Главная      Учебники - Производство     Лекции по производству - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  319  320  321   ..

 

 

Проект привода цепного конвейера

Проект привода цепного конвейера

Содержание

Вступление

1. Кинетический и силовой расчёт привода

1.1 Кинематическая схема привода

1.2 Выбор двигателя

1.3 Общее передаточное число и разбиение его по степеням

1.4 Силовые и кинематические параметры привода

2. Расчет клиноременной передачи

2.1 Исходные данные для расчёта передачи

2.2 Механический расчет

3. Расчет цилиндрической 3.1. Кинематическая схема передачи и исходные данные для расчета

3.2 Выбор материала и определение допустимых напряжений

3.3 Определение геометрических параметров

3.4 Проверочный расчет передачи

3.5 Определение сил в зацеплении (см. рис. 3.3)

4. Расчёт цилиндрической косозубой передачи || ступени

4.1 Кинематическая схема передачи и исходные данные для расчета

4.2 Выбор материала и определение допустимых напряжений

4.3 Определение геометрических параметров

4.4 Проверочный расчет передачи

4.5 Определение сил в зацеплении (см. рис. 3.3)

5. Условный расчет валов

5.1 Определение диаметров входного валаредуктора

6. Определение конструктивных размеров зубчатых колес

6.1 Размеры зубчатых колес цилиндрической передачи I ступени

6.2 Размеры зубчатых колес цилиндрической передачи II ступени

6.3 Определяем размеры цилиндрического колеса (рис.6.1.)

6.4 Определение диаметров выходного вала

7.1 Определение конструктивных размеров корпуса и крышки редуктора, согласно табл. 4.2, 4.3, [1]

7.2 Размеры необходимые для черчения

8. Выбор шпонок и их проверочный расчет

9. Расчёт промежуточного вала редуктора на статическую способность и долговечность

9.1 Расчет вала на несущую способность

9.2 Расчет вала на прочность

10. Расчет подшипников качения

10.1 Определение реакции в опорах

10.2 Определение коэффициентов

10.3 Определение эквивалентной нагрузки

10.4 Определяем долговечность подшипников

10.5 Выбор муфты

10.6 Проверочный расчёт зубчатой муфты

11. Выбор и проверочный расчёт опор скольжения

Литература


Вступление

Развитие народного хозяйства Украины тесно связано с развитием машиностроения, так как материальная мощность современной страны базируется на технике – машинах, механизмах, аппаратах, приводах, которые выполняют разную полезную работу. В наше время нет ни одной области народного хозяйства, где бы не применялись машины и механизмы в широких масштабах. Благодаря этому осуществляется комплексная механизация в промышленности, в сельском хозяйстве, в строительстве, на транспорте. Это заставляет уделять большое внимание при проектировании и усовершенствования конструкций современных машин и механизмов. Машины и механизмы, которые проектируются, должны иметь высокие эксплуатационные показатели, не большое количество энергии и эксплуатационных материалов, должны быть экономичными, как в процессе производства, так и в процессе эксплуатации, удобными и безопасными в обслуживании.


1. Кинетический и силовой расчёт привода

Согласно техническому заданию на курсовой проект по дисциплине «Детали машин» необходимо спроектировать привод цепного конвейера, который состоит из двигателя, клиноременной передачи, двухступенчатого цилиндрического ора и муфты. При проектировании деталей привода использованы современные критерии оценки их работоспособности – прочность, жесткость и износостойкость. Кинематический и силовой расчеты привода

1.1 Кинематическая схема привода

Рис 1.1

Таблица 1.1

Исходные данные для кинематического и силового расчета привода

Название параметров Обозначения в формулах Единица измерения Величина параметра
Окружная сила F1 Н 28000
Скорость м/с 0,5
Число зубьев z - 9
Шаг цепи р мм 160
Режим работы P - С
Число смен T - 1

1.2 Выбор двигателя

Работа над курсовым проектом по дисциплине «Детали машин» подготавливает студентов к решению более сложных задач общетехнического характера в своей дальнейшей практической деятельности.

Определяем необходимое усилие на валу 1 двигателя, кВт,

кВт

где N 5 – усилие на приводном валу 5, кВт , ηобщ - общий кпд.

кВт,

ηобщ = η12 η23 η34 η45 = 0,95· 0,95· 0,96· 0,98 = 0,85,

гдеη12= ηкр = 0,95 – кпд между 1 и 2 валами; η23 = ηцп · η кр = 0,96·0,99=0,95 – кпд между 2 и 3 валами; η34цп· ηоп = 0,97·0,99=0,96 – кпд между 3 и 4 валами; η45 = ηм· ηоп ηоп =1·0,99·0,99=0,98 – кпд между 4 и 5 валами.

Средние значения кпд принимаем из [1], табл. 1.1

ηкр = 0,95-кпд клиноременной передачи;

ηцп =0,97-кпд цилиндрической передачи;

ηоп =0,99-кпд в опорах;

ηм =1,0-кпд муфты.

Принято, что валы привода установлены на подшипниках качения.

Определяем угловую скорость и частоту вращения вала электродвигателя.

рад/с

где рад/с – угловая скорость на 5 валу

где

- общее передаточное отношение привода.

,

Средние значения ориентировочных передаточных чисел принимаем из [2], табл. 5.5, с 74.

- ориентировочное передаточное число клиноременной передачи; - ориентировочное передаточное число цилиндрической передачи I ступени; - ориентировочное передаточное число цилиндрической передачи II ступени; - ориентировочное передаточное число муфты.

Определяем частоту вращения вала 1

об/мин.

Выбираем электродвигатель исходя из условий .

Из [3], табл.2.4, с.23, выбираем электродвигатель 4АН180М6, кВт об/мин и для дальнейших расчётов выполняем переход от к

рад/с

1.3 Общее передаточное число и разбиение его по степеням

Определяем действительное общее передаточное число привода при выбранном двигателе.

Проводим разбиение по степеням.

Принимаем ; ; .

Тогда

1.4 Силовые и кинематические параметры привода

Определяем мощности на валах:

кВт ; кВт ;

кВт ; кВт;

кВт (див.розд.1.2.1.)

Определяем угловые скорости валов:


рад/с;

рад/с;

рад/с;

рад/с;

рад/с.

Определяем крутящие моменты на валах:

Нм ; Нм;

Нм; Нм ;

Нм .

Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов.

Таблица 1.2

Результаты кинетического и силового расчётов привода

Параметры

№ вала

N, кВт ω рад/с

М,Нм

1 16,5 102,05 161,7 2,98 47,68
2 15,7 34,24 458,5
4
3 14,9 8,56 1740
4
4 14,3 2,14 6682
1
5 13 2,4 6542

2. Расчет клиноременной передачи

Схема клиноременной передачи

Рис 2.1

2.1 Исходные данные для расчёта передачи

Таблица 2.1

Исходные данные для расчета передачи

Параметры

№шва

N, кВт w, рад/с М, Нм ид12 и добщ
1 16,5 102,05 161,7 2,98 47,68
2 15,7 34,24 458,5

2.2 Механический расчет

Сечение ремня по табл. 5.6 ([8], с. 69)

Рис 2.2

При заданном значении М принимаем сечение ремня (В).

Диаметр меньшего шкива

Минимально допустимый диаметр шкива dmin = 63 мм .

Для повышения коэффициента полезного действия передачи, увеличения долговечности и тяговой способности ремней, уменьшение числа ремней принимаем d 1 =100 мм.

Диаметр большего шкива: d 2 = d 1 ·i кл =100∙2,98=298

Скорость ремня: ;

где v – скорость ремня, м/с.

Частота вращения ведомого вала ;

где n 2 – частота вращения ведомого вала, об/мин .; - коэффициент скольжения; принимаем = 0,01

об/мин .

Ориентировочное межосевое расстояние

Принимаем a 0 =400 мм.

Длина ремня

;

где L - длина ремня, мм;

;

;

мм.

В соответствии с ГОСТ 1284.1-80 принимаем L = 1600 мм.

Окончательное межосевое расстояние

;

мм.

Принимаем a = 500 мм.

Наименьшее расстояние, необходимое для надевания ремня

a наим = a - 0,01L ;

a наим = 500-0,01·1600 = 484 мм.

Наибольшее расстояние, необходимое для компенсации вытяжки ремня

a наиб = a - 0,025L ;

a наиб = 500-0,025·1600 = 460 мм.

Коэффициент динамичности и режима работы

с р = 1,1

Угол обхвата

;

где - угол обхвата, º;

По табл. 5.7 ( 5, с.71) величина окружного усилия р0 , передаваемого одним ремнем р0 =124 Н (на один ремень)

Допускаемое окружное усилие на один ремень

[р]=р0 ×Сα ×СL ×CР ,

где Сα =1-0,003(180-α1 )=1- 0,003(180-156,24)=0,93

Коэффициент, учитывающий длину ремня

, так как расчетная длина L=1600=L0

Коэффициент режима работы Ср =1, следовательно

[р]=824∙0,93=757

где р0 =814 ( по табл. 5,7 [8], с. 71 )

Окружное усилие

Н

Расчетное число ремней ; .

Принимаем Z = 4


3. Расчет цилиндрической 3.1. Кинематическая схема передачи и исходные данные для расчета

Кинематическая схема передачи

Рис.3.1.

Исходные данные для расчета передачи Таблица 3.1.

параметры

№ вала

N, кВт ω, рад/с M,Нм ид34 идобщ
2 15,7 34,24 458,5 4,0 47,68
3 14,9 8,56 1740

3.2 Выбор материала и определение допустимых напряжений

Материалы зубчатых колес

Для уравновешивания долговечности шестерни и колеса, уменьшения вероятности заедания и лучшей приработки твердость зубьев шестерни необходимо выбирать большей, чем твердость колеса: НВш = НВк + (20…50).

Так как к габаритам передачи не накладываются жесткие условия, то для изготовления зубчатых колес, из [6], принимаем материалы для шестерни – сталь 50 , для колеса – сталь 40. Параметры материалов зубчатых колес сводим в таблицу 3.2.


Таблица 3.2

Материалы зубчатых колес.

Материал Термообработка Предел теку-чести, σт, МПа Твердость, НВ
Шестерня Сталь 50 нормализация 380 180
Колесо Сталь 40 нормализация 340 154

Допустимые контактные напряжения:

,

где σН lim – граница контактной долговечности поверхности зубцов, соответствует базовому числу циклов изменения напряжений NН0 = 30 НВ2,4 , (при твердости поверхности зубьев ≤350 НВ, σН lim b = 2 НВ +70):

σН l im b ш = 2·180+70=430МПа, σН lim b к =2· 154 + 70=378 МПа;

NН0ш = 30·1802,4 = 7,76·106 , NН0к = 30 · 1542,4 = 5,3·106 ;

S Н – коэффициент безопасности (запас прочности), учитывается от термообработки и характера нагрузок, принимаем S Н = 1,1, [6];

КН L – Коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется из соотношения NН0 и дополнения (NΣ ·КНЕ ); КНЕ – коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем КНЕ = 0,06.

NΣ - суммарное число циклов нагрузки зубьев за все время службы передачи:

,


где Lh –время службы передачи, для односменной работы Lh =1·104 час.

, .

NΣш · КНЕ =1,96 · 108 · 0,06 = 1,17 · 106 < NН0ш = 7,76 · 106 ,

NΣк · КНЕ = 0,49 · 108 · 0,06 =2,9 · 106 < NН0ш = 5,3 ·106 .

Так как в обоих случаях NН0 >NΣ · КНЕ , то коэффициент долговечности

,

.

Мпа ; МПа

Допустимые напряжения на изгиб.

,

где σF limb – граница выносливости поверхности зубцов при изгибе, соответствует базовому числу циклов смены напряжений N = 4 · 106 , [6], (при твердости поверхности зубьев ≤350 НВ, σF limb = НВ + 260):

σF limb ш = 180 +260 = 440МПа, σF limb к = 154 + 260 = 414 МПа;

SF коэффициент безопасности (запас прочности), из [2], принимаемSF = 1,8, KFL – коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется соотношением NF0 и (NΣ KF Е ); KF Е – коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем KF Е = 0,02.

NΣ m ·KF Е = 1,05·108 ·0,02 = 2,1·106 < NF0 = 4·106 ,

NΣк ·KF Е = 0,26·108 ·0,02 = 0,52·106 < NF0 = 4·106 .

Так как в обоих случаях NF0 > NΣ KF Е , то согласно [ ], коэффициент долговечности:

; .

KFC - коэффициент реверсивности нагрузки, для нереверсивной передачиКН L – 1,0, [6].

;

Допустимые максимальные контактные напряжения.

[σН ]max = 2,8 σТ .

[σН ]max ш = 2,8·380 = 1064 МПа , [σН ]max к =2,8·340=952 МПа.

Допустимые максимальные напряжения на изгиб.

[σF ]max = 0,8 σТ .

[σF ]max ш = 0,8·380 = 304 МПа., [σF ]max к = 0,8·340 = 272 МПа .

3.3 Определение геометрических параметров

Межосевое расстояние.

Из условий контактной усталости поверхности зубьев:

,

где Ка – коэффициент межосевого расстояния, из [6], для косозубых передач Ка = 4300 Па1/3 ; - коэффициент ширины зубчатого венца по межосевому расстоянию, из [6], для косозубой передачи принимаем

ψ ba = 0,45; и = ид 34 = 4;

КНβ – коэффициент распределения нагрузки по ширине венца зубчатого колеса, из [6], табл.1.2, в зависимости от ψ bd = 0,5 ψ ba (и+ 1) = 0,5 · 0,45 · (4+1) = 1,13, для косозубой передачи КНβ = 1,046;[σН ] – наименьшее из двух значений (шестерни и колеса) допустимых контактных напряжений, МПа .

,

Определение модуля.

Первоначальное значение расчетного модуля зубьев определяется

где β – угол наклона зубьев, для косозубой передачи β = 20°;

Zш – число зубьев шестерни, согласно [6] принимаем Zш = 20;

Zш – число зубьев колеса, Zк = Zш и = 20·4 = 80.

Согласно [6], табл.1.3, принимаем m п = 5 мм.

- ширина: b к = ψ d а аw = 0,45 · 266 = 119,7 мм. Принимаем b к = 120 мм.

3.4 Проверочный расчет передачи

Расчет на контактную усталость.

где ZН – коэффициент, учитывающий форму спряженных поверхностей зубьев: для косозубых - ZН = 1,75, [6];

ZМ = 275 · 103 Па1/2 - коэффициент учитывающий механические свойства материалов зубчатых колес, [6];

ZЕ - коэффициент суммарной длинны контактный линий спряженных зубьев: для косозубых - ZЕ = 0,8, [6];

КН = КНа КН β КН V – коэффициент нагрузки : КНа – коэффициент распределения нагрузки между зубьями из [6], табл. 1.4, КН а = 1,15; КН β = 1,046, см. разд.3.3.1, КН V – коэффициент динамической нагрузки, из [6], табл. 1.4, при

; К HV =1.02; КН =1,15∙1,046∙1,02=1,22.

Так как σН = 363 находится в пределах (0,9…1,0)[σН ], то расчет можем считать завершенным: .

Расчет на контактную прочность.

,

где Кп =2,2, [σН ]max – наименьшее из двух значений (шестерни и колеса) допустимых максимальных контактных напряжений, МПа

Условие выполняется.

расчет на усталость при изгибе.

Определяем отдельно для шестерни и колеса по формуле

,

где - Y F - коэффициент формы зуба, из [6], табл. 1.7, по эквивалентному числу зубьев Z V , для косозубой передачи: , Y =3,92; ,Y = 3,6.

Y E - коэффициент перекрытия зубьев, согласно [6] принимаем Y E =1,0.

Yβ - коэффициент наклона зубьев, согласно [6] для косозубых передач принимается:

КF = К К КF V - коэффициент нагрузки: К – коэффициент распределения нагрузки между зубьями для косозубых - К =1,0, [6], табл. 1,8; К –коэффициент

Геометрические размеры цилиндрической зубчатой передачи


Рис 3.2.

Геометрический расчет передачи (см. рис. 3.2).

Межосевое расстояние

Принимаем аw = 266 мм.

Уточняем угол наклона зубьев

Размеры шестерни:

- делительный диаметр:

- диаметр вершин зубьев: d аш = d ш + 2mn = 106,4+ 2 · 5= 116,4мм;

- диаметр впадин: d ƒш = d ш – 2,5mn = 106,4 – 2,5 · 5= 93,9мм;

- ширина: b ш =b к + 5 мм = 120 + 5 = 125 мм.

Размеры колеса:

-делительный диаметр

- диаметр вершин зубьев:d ак = d к + 2mn = 425,5 +2 · 5 = 696 мм ;

- диаметр впадин: d ƒк = d к – 2,5mn = 425,5 – 2,5 · 5 = 413 мм;

распределения нагрузки по ширине венца зубчатого колеса, из [6], табл. 1.9, в зависимости от ψ ba = 1, 13 (см. разд. 3.3.1.) для косозубой передачи К = 1,09; КF V - коэффициент динамической нагрузки, выбирается из табл. 1.10, [6], при КF V = 1,05; КF = 1,00 · 1,09 · 1,05 = 1,14.

Условия выполняются.

Расчет на прочность при изгибе.

Выполняется отдельно для шестерни и колеса при действии кратковременных максимальных нагрузок (в период пуска двигателя).

σF ma х = σF Кп ≤ [σF ]max΄

где Кп – коэффициент перегрузки, из [2], табл. 1, с. 249 - Кп =2,2.

σF ma х ш = 114 · 2,2 = 250,8 МПа ≤ [σF ]max ш = 304 МПа,

σF ma х к = 92 · 2,2 = 202,4 МПа ≤ [σF ]max к = 272 МПа.

Условия выполняются.

3.5 Определение сил в зацеплении (см. рис. 3.3)

- окружная сила

- радиальная сила

- осевая сила Fаш = Fак = F t к tgβ = 8651· tg 19,95 0 = 3139 Н

Схема сил в зацеплении

Рис.3.3.


4. Расчёт цилиндрической косозубой передачи || ступени

4.1 Кинематическая схема передачи и исходные данные для расчета

Кинематическая схема передачи

Рис.4.1.

Исходные данные.

Таблица 4.1.

Исходные данные для расчета передачи

параметры

№ вала

N, кВт ω, рад/с M,Нм ид34 идобщ
3 14,9 8,56 1740 4 47,68
4 14,3 2,14 6682

4.2 Выбор материала и определение допустимых напряжений

Материалы зубчатых колес.

Для уравновешивания долговечности шестерни и колеса, уменьшения вероятности заедания и лучшей приработки твердость зубьев шестерни необходимо выбирать большей, чем твердость колеса: НВш = НВк + (20…50).

Так как к габаритам передачи не накладываются жесткие условия, то для изготовления зубчатых колес, из [6], принимаем материалы для шестерни – сталь 50 , для колеса – сталь 40. Параметры материалов зубчатых колес сводим в таблицу 3.2.

Таблица 4.2.

Материалы зубчатых колес

Материал Термообработка Предел теку-чести, σт, МПа Твердость, НВ
Шестерня Сталь 50 нормализация 380 180
Колесо Сталь 40 нормализация 340 154

Допустимые контактные напряжения:

,

где σН lim – граница контактной долговечности поверхности зубцов, соответствует базовому числу циклов изменения напряжений NН0 = 30 НВ 2,4 , (при твердости поверхности зубьев ≤350 НВ, σН lim b = 2 НВ +70):

σН l im b ш = 2·180+70=430МПа, σН lim b к =2· 154 + 70=378 МПа;

NН0ш = 30·1802,4 = 7,76·106 , NН0к = 30 · 1542,4 = 5,3·106 ;

KFL – коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется соотношением NF0 и (NΣ KF Е ); KF Е – коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем KF Е = 0,02.

NΣ m ·KF Е = 1,05·108 ·0,02 = 2,1·106 < NF0 = 4·106 ,

NΣк ·KF Е = 0,26·108 ·0,02 = 0,52·106 < NF0 = 4·106 .

Так как в обоих случаях NF0 > NΣ KF Е , то согласно [ ], коэффициент долговечности:

;

.

KFC - коэффициент реверсивности нагрузки, для нереверсивной передачи КН L – 1,0, [6].

;

Допустимые максимальные контактные напряжения.

[σН ]max = 2,8 σТ .

[σН ]max ш = 2,8·380 = 1064 МПа , [σН ]max к =2,8·340=952 МПа.

Допустимые максимальные напряжения на изгиб.

[σF ]max = 0,8 σТ .

[σF ]max ш = 0,8·380 = 304 МПа., [σF ]max к = 0,8·340 = 272 МПа .

4.3 Определение геометрических параметров

Межосевое расстояние.

Из условий контактной усталости поверхности зубьев:


,

где Ка – коэффициент межосевого расстояния, из [6], для косозубых передач Ка = 4300 Па1/3 ; - коэффициент ширины зубчатого венца по межосевому расстоянию, из [6], для косозубой передачи принимаем

ψ ba = 0,45; и = ид 34 = 4;

КНβ – коэффициент распределения нагрузки по ширине венца зубчатого колеса, из [6], табл.1.2, в зависимости от ψ bd = 0,5 ψ ba (и+ 1) = 0,5 · 0,45 · (4+1) = 1,13, для косозубой передачи КНβ = 1,046;[σН ] – наименьшее из двух значений (шестерни и колеса) допустимых контактных напряжений, МПа .

,

Определение модуля.

Первоначальное значение расчетного модуля зубьев определяется

S Н – коэффициент безопасности (запас прочности ), зависит от термообработки и характера нагрузок, принимаем S Н = 1,1, [6];

КН L – Коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется из соотношения NН0 и дополнения (NΣ ·КНЕ ); КНЕ – коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем КНЕ = 0,06.

NΣ - суммарное число циклов нагрузки зубьев за все время службы передачи:

,

где Lh –время службы передачи, для односменной работы Lh =1·10 4 час.

, .

NΣш · КНЕ =0,49 · 108 · 0,06 = 2,94 · 106 < NН0ш = 7,76 · 106 ,

NΣк · КНЕ = 0,12 · 108 · 0,06 = 0,72 · 106 < NН0ш = 5,3 ·106 .

Так как в обоих случаях NН0 >NΣ · КНЕ , то коэффициент долговечности

,

.

Мпа ; МПа

Допустимые напряжения на изгиб.

,

где σF limb – граница выносливости поверхности зубцов при изгибе, соответствует базовому числу циклов смены напряжений N = 4 · 106 , [6], (при твердости поверхности зубьев ≤350 НВ, σF limb = НВ + 260):

σF limb ш = 180 +260 = 440МПа, σF limb к = 154 + 260 = 414 МПа;

SF коэффициент безопасности (запас прочности), из [2], принимаемSF = 1,8,

где β – угол наклона зубьев, для косозубой передачи β = 20°;

Zш – число зубьев шестерни, согласно [6] принимаем Zш = 20;

Zш – число зубьев колеса, Zк = Zш и = 20·4 = 80.

Согласно [6], табл.1.3, принимаем m п = 8,0 мм .

- ширина: b к = ψ d а аw = 0,45 · 425 = 191,25 мм . Принимаем b к = 220 мм .

4.4 Проверочный расчет передачи

Расчет на контактную усталость. распределения нагрузки по ширине венца зубчатого колеса, из [6], табл. 1.9, в зависимости от ψ ba = 1, 13 (см. разд. 3.3.1.) для косозубой передачи К = 1,09; КF V - коэффициент динамической нагрузки, выбирается из табл. 1.10, [6], при ν = 1,77 м/с, КF V = 1,05; КF = 1,00 · 1,09 · 1,05 = 1,14.

Условия выполняются.

Расчет на прочность при изгибе.

Выполняется отдельно для шестерни и колеса при действии кратковременных максимальных нагрузок (в период пуска двигателя).

σF ma х = σF Кп ≤ [σF ]max΄

где Кп – коэффициент перегрузки, из [2], табл. 1, с. 249 - Кп =2,0.

σF ma х ш = 103 · 2,2 = 226,6 МПа ≤ [σF ]max ш = 304 МПа,

σF ma х к = 84 · 2,2 = 184,8 МПа ≤ [σF ]max к = 272 МПа.

Условия выполняются.

4.5 Определение сил в зацеплении (см. рис. 3.3)

- окружная сила

- радиальная сила

- осевая сила Fаш = Fак = F t к tgβ = 20470 · tg 20° = 7450 Н

Схема сил в зацеплении

Рис.4.3.

где ZН – коэффициент, учитывающий форму спряженных поверхностей зубьев: для косозубых - ZН = 1,75, [6];

ZМ = 275 · 103 Па1/2 - коэффициент учитывающий механические свойства материалов зубчатых колес, [6];

ZЕ - коэффициент суммарной длинны контактный линий спряженных зубьев: для косозубых - ZЕ = 0,8, [6];

КН = КНа КН β КН V – коэффициент нагрузки : КНа – коэффициент распределения нагрузки между зубьями из [6], табл. 1.4, КН а = 1,15; КН β = 1,046, см. разд.3.3.1, КН V – коэффициент динамической нагрузки, из [6], табл. 1.4, при

; К HV =1.02; КН =1,15∙1,046∙1,02=1,22.

Так как σН = 363 находится в пределах (0,9…1,0)[σН ], то расчет можем считать завершенным: .

Расчет на контактную прочность.

,

где Кп =2,2, [σН ]max – наименьшее из двух значений (шестерни и колеса) допустимых максимальных контактных напряжений, МПа

Условие выполняется.

расчет на усталость при изгибе.

Определяем отдельно для шестерни и колеса по формуле

,

где - Y F - коэффициент формы зуба, из [6], табл. 1.7, по эквивалентному числу зубьев Z V , для косозубой передачи: , Y =3,92; ,Y = 3,6.

Y E - коэффициент перекрытия зубьев, согласно [6] принимаем Y E =1,0.

Yβ - коэффициент наклона зубьев, согласно [6] для косозубых передач принимается:

КF = К К КF V - коэффициент нагрузки: К – коэффициент распределения нагрузки между зубьями для косозубых - К =1,0, [6], табл. 1,8; К –коэффициент

Геометрические размеры цилиндрической зубчатой передачи

Рис 4.2.

Геометрический расчет передачи (см. рис. 4.2).

Межосевое расстояние

Принимаем аw = 425 мм .

Уточняем угол наклона зубьев

Размеры шестерни:

- делительный диаметр:

- диаметр вершин зубьев: d аш = d ш + 2mn = 170 + 2 · 8,0 = 186мм;

- диаметр впадин: d ƒш = d ш – 2,5mn = 170 – 2,5 · 8,0 = 150 мм ;

- ширина: b ш b к + 5 мм = 220 + 5 = 225 мм .

Размеры колеса:

-делительный диаметр

- диаметр вершин зубьев:d ак = d к + 2mn = 680 +2 · 8,0 = 696 мм ;

- диаметр впадин: d ƒк = d к – 2,5mn = 680 – 2,5 · 8,0 = 660 мм;


5. Условный расчет валов

При отсутствии данных о моменте изгиба, диаметр вала определяют приблизительно по известному крутящему моменту из условий прочности на кручение по заниженным значениям допустимых напряжений:

где i- номер вала, j - номер участка ступенчатого вала, Мi - крутящий момент на i- тому валу, принимаем из табл. 1.2. Согласно рекомендаций [4], с.53, принимаем пониженные допускаемые напряжения кручения, для валов редукторов общего назначения, [τк ] = 25 МПа.

5.1 Определение диаметров входного валаредуктора

Схема входного вала редуктора

Рис. 5.1.

Согласно [7], с. 6 полученный диаметр округляем до ближнего большего значения из стандартного ряда Ra 40 ГОСТ6636-69.

Принимаем d 21 = 50 мм.

Диаметры других участков вала выбираем из стандартного ряда Ra 40 ГОСТ6636-69.

Принимаем d 22 =60 мм d 23 = 60 мм d 24 = 65 мм. .2. Определение диаметров промежуточного вала редуктора

Схема промежуточного вала редуктора

Рис. 5.1.


6. Определение конструктивных размеров зубчатых колес

6.1 Размеры зубчатых колес цилиндрической передачи I ступени

Устанавливаем способ изготовления шестерни и вала – вместе или отдельно. Согласно рекомендаций [1], если - отдельно, – вместе, где d - диаметр впадин шестерни (d = 200,7 мм , см. разд.3.3.3.11), d вш - диаметр участка вала под шестерню (d вш = 60 мм , см. разд. 5.2)

-выполняем вместе.

6.2 Размеры зубчатых колес цилиндрической передачи II ступени

Устанавливаем способ изготовления шестерни и вала – вместе или отдельно. Согласно рекомендаций [1], если - отдельно, – вместе где d – диаметр впадин шестерни,,d =150 мм, d вш - диаметр участка вала под шестерню d вш = d 24

 

 

 

 

 

 

 

содержание   ..  319  320  321   ..