую цилиндрическую передачу. В редукторе использованы прямозубые колёса, что упрощает изготовление деталей передачи.

Редуктор служит для уменьшения числа оборотов и увеличения вращающих моментов.

Для соединения выходных концов вала редуктора и барабана используются муфты.

Отметим, что при работе привода возможны сильные рывки.

Выпуск предусматривается крупносерийный.

1.4 Срок службы привода 6 лет, работа в три смены, коэффициент загрузки за смену 0,4. С учётом того, что в году 250 рабочих дней, а в одной рабочей смене 8 часов получим ресурс привода в часах:

Lh = 6 · 250 · 3 · 8 · 0,4 = 14400 часа.

2. Кинематический расчет

2.1 Определение требуемой мощности привода. Электродвигатель выбирается по требуемой мощности и частоте вращения. Мощность двигателя зависит от требуемой мощности рабочей машины, а его частота вращения от частоты вращения приводного вала рабочей машины.

Определим требуемую мощность транспортёра:

Рвых = F · v = 18 · 103 · 0,65 = 11700 Вт = 11,7 кВт

2.2 Для определения требуемой мощности привода определим КПД привода. Для этого задаёмся, в соответствии с таблицей 1.1 [3], КПД отдельных элементов привода:

КПД подшипникового узлаη nn =0.99

КПД цилиндрической передачиηц = 0.96

КПД муфты Общий КПДηм = 0.98

Общий КПД привода:

η = ηц 2 · ηм 2 · ηп 3 = 0,982 ·0,962 ·0,993 = 0,859

Требуемая мощность двигателя:

= 13,6 кВт

2.3 По таблице подбираем электродвигатели с мощностью большей или равной требуемой. Двигатели выбираем асинхронные, трёхфазные общепромышленного применения серии 4А. Двигатели этой серии предназначены для продолжительного режима работы, т.е. соответствуют режиму работы привода. Подходят четыре варианта электродвигателей серии 4А с номинальной мощностью кВт и различной частотой вращения. Данные по ним представлены в таблице 2.3.1.

Таблица 2.3.1

Вариант

Тип двигателя

Номинальная мощность, кВт

Частота вращения, об/мин

синхронная

номинальная

1

4АМ160S2

15

3000

2940

2

4АМ160S4

15

1500

1465

3

4АМ160M6

15

1000

975

4

4АМ180M8

15

750

730

Для окончательного выбора типоразмера двигателя определим рекомендуемый интервал частот вращения вала электродвигателя, для чего определим необходимую частоту вращения вала барабана и передаточное число привода. Частота вращения вала барабана:

Минимально-допустимая частота вращения вала электродвигателя:

nдв min = nвых · uпр min =41,4·4=165,6 об/мин

Максимально допустимая частота вращения вала электродвигателя:

nдв max = nвых · uпр max =41,4·31,3=1295,82 об/мин

Передаточное число передачи при 1 модели: и1 =2940/41,4 =71,01

Передаточное число передачи при 2 модели: и2 =1465/41,4 =35,38

Передаточное число передачи при 3 модели: и3 =975/41,4 =23,55

Передаточное число передачи при 4 модели: и4 =730/41,4 =17,6

2.4 Требуемое передаточное число привода при принятом электродвигателе:

Таблица 2.4

Модель двигателя

Передаточное число

4АМ160S2

71,01

4АМ160S4

35,38

4АМ160M6

23,25

4АМ180M8

17,6

2.5 Проанализировав результаты вычислений и данные таблицы 1.1 выбираем окончательный вариант электродвигателя.

Электродвигатель с синхронной частотой вращения 3000 об/мин не подходит по результатам расчёта.

Электродвигатель с синхронной частотой вращения 1500 об/мин не подходит по результатам расчёта.

Электродвигатель с синхронной частотой вращения 1000 об/мин подходит по результатам расчёта.

Электродвигатель с синхронной частотой вращения 750 об/мин подходит по результатам расчёта.

Принимаем двигатель 4АМ180M8 с синхронной частотой вращения 750 об/мин.

2.6 Предварительное передаточное число тихоходного вала редуктора:

Предварительное передаточное число быстроходного вала редуктора:

2.7 Частота вращения вала барабана:

Угловая скорость вала электродвигателя:

Угловая скорость быстроходного вала редуктора:

Угловая скорость промежуточного вала редуктора:

Угловая скорость тихоходного вала редуктора:

Угловая скорость вала барабана:

Мощность на валу электродвигателя:

Pдв = 13,6 кВт

Мощность на быстроходном валу редуктора:

Pб. дв ·ηм ·ηп = 13,6·0,98 ·0,99 =13,2 кВт

Мощность на промежуточном валу редуктора:

Рпр. в. = Pб ·ηц = 13,2·0,96=12,54 кВт

Мощность на тихоходном валу редуктора:

Р m = Pпр. в. ·ηц ·ηп = 12,54·0,96·0,99=11,92 кВт

Мощность на валу барабана:

Ро = Pт ·ηм =11,92·0,98=11,7 кВт

Вращающий момент на валу электродвигателя:

Вращающий момент на быстроходном валу редуктора:

Вращающий момент на промежуточном валу редуктора:

Вращающий момент на тихоходном валу редуктора:

Вращающий момент на валу барабана:

2.8 езультаты кинематического и энергетического расчёта представлены в таблице 2.9 1.

Таблица 2.9.1

Вал

Частота вращения, об/мин

Угловая скорость,

с-1

Мощность,

кВт

Вращающий момент, Нм

Вал двигателя

730

76.4

13,6

178,01

Быстроходный вал редуктора

730

76,4

13,2

172,77

Промежуточный вал редуктора

153,4

16,05

12,54

781,3

Тихоходный вал редуктора

41,5

4,34

11,92

2746,54

Вал рабочего органа машины

41,4

4,33

11,7

2702,07

3. Расчёт цилиндрической передачи

3.1 Выбор материала и термообработки

Материал для зубчатых колёс подбираем по таблице 2.1 [3]. Для шестерни принимаем сталь 40Х с термообработкой улучшение и закалкой ТВЧ, твёрдость сердцевины и поверхности 48 - 53 HRC, примем 50 HRC.

Для колеса принимаем сталь 40Х с термообработкой улучшение и закалкой ТВЧ, твёрдость сердцевины и поверхности 45 - 50 HRC, примем 47,5 HRC.

3.2 Определение допускаемых напряжений

3.2.1 Допускаемые напряжения при расчёте на усталостную контактную прочность

Быстроходная ступень, шестерня:

Допускаемые контактные напряжения

[ σ] Н = σ Н lim ZN ZR ZV / SH =1050 • 1 • 1 • 1/1,2=875 МПа

Предел контактной выносливости

[ σ] Н1 lim =17 HRCcp +200=17•50+200=1050 МПа

Коэффициент долговечности

ZN = =1 при условии 1 ≤ ZN Z N max

NHG =30HBcp 2.4 ≤12 • 107 =30 • 4802.4 = 8,1• 107

NK =60 • n • n3 • Lh =60 • 730 • 1 • 14400=63 • 107

Коэффициент учитывающий влияние шероховатости

ZR =1

Коэффициент учитывающий влияние окружной скорости

ZV =1

V= 1,5 м/с

= =114 мм

Коэффициент учитывающий запас прочности

SH =1,2

Быстроходная ступень, колесо:

Допускаемые контактные напряжения

[ σ] Н = σ Н lim ZN ZR ZV / SH =1007,5 • 1 • 1 • 1/1,2=840 МПа

Предел контактной выносливости

[ σ] Н1 lim =17 HRCcp +200=17•47,5+200=1007,5 МПа

Коэффициент долговечности

ZN = =1 при условии 1 ≤ ZN ZN max

NHG =30HBcp 2.4 ≤12 • 107 =30 • 4402.4 = 6,6• 107

NK =60 • n • n3 • Lh =60 • 730 • 1 • 14400=63 • 107

Коэффициент учитывающий влияние шероховатости

ZR =1

Коэффициент учитывающий влияние окружной скорости

ZV =1

V= 0,3 м/с

= =114 мм

Коэффициент учитывающий запас прочности

SH =1,2

Тихоходная ступень, шестерня:

Допускаемые контактные напряжения

[ σ] Н = σ Н lim ZN ZR ZV / SH =1050 • 1 • 1 • 1/1,2=875 МПа

Предел контактной выносливости

[ σ] Н1 lim =17 HRCcp +200=17•50+200=1050 МПа

Коэффициент долговечности

ZN = =1 при условии 1 ≤ ZN Z N max

NHG =30HBcp 2.4 ≤12 • 107 =30 • 4802.4 = 8,1• 107

NK =60 • n • n3 • Lh =60 • 153,4 • 1 • 14400=13 • 107

Коэффициент учитывающий влияние шероховатости

ZR =1

Коэффициент учитывающий влияние окружной скорости

ZV =1

V= 0,57 м/с

= =167 мм

Коэффициент учитывающий запас прочности

SH =1,2

Тихоходная ступень, колесо:

Допускаемые контактные напряжения

[ σ] Н = σ Н lim ZN ZR ZV / SH =1007,5 • 1 • 1 • 1/1,2=840 МПа

Предел контактной выносливости

[ σ] Н1 lim =17 HRCcp +200=17•50+200=1007,5 МПа

Коэффициент долговечности

ZN = =1 при условии 1 ≤ ZN Z N max

NHG =30HBcp 2.4 ≤12 • 107 =30 • 4802.4 = 8,1• 107

NK =60 • n • n3 • Lh =60 • 41,5 • 1 • 14400=3,5 • 107

Коэффициент учитывающий влияние шероховатости

ZR =1

Коэффициент учитывающий влияние окружной скорости

ZV =1

V= 0,15 м/с

= =167 мм

Коэффициент учитывающий запас прочности

SH =1,2

3.2.2 Допускаемые напряжения при расчёте на изгибную усталостную прочность

Быстроходная ступень, шестерня:

Допускаемые напряжения изгиба

[σ] F1 = σ Flim YN YR YA / SF =650 • 1 • 1 • 1/1,7=382 МПа

Предел выносливости

σ Flim =650 МПа - принимаем

Коэффициент долговечности

YN = =1 при условии 1 ≤ YN Y N max

q=9 коэффициент для закаленных и поверхностно улучшенных зубьев

NFG =4 • 106 число циклов

NК =6,3• 108

При NК > NFG принимают NК = NFG

Коэффициент учитывающий влияние шероховатости

YR =1

Коэффициент учитывающий влияние двустороннего приложения нагрузки

YА =1,

при одностороннем приложении

Коэффициент запаса прочности

SF =1,7

Быстроходная ступень, колесо:

Допускаемые напряжения изгиба

[σ] F2 = σ Flim YN YR YA / SF =650 • 1 • 1 • 1/1,7=382 МПа

Предел выносливости

σ Flim =650 МПа - принимаем

Коэффициент долговечности

YN = =1 при условии 1 ≤ YN Y N max

q=9 коэффициент для закаленных и поверхностно улучшенных зубьев

NFG =4 • 106 число циклов

NК =1,3• 108

При NК > NFG принимают NК = NFG

Коэффициент учитывающий влияние шероховатости

YR =1

Коэффициент учитывающий влияние двустороннего приложения нагрузки

YА =1,

при одностороннем приложении

Коэффициент запаса прочности

SF =1,7

Тихоходная ступень, шестерня:

Допускаемые напряжения изгиба

[σ] F1 = σ Flim YN YR YA / SF =650 • 1 • 1 • 1/1,7=382 МПа

Предел выносливости

σ Flim =650 МПа - принимаем

Коэффициент долговечности

YN = =1 при условии 1 ≤ YN Y N max

q=9 коэффициент для закаленных и поверхностно улучшенных зубьев

При NК > NFG принимают NК = NFG

Коэффициент учитывающий влияние шероховатости

YR =1

Коэффициент учитывающий влияние двустороннего приложения нагрузки

YА =1,

при одностороннем приложении

Коэффициент запаса прочности

SF =1,7

Тихоходная ступень, колесо:

Допускаемые напряжения изгиба

[σ] F2 = σ Flim YN YR YA / SF =650 • 1 • 1 • 1/1,7=382 МПа

Предел выносливости

σ Flim =650 МПа - принимаем

Коэффициент долговечности

YN = =1 при условии 1 ≤ YN Y N max

q=9 коэффициент для закаленных и поверхностно улучшенных зубьев

При NК > NFG принимают NК = NFG

Коэффициент учитывающий влияние шероховатости

YR =1

Коэффициент учитывающий влияние двустороннего приложения нагрузки

YА =1,

при одностороннем приложении

Коэффициент запаса прочности

SF =1,7

3.3 Определение основных параметров передачи

Межосевое расстояние передачи:

Быстроходная ступень

принимаем aw = 180 мм

где K a = 450 - коэффициент межосевого расстояния для косозубых колёс;

КН = КН V · КНβ · КНα =1,09 · 1,25 ·1,162=1,583

КН V =1,09 - принимается по таблице

К = 1+ (К 0 -1 ) · К HW = 1+ (1,28 - 1) · 0,9 =1,25

коэффициент концентрации нагрузки при термической обработке;

К HW =0,9

ψ Bd =0,5 ψ ( UБ + 1) =0,5 · 0,25 (4,76 + 1) =0,72

КНβ 0 =1,28

КНα =1 + (К0 Нα - 1) · К HW =1 + (1,18 - 1) 0,9 = 1,162

К0 Нα =1 + 0,06 ( nст - 5) =1 + 0,06 (8 - 5) =1,18

Т2 =172,77 Н ·м

UБ = 4,76

ψв a = 0,25 - коэффициент ширины колеса при не симметричном расположении

Тихоходная ступень

принимаем aw = 250мм

где K a = 450 - коэффициент межосевого расстояния для косозубых колёс;

КН = КН V · КНβ · КНα =1,03 · 1,18 ·1,11=1,34

КН V =1,03 - принимается по таблице

К = 1+ (К 0 -1 ) · К HW = 1+ (1,28 - 1) · 0,63 =1,18

коэффициент концентрации нагрузки при термической обработке;

К HW =0,63

ψ Bd =0,5 ψ ( UБ + 1) =0,5 · 0,315 (3,69 + 1) =0,74

КНβ 0 =1,28

КНα =1 + (К0 Нα - 1) · К HW =1 + (1,18 - 1) 0,63 = 1,18

К0 Нα =1 + 0,06 ( nст - 5) =1 + 0,06 (8 - 5) =1,18

Т2 =781,3 Н ·м

UБ = 3,69

ψв a = 0,315 - коэффициент ширины колеса при не симметричном расположении

Предварительные размеры колес:

Делительный диаметр быстроходного колеса

d2 = 2·aw u/ (u+1) =2·180·4,76/ (4,76+1) = 297,5 мм

Ширина быстроходного колеса:

b 2 = ψa ·aw =0,25·180=45 мм

Делительный диаметр тихоходного колеса

d2 = 2·aw u/ (u+1) =2·250·3,69/ (3,69+1) = 363,39 мм

Ширина тихоходного колеса:

b 2 = ψa ·aw =0,315·250=78,75 мм, принимаем 80 мм

Модули передач:

Быстроходная ступень:

Km = 3,4.103 - коэффициент модуля;

KF = KFV . K . K =1,09 .0,188 .1,18 =0,24 - коэффициент нагрузки;

KFV =1,09 принимается по таблице

K =0,18+0,82 K ° =0,18 .0,82.1,28=0,188

K = K ° =1,18

принимаем m = 3 мм в соответствии со стандартным значением.

Тихоходная ступень:

Km = 3,4.103 - коэффициент модуля;

KF = KFV . K . K =1,03 .0,188 .1,18 = 0,23 - коэффициент нагрузки;

KFV =1,03 принимается по таблице

K =0,18+0,82 K ° =0,18 .0,82.1,28=0,188

K = K ° =1,18

принимаем m = 5 мм в соответствии со стандартным значением.

Суммарное число зубьев:

Быстроходная ступень:

zΣ =2· aw / m=2·180/3=120

Принимаем zΣ =120.

Тихоходная ступень:

zΣ =2· aw / m=2·250/5=100

Принимаем zΣ =100.

Число зубьев шестерни и колеса:

Быстроходная ступень:

Шестерня:

z1 = zΣ / ( u+1) =120/ (4,76+1) =20

Колесо:

z2 = zΣ - z1 =120-20=100

Тихоходная ступень:

Шестерня:

z1 = zΣ / ( u+1) =100/ (3,69+1) =21

Колесо:

z2 = zΣ - z1 =100-21=79

Фактическое передаточное число:

Быстроходная ступень:

uф = z2 / z1 =100/20=5

Тихоходная ступень:

uф = z2 / z1 =79/21=3,76

Отклонение от заданного передаточного числа:

Быстроходная ступень:

3,76% - такое расхождение допускается.

Тихоходная ступень:

2,69% - такое расхождение допускается.

Диаметры колес:

Быстроходная ступень:

Делительный диаметр шестерни:

d1 = z1 · m=20 · 3 = 60 мм

Делительный диаметр колеса:

d2 =2а w - d1 =2 · 180 - 60=300 мм

Диаметр окружностей вершин зубьев шестерни и колеса:

dа1 = d1 +2 m=60 + 2 · 3=66 мм

dа2 = d2 +2 m=300 + 2 · 3=306 мм

Диаметр окружностей впадин зубьев шестерни и колеса:

df 1 = d1 - 2 · 1,25 · m=60 - 2 · 1,25 ·3 =52,5 мм

df 2 = d2 - 2 · 1,25 · m =300 - 2 · 1,25 ·3 =292,5 мм

Ширина шестерни:

b1 = b2 · 1,07 = 45 · 1,07 = 48 мм

Окружная скорость колеса:

Результаты расчёта основных параметров передачи представлены в таблице 3.3.1

Таблица 3.3.1

Модуль (мм)

Межосевое расстояние (мм)

Число зубьев

Делительный диаметр (мм)

Ширина

(мм)

Шестерня

3

180

100

60

48

Колесо

20

300

45

Тихоходная ступень:

Делительный диаметр шестерни:

d1 = z1 ·m=21 · 5 = 105 мм

Делительный диаметр колеса:

d2 =2а w - d1 =2 · 250 - 105=395 мм

Диаметр окружностей вершин зубьев шестерни и колеса:

dа1 = d1 +2 m=105 + 2 · 5=115 мм

dа2 = d2 +2 m=395 + 2 · 5=405 мм

Диаметр окружностей впадин зубьев шестерни и колеса:

df 1 = d1 - 2 · 1,25 · m=105 - 2 · 1,25 ·5 =92,5 мм

df 2 = d2 - 2 · 1,25 · m =395 - 2 · 1,25 ·5 =382,5 мм

Ширина шестерни:

b1 = b2 · 1,07 = 80 · 1,07 = 86 мм

Окружная скорость колеса:

Результаты расчёта основных параметров передачи представлены в таблице 3.3.2


Таблица 3.3.2

Модуль (мм)

Межосевое расстояние (мм)

Число зубьев

Делительный диаметр (мм)

Ширина

(мм)

Шестерня

5

250

21

105

86

Колесо

79

395

80

3.4 Определение сил в зацеплении

Быстроходная ступень:

Окружная сила в зацеплении:

Радиальная сила в зацеплении:

Fr = Ft · tg20º=5759· tg20º=2096 H

где α = 20º - стандартный угол.

Результаты расчёта представлены в таблице 3.4 1

Таблица 3.4.1

Окружная сила (Н)

Радиальная сила (Н)

Осевая сила (Н)

5759

2096

0

Тихоходная ступень:

Окружная сила в зацеплении:

Радиальная сила в зацеплении:

Fr = Ft · tg20º=14881· tg20º=5416 H

где α = 20º - стандартный угол.

Результаты расчёта представлены в таблице 3.4 2

Таблица 3.4.2

Окружная сила (Н)

Радиальная сила (Н)

Осевая сила (Н)

14881

5416

0

3.5 Проверочный расчёт передачи на контактную усталостную прочность

Быстроходная ступень:

ZБ =9600 МПа1/2

Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.

Тихоходная ступень:

ZБ =9600 МПа1/2

Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.

3.6. Проверочный расчёт передачи на изгибную усталостную прочность

Быстроходная ступень:

Расчётные напряжения изгиба в зубьях колеса:

σ F2 = KF · Ft · YFS 2 · Yβ · Yε / b2 m=0,24 · 5759 · 3,59 · 1 · 1/45 · 3=36,7 ≤ [ σ] F2

где YFS 2 =3,59 - коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев

KF = KFV . K . K =1,09 .0,188 .1,18 =0,24 - коэффициент нагрузки

Yβ =1 - коэффициент учитывающий угол наклона зуба;

Yε = 1 - коэффициент учитывающий перекрытие зубьев;

Оба коэффициента (Y) зависят от степени точности (8)

Расчётные напряжения изгиба в зубьях шестерни:

σ F1 = σ F2 · YFS 1 / YFS 2 = 36,7 · 4,08/ 3,59 = 41,7 ≤ [ σ] F1

Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.

Тихоходная ступень:

Расчётные напряжения изгиба в зубьях колеса:

σ F2 = KF · Ft · YFS 2 · Yβ · Yε / b2 m=0,23 · 14881 · 3,6 · 1 · 1/80 · 5=30,8 ≤ [ σ] F2

где YFS 2 =0,23 - коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев

KF = KFV . K . K =1,03 .0,188 .1,18 = 0,23 - коэффициент нагрузки

Yβ =1 - коэффициент учитывающий угол наклона зуба;

Yε = 1 - коэффициент учитывающий перекрытие зубьев;

Оба коэффициента (Y) зависят от степени точности (8)

Расчётные напряжения изгиба в зубьях шестерни:

σ F1 = σ F2 · YFS 1 / YFS 2 = 30,8 · 4,08/ 3,6 = 34,9 ≤ [ σ] F1

Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.

Результаты расчёта передачи на прочность представлены в табл.3.6.1

Таблица 3.6.1

Расчётные напряжения

Допускаемые напряжения

Быстроходная

ступень

Расчёт на контактную усталостную прочность

864

875

Расчёт на усталостную изгибную прочность

Шестерня

41,7

382

Колесо

36,7

382

Тихоходная

ступень

Расчёт на контактную усталостную прочность

722

875

Расчёт на усталостную изгибную прочность

Шестерня

34,9

382

Колесо

30,8

382

4. Предварительный расчёт валов

4.1 Выбор материала и допускаемых напряжений

Для шестерни ранее принят материал - сталь 40Х.

Для тихоходного вала также принимаем сталь 40Х.

Механические характеристики улучшенной стали 40Х

Предел прочности σв = 800 МПа.

Предел текучести σТ = 640 МПа.

Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса

n=1.5 [τ] = 640/1.5 =426 МПа.

4.2 Предварительный расчёт быстроходного вала

Диаметр выходного конца вала:

принимаем стандартное значение d = 40 мм.

Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:

dn = d+2 tкон = 40 + 2 · 2,3=44,6 мм

где tкон = 2,3 мм ,

принимаем стандартное значение dn = 45 мм .

Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:

dбп = dп +3 r = 45 + 3 · 2,5 = 52,5 мм

где r = 2,5 мм

Принимаем dбп = 53 мм .

Длина выходного участка вала:

lm =1, 5 · d= 1,5 · 40 = 60 мм

принимаем lm = 60 мм .

Длина участка вала под подшипник:

lk =1,4 · dn = 1,4 · 45 = 63 мм

принимаем lk =65 мм .

Остальные размеры вала определяются из предварительной прорисовки редуктора.

4.3 Предварительный расчёт промежуточного вала

Диаметр вала под колесо:

принимаем стандартное значение dК = 60 мм.

Диаметр буртика колеса:

dбк = dк +3 f= 60 + 3 ·2=66 мм

Диаметр вала под подшипник:

dn = dк +3 r = 60 - 3 ·3,5=49,5 мм

принимаем стандартное значение dп = 50 мм.

Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:

dбп = dп +3 r = 50 + 3 · 3,5 = 60 мм

4.4 Предварительный расчёт тихоходного вала

Диаметр выходного конца вала:

Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:

dn = d + 2 · tкон = 70 + 2 · 2,5 = 75 мм

где tкон = 2,5 мм.

принимаем стандартное значение dn = 75 мм.

Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:

dбп = dп +3 r = 75 + 3 · 3,5 = 85,5 мм

где r = 3,5 мм.

принимаем dбп = 86 мм.

Диаметр участка вала под колесо:

dk = dбп = 86 мм

Диаметр буртика колеса:

dбк = dк +3 f= 86 + 3 ·2,5=93,5 мм

где f =2,5 мм .

принимаем dбк = 95 мм.

Длина выходного участка вала:

lм =1,5 · d= 1,5 · 70 = 105 мм

принимаем lм = 105 мм.

 

 

 

 

 

 

 

содержание   ..  603  604  605   ..