Главная      Учебники - Производство     Лекции по производству - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  168  169  170   ..

 

 

Основы теории и технологии контактной точечной сварки

Основы теории и технологии контактной точечной сварки

Министерство общего и профессионального образования

Российской Федерации

Сибирский государственный аэрокосмический университет

имени академика М. Ф. Решетнева

С. Н. Козловский

Основы теории и технологии контактной точечной сварки

Монография

Красноярск 2005

УДК 621.791.763

ББК

К 59

Рецензенты:

Печатается по решению Редакционно – издательского совета университета

Козловский С.Н.

К 59 Основы теории и технологии контактной точечной сварки: Монография / С. Н. Козловский; СибГАУ. — Красноярск:, 2003. — ??? с. ISBN

В монографии изложены основы теории и технологии контактной точечной сварки. Рассмотрены основные процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей при их сближении до соприкосновения; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла в зоне сварки и методы количественной его оценки; объемные пластические деформация металла в зоне точечной сварки. Приведены математические модели основных термодеформационных процессов, протекающих в зоне сварки на стадии нагрева: равновесия силовой системы электрод–детали–электрод; теплового состояния зоны сварки; силового взаимодействия деталей в площади свариваемого контакта; пластической деформации металла в зоне точечной сварки. Описаны методики расчетного определения: размеров ядра и средних значений температуры в зоне сварки; среднего значения нормальных напряжений в площади контакта деталь–деталь; давления расплавленного металла в ядре; сопротивления пластической деформации металла в условиях формирования точечного соединения; определения степени и скорости пластической деформации металла в зоне сварки, его температуры; высоты уплотняющего пояска в свариваемом контакте. Описаны методики математического моделирования процессов формирования точечных сварных соединений. Показано изменение параметров основных термодеформационных процессов, протекающих в зоне сварки на стадии нагрева и влияние на них режимов сварки. Рассмотрены технологические аспекты повышения устойчивости процесса формирования точечных сварных соединений и их качества.

Монография предназначена для научных и инженерно-технических работников, занимающихся совершенствованием существующих и разработкой новых сварочных технологий контактной точечной сварки. Она может быть полезна аспирантам, студентам вузов и техникумов сварочных специальностей.

УДК 621.791.763

ББК

ISBN

© Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, 2005

© С.Н. Козловский


ВВЕДЕНИЕ

1. Сущность и технологии традиционных способов контактной
точечной сварки

1.1.

Двусторонняя точечная сварка, ее разновидности и основные параметры точечных сварных соединений

1.2.

Основные технологические приемы контактной точечной сварки

1.2.1.

Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения ....

1.2.2.

Технологические приемы традиционных способов контактной точечной сварки

1.2.3.

Контактная точеная сварка с обжатием периферийной зоны соединений

1.3.

Параметры режимов — факторы регулирования процесса точечной сварки

1.3.1

Время сварки

1.3.2

Сила сварочного тока

1.3.3

Усилие сжатия электродов

1.3.4

Форма и размеры рабочих поверхностей электродов

1.3.5

Критерии подобия для определения режимов сварки

2. Основные процессы, протекающие при контактной точечной
сварке

2.1

Сближение свариваемых деталей

2.1.1

Деформирование свариваемых деталей при их сближении ..

2.1.2.

Влияние деформирования деталей на усилие сжатия в свариваемом контакте

2.1.3.

Экспериментально-расчетный метод определения усилия
деформирования деталей при их сближении

2.2

Формирование контактов при сжатии деталей электродами

2.2.1

Формирование механических контактов

2.2.2

Формирование электрических контактов

2.3

Электрическая проводимость зоны сварки

2.3.1

Электрические сопротивления контактов при точечной сварке

2.3.2.

Электрические сопротивления собственно свариваемых
деталей

2.3.3

Общее электрические сопротивления зоны сварки

2.4.

Нагрев металла в зоне сварки и методы количественной его
оценки

2.4.1

Источники теплоты в зоне формирования сварного соединения..

2.4..

Температурное поле в зоне формирования соединения

2.4.3

Тепловой баланс в зоне сварки и расчет сварочного тока

2.5.

Объемная пластическая деформация металла в зоне формировании точечного сварного соединения

2.5.1.

Методики экспериментальных исследований макродеформаций металла в зоне сварки

2.5.2.

Характер пластических деформаций металла в зоне сварки на стадии нагрева

3. Математические модели основных термодеформационных
процессов, протекающих в зоне точечной сварки

3.1.

Термодеформационное равновесие силовой системы электрод–детали–электрод при традиционных способах сварки

3.2.

Термодеформационное равновесие силовой системы электрод–
–детали–электрод при контактной точечной сварке с обжатием периферийной зоны соединения

3.2.1

Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска

3.2.2.

Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения

3.3

Оценка теплового состояния зоны сварки на стадии нагрева

3.3.1.

Экспериментально-расчетный метод оценки теплового
состояния зоны сварки на стадии нагрева

3.3.2.

Методики расчетного определения размеров ядра и средних значений температуры в зоне сварки

3.4.

Математические модели силового взаимодействия деталей в площади свариваемого контакта при формировании соединения

3.4.1.

Методика расчета среднего значения нормальных напряжений в площади контакта деталь–деталь

3.4.2.

Методика расчета давления расплавленного металла в ядре

3.5.

Методики определения параметров термодеформационных
процессов, протекающих в зоне точечной сварки

3.5.1.

Сопротивление пластической деформации металла в условиях деформирования при повышенных температурах

3.5.2.

Определение степени и скорости пластической деформации
металла в зоне точечной сварки

3.5.3.

Определение температуры металла в зоне пластических
деформаций

3.5.4.

Определение высоты уплотняющего пояска в свариваемом
контакте



4. Математическое моделирование процессов формирования
точечных сварных соединений

4.1.

Методики расчета изменения диаметра уплотняющего пояска в процессе контактной точечной сварки

4.1.1.

Методика расчета изменения диаметра уплотняющего пояска при традиционных способах контактной точечной сварки

4.1.2.

Методика расчета изменения диаметра уплотняющего пояска при точечной сварке с обжатием периферии соединения

4.2

Изменение термодеформационных процессов на стадии нагрева при традиционных способах точечной сварки

4.2.1

Изменение параметров термодеформационных процессов при традиционных способах точечной сварки

4.2.2.

Особенности термодеформационных процессов при точечной сварке с обжатием периферийной зоны соединения

4.2.3.

Влияние режимов сварки на параметры термодеформационных процессов, протекающих в зоне формирования соединения

4.3.

Критерий оценки режимов контактной точечной сварки

5. Технологические аспекты получения качественных сварных
соединений

5.1.

Дефекты сварных соединений, причины и механизмы их
образования

5.1.1.

Непровары

5.1.2.

Выплески

Устойчивость процесса контактной точечной сварки

5.3.1.

Методика определения устойчивости процесса точечной сварки

5.3.2.

Регулирование устойчивости процесса точечной сварки

Глава 6. Программированные режимы традиционных способов точечной сварки

7. Программированные режимы способов точечной сварки с обжатием периферийной зоны соединения


ВВЕДЕНИЕ

Контактная точечная сварка (КТС) — это один из способов контактной сварки, который наиболее широко применяется в машиностроении, в особенности в массовом производстве. Так, например, в автомобилестроении около 70 % объема сварочных работ выполняется именно этим способом. Значительное применение КТС получила и в других отраслях: в тракторном и сельскохозяйственном машиностроении, при производстве пассажирских и товарных вагонов и других отраслях промышленности и строительства. Этому способствовали положительные особенности процесса КТС: незначительные остаточные деформации, высокая производительность, высокий уровень механизации и автоматизации, гибкость и универсальность технологического процесса, отсутствие вспомогательных сварочных материалов, высокая экологичность и культура производства.

Вместе с тем, описанных выше достоинств КТС становилось недостаточно по мере расширения использования КТС для получения неразъемных соединений в изделиях ответственного назначения из современных конструкционных материалов: низко- и среднелегированных, коррозионностойких, теплостойких и жаропрочных сталей и сплавов, алюминиевых, магниевых, титановых и других сплавов, например, в авиационной и космической промышленности, которые работают при повышенных температурах, в агрессивных средах, при динамических нагрузках. В этих случаях к качеству точечных сварных соединений предъявляются повышенные требования по надёжности и стабильности прочностных характеристик, уровню остаточных деформаций, а также, в ряде случаев, по гарантированному уровню надёжности полного отсутствия таких дефектов, как непровары и выплески.

Технологии традиционных способов КТС (к ним относят способы точечной сварки, при осуществлении которых детали сжимают токопроводящими электродами и в периоды сжатия, действия импульса тока и проковки соединений параметры режима сварки, как правило, не изменяют) к началу 70-х годов ХХ века достигли своего совершенства и практически исчерпали возможности своего развития. Они вполне удовлетворяли требованиям массового производства, но во многих случаях не могли обеспечить требуемый уровень качества при сварке изделий ответственного назначения. Поэтому в этот период и стали развиваться способы КТС с программированным изменением параметров режима (сварочного тока, усилия сжатия электродов) в период формирования соединений, которые позволяют управлять термодеформационными процессами, протекающими в зоне сварки. Они открывали новые возможности повышения качества получаемых точечных соединений.

В данной работе сделана попытка обобщить теоретические и технологические разработки способов КТС с программированным воздействием на зону формирования точечных сварных соединений.

1. Сущность И технологии традиционных способов контактной точечной сварки

Технологии электрической контактной точечной сварки за более чем вековой период своего развития (привилегия (патент) из Департамента торговли и мануфактур России на изобретение точечной сварки выдана русскому инженеру Н. Н. Бенардосу в 1887 г.) достигли весьма высокого уровня совершенства и отличаются большим разнообразием способов их практического осуществления. Для создания наиболее оптимальных условий формирования точечных соединений при сварке конкретных деталей из различных материалов, отличающихся теплофизическими свойствами, применяют разные виды тока (переменный, постоянный, низкочастотный и др.) и разные циклы параметров режимов сварки, отличающиеся параметрами усилия сжатия электродов и сварочного тока в разные периоды процесса сварки. Ниже рассмотрены сущность и наиболее распространенные технологии двусторонней точечной сварки, общая схема формирования точечных сварных соединений и основные термодеформационные процессы, которые протекают в зоне сварки и наиболее значимо влияют на конечное качество получаемых сварных соединений.

1.1 . Двусторонняя точечная сварка, ее разновидности и основные параметры точечных сварных соединений


Электрическая контактная точечная сварка (КТС) — это способ контактной сварки (рис. 1.1), при котором свариваемые детали 1, расположенные перед сваркой внахлестку, сжимают токопроводящими электродами 2 и 3 сварочным усилием F СВ , а затем от источника питания ИП (например, трансформатора) пропускают импульс сварочного тока I СВ длительностью t СВ и таким образом сваривают их по отдельным участкам касания, называемым сварными точками 4 [1, 2].

При КТС для образования физического контакта между свариваемыми поверхностями и их активации в месте формирования соединения затрачивается тепловая и механическая энергия, которая подводится извне сжатием деталей электродами и пропусканием через зону сварки импульса сварочного тока [3, 4]. Наиболее надежным способом, который обеспечивает образование физического контакта и способствует возникновению межатомарных связей в зоне формирования соединений, является расплавление металла в приповерхностных слоях деталей с образованием общего его объема. Поэтому в технологии КТС, за редким исключением [5, 6], принято, что необходимым условием образования точечного сварного соединения является образование общей зоны расплавленного металла соединяемых деталей . В специальной литературе по сварке общую зону расплавленного металла свариваемых деталей обычно называют «литое ядро», «ядро расплавленного металла» или просто «ядро» [2...4, 7…17].

Параметрами, которые наиболее значимо влияют на процесс формирования точечного сварного соединения и различают между собой все многообразие известных способов двусторонней точечной сварки, являются род сварочного тока и форма его импульса. Это их различие (рис. 1.2) обусловлено в основном особенностями устройства силовых электрических контуров машин контактной точечной сварки [18, 19]. Поэтому способы КТС по роду сварочного тока и форме его импульса разделяют на следующие группы [2, 3, 15, 16]:

- контактная точечная сварка переменным током (рис. 1.2, а );

- низкочастотная контактная точечная сварка (током пониженной частоты монополярными или униполярными импульсами) (рис. 1.2, б );

- конденсаторная контактная точечная сварка (рис. 1.2, в );

- контактная точечная сварка постоянным током (рис. 1.2, г );

Каждая из этих групп способов КТС имеет свои особенности, преимущества и недостатки в технологическом и техническом аспектах. Кроме того, они различаются и экономической эффективностью [20, 21].

Точечное сварное соединение (рис. 1.3), поскольку сварку в подавляющем числе случаев осуществляют электродами с цилиндрической рабочей частью, обычно считают осесимметричным. Такое соединение (сварную точку (рис. 1.3, а )) приято характеризовать геометрическими параметрами в плоскости оси электродов, которые называют «конструктивными элементами соединения ». Кроме того, геометрическими параметрами характеризуют также и рабочие части электродов (рис. 1.3, б ). Основными из них, наиболее часто используемыми и в большинстве случаев регламентируемыми, являются параметры, которые описывают ядро расплавленного металла (диаметр и высота ядра, проплавление деталей), остаточные деформации деталей (глубина вмятин от электродов), а также рабочие поверхности электродов (диаметр плоской и радиус сферической).

Ядро расплавленного металла (рис. 1.3, а , б ) в большинстве случаев характеризуют его размерами: диаметром d Я в плоскости контакта


деталь-деталь (свариваемого контакта), а также его высотой h Я или проплавлением деталей А1 и А3 .. Последние определяют отдельно для каждой детали как отношение к толщине деталей s 1 и s 2 расстояний h 1 и h 2 от плоскости свариваемого контакта до границы зоны расплавленного металла
(см. рис. 1.1) и выражают обычно в процентах [2, 3, 14…16]:

%, %. (1.1)

При точечной сварке деталей одноточечные соединения применяют относительно редко. В подавляющем числе случаев точечной сварки осуществляют многоточечные соединения деталей (рис. 1.4). Последние выполняют в виде одного (рис. 1.4, а ) или нескольких (рис. 1.4, б ) рядов сварных точек, расположенных вдоль нахлестки деталей.


К основным конструктивным элементам, характеризующим многоточечные соединения, относят: ширину нахлёстки В , расстояние (шаг) между точками t Ш в ряду (в шве), расстояниями между осями швов b , а также расстоянием u между крайними осями швов и кромками листов.

Перечисленные выше конструктивные элементы сварных соединений существенно влияют как на процесс их формирования при КТС, так и на показатели качества готовых сварных соединений. Поэтому их допускаемые значения в подавляющем большинстве случаев регламентируются как в зарубежной [22], так и отечественной практике КТС, например, в ГОСТах [23], ОСТах, отраслевых технологических рекомендациях, стандартах предприятий [14].

Размеры ядра (его диаметр dЯ и высота h Я , а также проплавление деталей А1 и А2 ) наиболее значимо влияют на свойства точечного соединения, в первую очередь, на прочностные. Поэтому получение оптимальных значений этих параметров, которые должны находиться в пределах между минимальными и максимальными допускаемыми их значениями, и является основной задачей технологии точечной сварки.

Минимально допускаемые значения диаметра ядра определяются влиянием целого ряда факторов точечной сварки, например, таких как прочность сварных соединений и стабильность ее значений, устойчивость процесса КТС против образования выплесков, непроваров и др. Их значения зависят от толщины s свариваемых деталей [3, 10, 23]:

, (1.2)

. (1.3)

Они регламентированы ГОСТ 15878 – 79 (табл. 1.1). Эти табличные значения диаметров ядра выработаны многолетней практикой КТС.

Таблица 1.1

Минимально допускаемые значения диаметра ядра для соединений
группы А по ГОСТ 15878 – 79.

Толщина деталей,
s = s1

Минимальный диаметр ядра,
dЯ

Минимальная ширина нахлестки, В

Минимальный шаг между точками, tШ

алюминиевые, магниевые, медные сплавы

стали, титановые сплавы

алюминиевые, магниевые, медные сплавы

стали,

0,5

1,0

1,2

1,5

2,0

2,5

3,0

4,0

5,0

6,0

3

4

5

6

7

8

9

12

14

16

10

14

16

18

20

22

16

32

40

50

8

11

13

14

17

19

21

28

34

42

10

15

17

20

25

30

35

45

55

65

Величина проплавления деталей А1 и А2 в большинстве случаев должна находиться в пределах 20…80 % от толщины деталей. На титановых сплавах верхний предел увеличивают до 95 %, а на магниевых — уменьшают до 70 %.

Минимально допускаемое расстояние между осями швов b устанавливают из условия отсутствия влияния шунтирования тока на процесс КТС. Его выбирают таким, чтобы расстояние до соседних точек в любом направлении, например t 1 , было не меньше минимально допускаемого шага между точками t Ш .

Минимальную ширину нахлестки В , а также минимальное расстояние от центра точки или оси шва до края нахлестки u устанавливают по условию отсутствия объемных пластических деформаций металла на краю нахлестки. Причем минимальные значения и должны быть не менее 0,5В .

Глубина вмятин от электродов с1 и с2 не должна превышать 20 % от толщины деталей, поскольку они ухудшают внешний вид соединений и обычно уменьшают их прочность. Только при сварке деталей неравных толщин или в труднодоступных местах её допускают увеличивать до 30 % [2, 3, 15, 16].

Широкое применение в современном машиностроении точечных сварных соединений вместо клепаных, в том числе при изготовлении узлов летательных аппаратов, обусловлено не только преимуществами их технико-экономических показателей [22, 23], но и конкурентной способностью эксплуатационных свойств [2, 3, 9, 11, 15, 17]. Прежде всего, это относится к их прочности, которую в основном определяют размеры ядра расплавленного металла в совокупности с другими конструктивными элементами сварных соединений, причем в первую очередь — к прочности динамической [24...29]. Именно поэтому соответствие полученных при КТС размеров ядра заданным оптимальным значениям, в первую очередь его диаметра и проплавления деталей, является одним из основных критериев качества и надёжности соединений деталей, выполненных контактной точечной сваркой [10, 11, 14, 15].

1.2 . Основные технологические приемы контактной точечной сварки

При КТС энергетическое воздействие на металл зоны формирования соединения осуществляют импульсом тока, а силовое – сжатием деталей электродными устройствами в месте сварки. Количественно это воздействие характеризуют параметрами режима сварки и представляют обычно в виде циклограмм их изменения во времени. Значения параметров тока и усилия сжатия электродов, характер их изменения в отдельные периоды цикла сварки определяют параметры термодеформационных процессов, протекающих в зоне сварки, и таким образом влияют на устойчивость процесса формирования соединения, в частности против образования непроваров и выплесков, на размеры ядра, местные и общие остаточные деформации и, в конечном итоге, на эксплуатационные свойства сварного соединения. Этим в основном и различаются отдельные способы точечной сварки, наиболее распространенные из которых рассмотрены ниже.

1.2.1. Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения

В общем случае для формирования сварных соединении деталей, в том числе и при контактной точечной сварке, необходимо образование физического контакта между соединяемыми их поверхностями, химических связей в нем и развитие релаксационных процессов в объемах металла зоны сварки. В каждой элементарной точке эти процессы идут последовательно, а по отношению ко всей соединяемой поверхности могут протекать одновременно. При КТС их зарождение и развитие обеспечивается комплексным тепловым и силовым воздействием на металл зоны формирования соединения [2, 3, 16, 30, 31].

Термодеформационные процессы, протекающие в зоне формирования точечного сварного соединения, в соответствии со значимостью их влияния на конечный результат сварки принято условно разделять на основные процессы и процессы сопутствующие [2, 3, 16].

К основным термодеформационным процессам относят процессы, без протекания которых формирование точечного сварного соединения в принципе невозможно. К ним относят, в частности, следующие:

- нагрев и расплавление металла проходящим током;

- образование общей зоны расплавленного металла (ядра) и его кристаллизацию на последней стадии формирования соединений;

- микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения.

К сопутствующим термодеформационным процессам сварки относят процессы, которые не только не обязательны для формирования сварного соединения, но некоторые из них и нежелательны, так как ухудшают условия формирования соединения и конечные результаты сварки. При КТС они являются неизбежным следствием протекания в зоне сварки процессов основных. В частности, к сопутствующим процессам относят следующие:

- дилатацию металла в зоне формирования соединений;

- перемешивание жидкого металла в ядре и удаление окисных
пленок;

- воздействие термодеформационного цикла сварки на свойства металла в зоне сварки и прилегающей к ней области;

- образование остаточных напряжений и деформаций в деталях;

- массоперенос в контактах электрод – деталь.

Несмотря на изменение значимости влияния каждого из перечисленных выше основных термодеформационных процессов, в процессе сварки общая схема формирования соединения происходит по единой схеме. Поэтому цикл сварки во временной последовательности условно разделяют на отдельные этапы, в соответствии со значимостью влияния какого-либо из основных факторов в их период [3, 16]. По-видимому, цикл сварки во временной последовательности целесообразно разделить на следующие четыре этапа (рис. 1.5), которые отличаются не только значимостью влияния какого-либо из основных факторов на процесс формирования соединения, но и основными технологическими задачами, выполняемыми сочетанием параметров режима в этот период:

1-й этап — от начала сжатия деталей электродами усилием F Э до начала импульса тока IСВ ;

2-й этап — от начала импульса тока IСВ до начала расплавления металла в контакте деталь – деталь (до начала формирования ядра);

3-й этап — от начала формирования ядра диаметром dЯ в контакте деталь – деталь до окончания импульса сварочного тока IСВ ;


4-й этап — от окончания импульса сварочного тока IСВ до снятия усилия F Э сжатия деталей электродами.

На первом этапе сжатие деталей электродами вызывает микропластические деформации в контактах деталь-деталь и электрод-деталь, следствием которых является формирование механических и электрических контактов. Главная задача на этом этапе — это обеспечение стабильности параметров контактов, что является исходным условием устойчивого течения процесса сварки и получения стабильных размеров ядра.

На втором этапе включение тока приводит к нагреву металла в зоне сварки, который интенсифицирует процессы микропластических деформаций, разрушения окисных пленок, формирования механических и электрических контактов. Нагретый металл зоны сварки расширяется, деформируется преимущественно в зазор между деталями, вследствие чего в контакте деталь – деталь образуется рельеф (уплотняющий поясок). Это приводит к расхождению электродов Δ . Динамика увеличения уплотняющего пояска на этом этапе определяет изменение плотности тока в зоне сварки и скорость тепловыделения в ней. Главная задача на этом этапе — это обеспечение оптимальной скорости нагрева металла в зоне сварки.

На третьем этапе происходит расплавление металла в области контакта деталь-деталь, образование ядра и уплотняющего пояска вокруг него, который предотвращает выброс расплавленного металла. По мере прохождения тока продолжается нагрев металла в зоне сварки, ядро растет по диаметру и высоте, происходит перемешивание металла, удаление поверхностных пленок и образование металлических связей в жидкой фазе. Продолжаются процессы теплового расширения металла в зоне сварки и его пластической деформации. Главная задача на этом этапе — это обеспечение оптимальной степени макродеформаций металла в зоне сварки, которая бы обеспечивала оптимальную скорость нагрева металла в зоне сварки и предотвращала выброс расплавленного металла.

На четвёртом этапе происходит охлаждение металла в зоне сварки и его кристаллизация в ядре, параметры которого определяют эксплуатационные свойства точечного сварного соединения. При охлаждении металла уменьшается его объем, вследствие чего возникают остаточные напряжения и деформации. Главная задача на этом этапе — это обеспечение степени макродеформаций металла в зоне сварки, достаточной для компенсации усадки металла.

1.2.2. Технологические приемы традиционных способов контактной точечной сварки

Среди циклов традиционных способов КТС (рис. 1.6), по-видимому, наиболее распространенным является цикл изменения параметров режима (рис. 1.6, а ), предложенный еще Н. Н. Бенардосом. При сварке по этому циклу детали сжимают токопроводящими электродами (см. рис. 1.1) неизменным усилием F СВ и через определенное время сжатия t СЖ пропускают импульс сварочного тока заданной силы I СВ и длительности t СВ , а затем через определенное время проковки t ПР , достаточное для кристаллизации и охлаждения зоны сварки, усилие сжатия электродов снимают. Его технологические возможности до настоящего времени удовлетворяют требованиям практики КТС не только сварки деталей из малоуглеродистых сталей в автомобиле- и сельхозмашиностроении [10, 17], но и сварки некоторых специальных сталей и сплавов [9, 15].

С целью предотвращения образования в ядре дефектов усадочного характера (трещин, пор) при сварке деталей из материалов, склонных к их образованию, например, относительно толстых деталей или деталей, склонных к закалке, а также деталей из высокопрочных материалов, применяют цикл (рис. 1.6, б ), в котором при кристаллизации расплавленного металла в ядре и охлаждения зоны сварки (в период t ПР проковки) усилие сжатия электродов увеличивают (прикладывают ковочное усилие F К ). Этим увеличивают в ней степень пластической деформации металла, компенсирующей его усадку при кристаллизации и охлаждении.




Величину ковочного усилия F К [3]:

, (1.4)

и момент его приложения t К ( ) задают с учетом термодеформационных процессов, протекающих в зоне сварки, и увеличивают обычно монотонно с заданной скоростью, но иногда и ступенчато. И все же достичь поставленной цели только приложением F К не всегда удается, поскольку его величина ограничивается прочностью электродов и техническими возможностями машин точечной сварки [14...19, 32...37].

В технологии КТС известны и циклы (рис. 1.6, в ), при осуществлении которых в период проковки соединения t ПР усилие сжатия электродов не только не увеличивают, но даже и уменьшают [38]. Например, при сварке свинцовых деталей со стальными.

При сварке деталей из углеродистых и низколегированных сталей с целью предотвращения образования в соединении закалочных структур и трещин путем уменьшения скорости его охлаждения применяют цикл
(рис. 1.6, г ), в котором сжатие деталей электродами вообще прекращают одновременно с окончанием импульса сварочного тока [39]. Для решения этой же задачи, а также с целью улучшения условий проковки соединений и уменьшения требуемой величины ковочного усилия, а иногда для термообработки соединения в сварочных электродах применяют цикл, в котором после окончания импульса сварочного тока I СВ в период проковки соединения t ПР пропускают дополнительный подогревающий импульс тока I Д (рис. 1.6, д ). Дополнительный подогревающий импульс тока I Д , уменьшающий сопротивление деформации металла в зоне сварки, может применяться в сочетании с любой циклограммой изменения усилия сжатия электродов. Подогревающий ток пропускают обычно в виде отдельного дополнительного импульса I Д , но иногда и как модулированное продолжение импульса сварочного [3, 11, 15, 16, 40…46].

Для получения оптимальных значений начальных электрических сопротивлений в контактах, в особенности при сварке деталей из высокопрочных материалов или деталей с относительно невысоким качеством подготовки поверхностей, в практике точечной сварки применяют цикл (рис 1.6, е ), в котором перед импульсом сварочного тока в период сжатия деталей t СЖ производят их обжатие повышенным усилием сжатия электродов F 0 (усилием обжатия). Этот технологический прием используют и для предупреждения наружных и внутренних начальных выплесков, а также для вытеснения пластичных прослоек грунта, клея [3, 9, 11, 15, 16]. Величину усилия предварительного обжатия деталей обычно принимают равной величине ковочного усилия [3]:

. (1.5)

Причем, применение при КТС равных усилий обжатия и проковки соединения упрощает конструкцию приводов сварочных машин.

Однако в ряде случаев только предварительным обжатием деталей не удаётся получить оптимальные значения начальных электрических сопротивлений в контактах. В этом случае применяют цикл (рис 1.6, ж ), в котором металл в зоне сварки предварительно, перед сварочным импульсом I СВ , подогревают отдельным либо совмещенным со сварочным дополнительным подогревающим I П импульсом тока [3, 14, 15, 47…49].

Последние исследования процессов КТС показывают, что во многих случаях точечной сварки стабилизировать процесс формирования соединения можно интенсификацией микро- и макропластических деформаций металла в зоне сварки путем уменьшения его сопротивления пластической деформации на стадиях сжатия и проковки соединения. В таких случаях одном цикле рационально использовать и предварительный, и дополнительный подогревающие импульсы тока, в частности, даже при сварке деталей из легких сплавов [3, 50]. Подогревающие импульсы тока I П и I Д можно использовать в сочетании с любой циклограммой изменения усилия сжатия электродов (рис 1.6, з ). Для достижения указанных выше целей иногда используют цикл (рис. 1.6, и ), в котором до импульса сварочного тока и после его окончания, осуществляют колебания электродов с инфразвуковой, звуковой [51], или ультразвуковой [52, 53] частотой.

В ряде случаев, например, при сварке деталей из жаропрочных материалом, рационально применять даже цикл (рис 1.6, к ), в котором усилие сжатия электродов F Э во время t СВ действия импульса сварочного тока уменьшают по определенной программе [54].

Кроме того, программированное изменение усилия сжатия электродов во время импульса сварочного тока позволяет повысить и энергетическую эффективность процесса КТС, а также его устойчивость против образования непроваров. Для достижения этих целей применяют циклы, в которых усилие сжатия электродов в процессе сварки изменяют. Причем, в процессе КТС усилие сжатия электродов чаще всего увеличивают от начального до конечного его значения. И осуществляют это ступенчато (рис. 1.6, л ) или монотонно (рис 1.5, м ) [10, 15, 18, 54...58].

Нагрев металла в зоне сварки осуществляют обычно одним импульсом сварочного тока и регулируют изменением его силы и длительности. Форму импульса тока при сварке на серийных машинах, как правило, не регулируют. Характер его нарастания и спада определяется естественным модулированием, зависящим от индуктивности вторичных контуров сварочных машин (рис 1.2). Это обусловлено ограниченными возможностями изменения силы сварочного тока путем фазового его регулирования при небольшой длительности импульсов и промышленной частоте тока 50 Гц. Только при сварке сталей на машинах переменного тока, иногда представляется возможным регулировать нарастание и спад импульса тока, а также регулировать спад тока при сварке деталей из легких сплавов, на низкочастотных машинах и машинах постоянного тока [2…4, 7...19].


1.2.3. Контактная точеная сварка с обжатием периферийной зоны
соединений

Выше было показано, что традиционные способы КТС отличаются весьма большим многообразием используемых технологических приемов. Несмотря на это уровень дефектности сварных точек в серийном производстве даже при изготовлении узлов летательных аппаратов, достигает
5 % [32]. В условиях точечной сварки в обычных отраслях машиностроения он еще выше. Это говорит о том, что традиционные способы практически исчерпали свои технологические возможности. В этой связи весьма перспективным направлением развития технологии КТС является совершенствование и разработка новых способов точечной сварки с целенаправленным программированным воздействием на процесс формирования соединения. Одним из таких перспективных способов КТС является так называемая «контактная точечная сварка с обжатием периферийной зоны соединений» [3, 16].

При контактной точечной сварке с обжатием периферийной зоны соединений (рис. 1.7) свариваемые детали сжимают токопроводящими электродами усилием F Э и прикладывают вокруг них обжимными втулками автономное дополнительное сжимающее усилие F 0 (усилие обжатия).


В основе способов КТС с обжатием периферийной зоны соединений лежит изобретенный в 1930 г. П. Н. Львовым специальный электрод

(рис. 1.8) [59]. Этот электрод (рис. 1.8, а ) содержит собственно токопроводящий электрод 2 и концентрично расположенный вокруг него силовой пуансон (обжимную втулку) 3, соединенный с приводом обжатия, которым служит упругий элемент 7.

Данное электродное устройство позволяет общее усилие сжатия деталей F СВ , которое задают приводом сварочной машины, разделить на две его составляющих. Одна его часть F Э (см. рис. 1.7, а ), как и при традиционных способах КТС, сжимает свариваемые детали посредством токопроводящих электродов в центральной части зоны формирования соединения (над ядром). Другая же его часть F 0 — посредством силовых пунсонов обжимает свариваемые детали в периферийной ее области (в области уплотняющего пояска). Таким образом, в силу конструктивных особенностей данное электродное устройство предопределяет основные признаки способа КТС с обжатием периферийной зоны соединений в области уплотняющего пояска [16, 60], при котором в любой момент соотношение усилий определяется следующей зависимостью (см. рис. 1.7, б ):

. (1.6)

Проведенные за истекший период исследования показали высокую эффективность данного способа КТС по предотвращению выплесков и непроваров. Устойчивость процесса формирования соединения против образования выплесков повышается вследствие увеличения усилия сжатия деталей в области уплотняющего пояска [3, 16, 61]. Устойчивость же процесса сварки против образования непроваров можно повысить вследствие уменьшения вероятности образования выплесков при обжатии периферии соединения, проводя сварку на более жестких режимах [3, 16]. Кроме того, обжатие периферийной зоны соединений позволяет предотвращать дефекты усадочного характера (трещины, поры) [62], уменьшить глубину вмятин от электродов, зазоры между деталями в нахлестке и ее ширину [3, 16]. Применение этого способа КТС позволяет также увеличить прочность соединений, в том числе и динамическую, путем прогиба деталей в направлении оси электродов до начала импульса тока [63], обжатием во время его действия [16] или же проковкой периферии соединения на стадии охлаждения зоны сварки [64].

Наряду с выявлением технологических возможностей способа КТС с обжатием периферийной зоны соединений совершенствовались и конструкции электродных устройств для их осуществления. В результате был разработан ряд электродных устройств (рис 1.8), отличающихся в основном конструкциями приводов усилий на электроде или обжимной втулке.

Весьма привлекательной, позволяющей получить практически любую программу изменения усилия обжатия F0 , кажется конструкция устройства (рис. 1.8, б ) с электромагнитным приводом 6 усилия на обжимной втулке 3 [65]. Однако в нем усилие F0 зависит от осевого смещения втулки 3 относительно токопроводящего электрода 2, что уменьшает стабильность усилия обжатия вследствие отклонений глубины вдавливания электрода в поверхности детали 1. Кроме того, при современных токопроводящих материалах электромагнитный привод должен иметь катушку значительных геометрических размеров, чтобы получить требуемые усилия обжатия ( ). Это затрудняет использование данного электродного устройства в практике КТС.

Следует отметить, что конструкции электродных устройств с упругими элементами в приводах усилия на обжимной втулке F0 (рис. 1.8, а ) или усилия на токопроводящем электроде FЭ (рис. 1.8, в ) проработаны более глубоко. В них требуемые усилия обеспечиваются путем деформации упругих элементов 7 или 8 на заранее установленную величину h при сжатии деталей. В первой конструкции таких электродных устройств [59, 66…68] усилие FЭ на электроде 2 задается приводом машины посредством силового элемента 5, а на обжимной втулке 3 — упругим элементом 7 (рис. 1.8, а ). Во второй же конструкции (рис. 1.8, в ) наоборот — привод машины 5 задает усилие обжатия F0 на обжимной втулке, а на токопроводящем электроде 2 усилие FЭ задается упругим элементом 8 [69].

Несмотря на некоторые конструктивные различия, эти электродные устройства имеют одинаковые преимущества (относительно простую конструкцию и малые габаритные размеры) и общий недостаток — усилия F0 (рис. 1.8, а ) или FЭ (см. рис. 1.8, в ) также зависит от перемещения обжимной втулки 3 относительно токопроводящего электрода 2. Это приводит к их отклонениям при сварке вследствие вдавливания токопроводящих электродов 2 в поверхности деталей 1. Кроме того, конструкции этих электродов не вполне удовлетворяют требованиям по технологичности, так как очень трудоемка настройка электрода на требуемое при сварке усилие обжатия вследствие высокой жесткости упругого элемента.

По-видимому, их использование возможно при сварке деталей малых толщин, когда величины усилий FЭ и F0 , а следовательно и жесткость упругих элементов, а также взаимные осевые смещения электрода и втулки в процессе формирования соединений относительно малы. В этом случае отклонения силового воздействия на детали от заданных значений в меньшей степени влияет на качественные показатели соединений ввиду кратковременности цикла сварки и инерционности механических процессов в силовых приводах сварочных машин.

Наиболее приемлемым для сварки деталей малых, средних и больших толщин является электродное устройство с гидравлическим приводом [70]. В нем (рис. 1.8, г ) усилие F0 на обжимной втулке 3 задается приводом машины посредством силового элемента 5, а усилие FЭ на токопроводящем электроде 2 — гидроприводом 9. Достоинством данной конструкции является то, что гидропривод можно расположить в верхней части электрододержателя 4 и уменьшить габариты рабочей части устройства. Но это усложняет подвод тока к подвижному электрододержателю 4. Такой привод позволяет получать стабильные усилия, независящие от осевого смещения обжимной втулки относительно электрода. Здесь следует отметить, что для него не разработаны специализированные устройства, которые задавали бы требуемое для КТС давление рабочей жидкости.

Широкому использованию в условиях реального производства способов КТС с обжатием периферийной зоны соединения, несмотря на их высокую технологическую эффективность, препятствуют рабочие характеристики электродных устройств, в первую очередь относительно низкая стойкость токопроводящего электрода 2. Это обусловлено тем, что обжатие деталей в области уплотняющего пояска диаметром dП вызывает необходимость уменьшения внутреннего диаметра dВВ обжимной втулки 3 и, следовательно, наружного диаметра DЭ рабочей части электрода 2 до значений, близких к диаметру ядра dЯ , которые значительно меньше стандартных. Поэтому увеличивается уровень сжимающих напряжений в рабочей части электрода 2, ухудшается температурный режим его работы из-за повышения плотности сварочного тока и затрудненного охлаждения. В результате интенсифицируются пластические деформации в приконтактных объемах металла электродов и процессы взаимодействия металлов в контактах электрод-деталь.

Таким образом, формирование точечных сварных соединений как при традиционных способах сварки, так и при сварке с обжатием периферийной зоны соединений происходит по единой схеме и способы КТС различаются между собой в основном количественными параметрами термодеформационных процессов, протекающих в зоне сварки на разных этапах формирования соединения, которые определяются внешним энергетическим и силовым воздействием на металл зоны сварки (параметрами режима). Процесс КТС с обжатием периферийной зоны соединений предоставляет больше возможностей силового воздействия на зону сварки и потому весьма перспективен в технологическом плане.

1.3 . Параметры режимов — факторы регулирования процесса точечной сварки

Режимы точечной сварки конкретного соединения (марка металла и сочетание толщин деталей) определяются совокупностью параметров, из которых основными являются: сила I СВ импульса сварочного тока; длительность t СВ импульса сварочного тока (время сварки); усилие сжатия электродов F СВ ; форма и размеры рабочих поверхностей электродов (d Э — при плоской и R Э — при сферической).

Режимы КТС принято подразделять на два типа: «жесткие» режимы, характеризующиеся малым t СВ и большим I СВ , и «мягкие» режимы с относительно большим t СВ и малым I СВ [2…4, 7...11, 13…17].

Известны предложения, по которым можно количественно оценивать жесткость режимов, например, по отношению отдельных параметров режима КТС: , по показателям, представляющим собой различные интерпретации критерия Фурье [71, 72], среди которых наиболее распространен критерий А.С. Гельмана [10]:

, (1.7)

где s — толщина свариваемых деталей; a — коэффициент температуропроводности их материала;

а также по критерию технологического подобия [13]:

, (1.8)

где Q Н — энергия, выделившаяся в объеме ядра; Q М — тепловые потери в массу свариваемых деталей; ρПЛ — удельное электрическое сопротивление металла при температуре плавления ТПЛ ; d Я и h Я — диаметр и высота ядра расплавленного металла; σТ предел текучести свариваемого металла в холодном состоянии; F Э усилие сжатия электродов. a — коэффициент теплопроводности; γ — плотность; cm — удельная массовая теплоемкость.

При увеличении жесткости режимов увеличивается мощность источников теплоты и уменьшается роль теплоотвода в формировании температурного поля, вследствие чего увеличивается проплавление деталей. Вместе с этим возрастает и склонность процесса КТС к образованию выплесков. Поэтому при сварке на жестких режимах применяют большие усилия сжатия электродов, чем при сварке на мягких режимах. [3, 15]

Энергетическое и силовое воздействие на металл зоны формирования соединения при КТС обеспечивается конкретным сочетанием параметров режима. При этом изменение каждого из них приводит к интенсификации или, наоборот, подавлению отдельных термодеформационных процессов, протекающих на отдельных или всех этапах процесса сварки. В конечном итоге, это сказывается на устойчивости процесса формирования соединения и размерах ядра (рис. 1.9).

1.3.1. Время сварки

В теории и практике КТС под термином «время сварки» понимается длительность t СВ импульса сварочного тока I СВ . При неизменной силе сварочного тока I СВ время сварки t СВ определяет количество теплоты Q ЭЭ , которое в этом случае выделяется в зоне формирования соединения пропорционально длительности импульса тока. Поэтому с увеличением времени сварки растет проплавление деталей А и, в большей мере, диаметр d Я ядра расплавленного металла (рис. 1.9, а ).

Вместе с этим при увеличении t СВ возрастает и влияние теплоотвода на характер распределения температуры в зоне сварки, которое сопровождается большим разогревом деталей и увеличением деформаций. Кроме того, при увеличении t СВ все большая часть Q ЭЭ отводится в окружающий зону сварки металл Q 2 и в электроды Q 3 , что приводит к уменьшению энергетического КПД процесса КТС (см. п. 2.4). При некотором t СВ может наступить состояние теплового равновесия, при котором вся выделившаяся теплота отводится из зоны сварки, то есть , а количество теплоты в зоне сварки Q 1 не изменяется. Это приводит к тому, что ядро (А и d Я ) расплавленного металла перестаёт расти. Следовательно, увеличение t СВ дальше момента теплового равновесия и энергетически, и технологически нецелесообразно потому, что ни к чему кроме увеличения разогрева деталей не приводит.


1.3.2. Сила сварочного тока

Сила сварочного тока I СВ является одним из основных параметров режима КТС, поскольку при неизменной длительности его импульса t СВ определяет не только количество энергии, выделяющейся в зоне сварки, но и, что наиболее важно для процесса формирования соединения, градиент её увеличения по времени. Вследствие этого именно сила сварочного тока определяет скорость нагрева металла в зоне формирования соединения.

В ряде случаев сварки, в особенности при малом расстоянии (шаге) между сварными точками, сила сварочного тока I СВ , т. е. тока который протекает через зону формирования соединения и определяет тепловыделение в ней, и сила тока, который протекает во вторичном контуре сварочной машины I 2 , могут различаться между собой. Причиной этого может являться ток шунтирования I Ш , который протекает вне зоны сварки, в частности, через ранее сваренные точки (рис. 1.10) или контакты деталь-деталь, расположенные вне зоны формирования соединения, например, при точечной сварке с обжатием периферийной зоны соединения. Таким образом, значение вторичного тока сварочной машины I 2 зависит от сварочного тока I СВ и тока шунтирования I Ш :

(1.9)

Ток шунтирования . Зона проводимости тока шунтирования представляет собой электрическую цепь с сопротивлением r Ш , параллельную электрической цепи зоны сварки с сопротивлением r ЭЭ . Вследствие этого силу тока шунтирования можно вычислить по формуле [3]:

, (1.10)

где — электрическое сопротивление шунтирующей ветви; ρ — удельное электрическое сопротивление металла свариваемых деталей;
k Э — коэффициент ( );
s — толщина детали; b ПР — ширина шунта, приведенная с учётом растекания тока и равная ; d П и d Ш — диаметры уплотняющего пояска и шунтирующего контакта соответственно.

Сварочный ток. От силы сварочного тока размеры ядра расплавленного металла зависят в наибольшей степени (рис. 1.9, б ). С увеличением I СВ проплавление деталей А и диаметр ядра d Я растут почти прямо пропорционально изменению I СВ .

Силу сварочного тока I СВ , по той же причине, что и t СВ , пока определяют только ориентировочно по технологическим рекомендациям или по эмпирическим зависимостям [2…4, 7…11, 13, 15…17]. В отличие от t СВ , для определения которого расчетные методики вообще отсутствуют, для определения I СВ в теории КТС предложено много самых разнообразных зависимостей, к сожалению, не отличающихся высокой точностью и универсальностью, например, зависимостей следующего вида [73...76]:

; ;

; ,

где s — толщина деталей; d Э — диаметр рабочей поверхности электрода;
ki – опытный коэффициент; θ — температура плавления (с учетом скрытой теплоты плавления); ρ и λ — удельное электрическое сопротивление и коэффициент теплопроводности; d Т — диаметр ядра (см); ρТ — удельное электрическое сопротивление металла в момент его плавления (мкОм/см).

В практике традиционных способов КТС для сварочного импульса, длительностью t СВ , усредненную силу сварочного тока I СВ чаще всего приближенно рассчитывают по следующей зависимости, которая получена из общеизвестного закона Джоуля – Ленца [8…11, 16]:

, [3] (1.11)

где Q ЭЭ — количество теплоты, выделяющееся в зоне сварки, которое требуется для образования сварного соединения заданных размеров (величина Q ЭЭ определяется по уравнению теплового баланса (см. ниже п. 2.4.3));
mr — коэффициент, который учитывает изменение сопротивления зоны сварки r ЭЭ в процессе формирования соединения (для низкоуглеродистых сталей он равен , для алюминиевых и магниевых сплавов — , для коррозионно-стойких сталей — , для сплавов титана — ; r ДК — электрическое сопротивление деталей в конце сварки (определение r ДК см. ниже п. 2.3.3).

1.3.3 . Усилие сжатия электродов

Усилие сжатия электродов (сварочное усилие) F СВ — один из важнейших параметров режима КТС, который оказывает влияние на все основные процессы, ответственные за формирование соединения, в частности, на микро- и макропластические деформации, на выделение и перераспределение теплоты, на охлаждение металла в зоне сварки и кристаллизацию его в ядре.

С увеличением F СВ увеличиваются пластические деформации металла в зоне сварки и площади контактов, уменьшается плотность тока в них, уменьшается электрическое сопротивление участка электрод–электрод и стабилизируется его величина. Поэтому при постоянстве остальных параметров режима увеличение F СВ вызывает уменьшение размеров ядра
(рис. 1.9, в ), прочности сварных точек при одновременном понижении и их стабильности. Если же увеличение F СВ сопровождается таким увеличением I СВ или t СВ , что размеры ядра остаются неизменными, то с ростом величины сварочного усилия прочность точек возрастает и становится более стабильной. [10, 77…79]

Как и сварочный ток, сварочное усилие определяют в основном по эмпирическим зависимостям, предложенным для приближенного расчета или пересчета сварочного усилия и основанным на подобии процессов КТС. Методики пересчета F СВ исходят из подобия процессов формирования соединений при сварке деталей из одних и тех же металлов разных толщин. Все они, к сожалению, также не отличаются ни высокой точностью, ни универсальностью. В частности, для пересчетов и расчетов F СВ предложены следующие зависимости [10, 15, 73, 80...82]:

; ;

; ; ;

; ,

где F 0 — удельное сварочное усилие; d Я — диаметр ядра расплавленного металла с известным F СВ ; d Я — диаметр ядра, для которого рассчитывают F СВ ; P 0 — удельное давление, определяемое экспериментально; d Э — диаметр рабочей поверхности электрода; s — толщина деталей; k 1 и k 2 —коэффициенты, учитывающие сопротивление деформации металла и конструктивную жесткость изделия; σ 02 — условный предел текучести свариваемого металла при нормальной температуре; — предел текучести свариваемого металла при температуре 300о С;

1.3.4. Форма и размеры рабочих поверхностей электродов

Форма и размеры рабочих поверхностей электродов (рис. 1.3: d Э — при плоской и R Э — при сферической), контактирующие со свариваемыми деталями, существенно влияют на качество получаемых сварных соединений. Увеличение площади контакта электрод–деталь, например, из-за износа рабочей поверхности электродов приводят к уменьшению плотности тока и давления в зоне сварки, а, следовательно, к уменьшению размеров ядра и снижению качества готовых точечных соединений (рис. 1.9, г ).

Применяемая форма электродов зависит от свойств материала свариваемых деталей. Так, например, для сварки титановых, алюминиевых и магниевых сплавов, как правило, применяют электроды со сферическими рабочими поверхностями. Стали же, в основном сваривают электродами с плоской рабочей поверхностью.

Размеры рабочих поверхностей электродов в большинстве случаев выбирают исходя из толщины свариваемых деталей.

Радиус сферы электрода R Э определяют, ориентируясь на конечный диаметр отпечатка и допустимую глубину вмятины, которая не должна превышать 10 % от толщины детали [83]. Исходя из этого условия предложены следующие зависимости для определения минимального R Э MIN и максимального R Э MAX радиусов рабочих поверхностей электродов в зависимости от толщины s свариваемых деталей [84]:

.

Диаметры плоских рабочих поверхностей электродов выбирают с учетом диаметров ядра, которые в свою очередь задают по толщине деталей. Значения d Э определяют по следующим зависимостям [85, 86]:

, .

Однако в практике КТС размеры рабочих поверхностей электродов обычно не рассчитывают. Значения d Э и R Э , как правило, выбирают по технологическим рекомендациям (табл. 1.2), в которых они близки к значениям, рассчитанным по приведенным выше зависимостям. Окончательные значения t СВ , I СВ , F СВ и R Э или d Э определяют и корректируют на образцах технологической пробы [3, 15].

Поскольку приемлемые по точности для практики КТС методики оптимизации режимов сварки (сочетаний I СВ , t СВ и F СВ ) пока не разработаны параметры одного из них, как правило, время сварки t СВ , определяют ориентировочно по технологическим рекомендациям, основанным на экспериментальных исследованиях процессов КТС и опыте их практического использования в промышленности. После этого для принятого значения t СВ по приближенным методикам, определяют силу I СВ и усилие сжатия электродов F СВ [2…4, 7…11, 13, 15…17].

Таким образом, существующие расчетные методики определения основных параметров режима весьма не совершенны. У них можно отметить общий недостаток — они не отражают физической сущности процессов, протекающих при КТС, не являются универсальными и применимы только для тех ограниченных областей толщин и металлов, на основании результатов исследований которых они и получены. Они не могут использоваться для решения задач, связанных с программированным изменением термодеформационных процессов, протекающих при формировании точечных сварных соединений.

1.3.5 . Критерии подобия для определения режимов сварки

Выше, в п. 1.2.1 отмечалось, что, несмотря на изменение значимости влияния на отдельных этапах формирования соединения каждого из основных термодеформационных процессов, протекающих в зоне сварки, на процесс сварки общая схема формирования соединения происходит по единой схеме. При этом исследователями процесса КТС давно было подмечено, что при сварке деталей разных толщин параметры основных термодеформационных процессов изменяются по одинаковым закономерностям, то есть подобно. На основании результатов экспериментальных исследований рядом исследователей были разработаны основы теории подобия процессов КТС и предложен ряд критериев — безразмерных величин, математически описывающих это подобие [3, 4, 13, 16, 74…76, 87, 88].

Физические процессы подобны, если они описываются одним и тем же дифференциальным уравнением и имеют подобные начальные и граничные условия. Подобие выражается в том, что при определенных условиях в сходственных точках тел, т. е. в точках с одной и той же относительной координатой, например, в точках, расположенных в середине или на краю листа, достигаются одни и те же значения переменных параметров, в частности температуры или деформации.

По этим критериям, определяемым по моделям, рассчитывают масштабные коэффициенты для определения параметров процесса. Процессы точечной свирки деталей разной толщины могут быть подобны при равенстве критериев подобия, например, следующих [16]:

- критерий геометрического подобия

; (1.12)

- критерий гомохронности (подобия по времени — критерий Фурье)

; (1.13)

- критерий подобия тепловыделения

; (1.14)

- критерий подобия пластических деформаций

, (1.15)

где s — толщина деталей; d Я — диаметр ядра; I Д и t СВ — действующее значение сварочного тока и время его протекания; F СВ — сварочное усилие; с m , γ, ТПЛ , и σД — соответственно, массовая теплоёмкость, плотность, температура плавления и сопротивление деформации свариваемого металла.

Применение теории подобия позволяет по одному экспериментально определенному режиму с использованием критериев подобия рассчитать параметры режима сварки деталей других толщин. Значения критериев определяют по единичным опытам [3, 4, 15].

Однако часто расчеты по зависимостям (1.12…1.15) приводят к значительным погрешностям. Обусловлено это прежде всего тем, что в практике сварки не соблюдается критерий геометрического подобия
(см. табл. 1.1). Поэтому для приближенной оценки параметров режима в относительно малом диапазоне толщин (1…4 мм) пользуются рядом других, в основном эмпирических, соотношений, аналогичных по структуре указанным выше, например, [15].

Таким образом, различие способов точечной сварки определяется внешним силовым энергетическим и силовым воздействием на зону формирования соединения. Это воздействие влияет на параметры термодеформационных процессов, протекающих в зоне сварки, которые рассмотрены ниже, и определяющих качество получаемых соединений.

2. основные Процессы, протекающие при
контактной точечной сварке

Сварная точка является результатом сложных термодеформационных процессов, протекающих в зоне формирования соединения в течение цикла сварки. Некоторые из этих процессов протекают последовательно, а некоторые и параллельно. Параметры последних зависят не только от внешнего энергетического и силового воздействия на металла в зоне сварки, но и от сложного их взаимного влияния. Ниже рассмотрены закономерности протекания термодеформационных процессов, оказывающих наиболее значимое влияние на конечный результат сварки.

2.1. Сближение свариваемых деталей

Технологической операцией, которая первой выполняется в любом цикле КТС, является сближение свариваемых поверхностей до соприкосновения, поскольку собранные для сварки детали практически никогда плотно не прилегают между собой. Обусловлено это тем, что между свариваемыми деталями всегда имеются зазоры. Они являются следствием либо искривления деталей при выполнении технологических операций, которые предшествуют сварке, либо дефектов сборки деталей перед сваркой, или деформаций деталей непосредственно в процессе сварки предшествующих точек [3, 10, 11, 14…16].

В сближении свариваемых деталей до соприкосновения следует выделить два фактора, которые оказывают значимое влияние как на формирование начальных контактов, так и на процесс сварки в целом: геометрический фактор, который проявляется в искривлении деталей при их деформировании в процессе сближения, и силовой фактор, следствием влияния которого является отклонение усилия сжатия в контакте деталь–деталь от усилия сжатия электродов [14…16, 89… 91].

2.1.1. Деформирование свариваемых деталей при их сближении

Реальная деформация свариваемых деталей в процессе их сближения (рис. 2.1) представляет сложное сочетание признаков, близких как к чистому изгибу пластины (рис. 2.1, а ), так и к чистому ее прогибу по типу мембраны (рис. 2.1, д ). При этом переход от первого ее состояния ко второму происходит плавно (рис. 2.1, б...г ) по мере увеличения расстояния u от кромки нахлестки до центра электродов. Причем этот переход происходит тем быстрее (при меньшей величине u ), чем меньше расстояние t Ш до точек опоры вдоль нахлестки.

Наличие зазоров между деталями и операции их сближения до соприкосновения, которое приводит к сложному искривлению деталей, существенно изменяет как распределение напряжений в контактах, так и характер, протекающих в них микро- и макродеформаций. При отсутствии зазора (рис. 1.5, этап 1) можно допустить, что в контакте деталь-деталь деформируются две плоские поверхности, а при большом расстоянии от кромки листов до электродов (рис. 2.1, д ) — две сферические поверхности. В практике же сварки в основном встречаются промежуточные более сложные, несимметричные виды деформирования свариваемых деталей при их сближении (рис. 2.1, б...в ) [91].


Сложное искривление деталей при их сближении приводит как к уменьшению размеров ядра, так и к искажению его формы (рис. 2.2). Основной причиной этого является изменение формы контакта (рис. 2.3).

Исследования влияния величины зазора δ , шага между точками t =2 t Ш , расстояния от кромки нахлестки u и F СВ на величину и форму начального контакта выявили сложную их зависимость от перечисленных выше факторов. При этом измерение контурной площади контакта производили по известной методике угольных плёнок [92…94].

Форма контакта оценивалась коэффициентом формы k Ф , который характеризует отклонение формы контакта от окружности, т. е. эллипсоидность контакта. В этом случае реальный контакт принимается в форме эллипса, в котором взаимно перпендикулярные наибольшее и наименьшие значения диаметров контакта принимаются равными наибольшей и наименьшей 2 b оси эллипса (рис. 2.3). Эти оси сравниваются с диаметром d 0 условной окружности, площадь которой равна площади эллипса. В этом случае коэффициент формы контакта определяется по зависимости

. (2.1)


Очевидно, что коэффициент формы контакта показывает относительное отклонение формы контакта от окружности. Во всех случаях прогиба деталей при наличии зазора между ними контакт вытягивается вдоль оси, перпендикулярной линии края нахлестки (рис. 2.4).

Увеличение расстояния от края листа u при постоянстве остальных параметров приводит к уменьшению контурной площади сварочного контакта S К относительно ее величины при отсутствии зазора S 0 (S К /S 0 ) и уменьшению коэффициента её формы k Ф , т. е. его эллипсоидности
(рис. 2.4, а ). Это объясняется плавным переходом вида деформации детали


от изгиба к прогибу по типу мембраны.

Увеличение расстояния между точками t приводит к увеличению контурной площади контакта и увеличению искажения его формы (рис. 2.4, б ). Причем увеличение k Ф происходит до некоторого значения t , зависящего от величины зазора δ , а затем с увеличением t эллипсоидность контакта k Ф уменьшается. Это также объясняется изменением вида деформации деталей в контакте. Так, увеличение S К при уменьшении u и увеличении t можно объяснить увеличением усилия сжатия F в площади контакта, так как усилие, которое затрачивается на деформацию деталей при их сближении при таком изменении t и u уменьшается. Уменьшение же k Ф при увеличении u объясняется переходом от изгиба детали в месте сжатия к ее прогибу по типу мембраны. Начальное увеличение k Ф при увеличении t , наоборот, обусловлено переходом от прогиба детали по типу мембраны к ее изгибу, а дальнейшее уменьшение k Ф обусловлено уменьшением искривления деталей при увеличении t .

При увеличении зазора δ (рис. 2.4, в ) площадь контакта S К вначале уменьшается, что можно объяснить уменьшением усилия в площади контакта, а затем резко увеличивается вплоть до первоначальных размеров. Последнее обусловлено тем, что при достижении зазором некоторой величины δ , которое зависит от конкретного сочетания значений t и u , происходит резкий переход от изгиба детали к её прогибу по типу мембраны. Дальнейшее же увеличение забора приводит к монотонному уменьшению площади контакта, причиной чего является уменьшение усилия сжатия в площади контакта. Эллипсоидность контакта при увеличении зазора вначале увеличивается, а затем монотонно уменьшается. Это объясняется описанным выше изменением вида деформации деталей. Причем, положение точек перегиба (δ = 2…2,5 мм , и t = 100…125 мм ) на кривых изменения S К /S 0 и k Ф не является постоянным, а изменяется при изменении сочетаний значений t , δ и F .

Увеличение усилия F сжатия деталей (рис. 2.4, г ) во всех случаях приводит к монотонному увеличению площади контакта деталь–деталь, обусловленному увеличением давления в его площади. При этом монотонно уменьшается и искажение формы контакта.

Таким образом, контурная площадь контакта деталь–деталь всегда уменьшается при наличии зазора между ними, а искажение её формы зависит от конкретных сочетаний расстояния между точками и расстояния до кромки нахлёстки, а также значений зазора и усилия сжатия деталей. При величинах зазоров, встречающихся в практике КТС, искажение формы контакта однозначно увеличивается с увеличением расстояния между точками и уменьшением расстояния до кромки нахлёстки.

2.1.2. Влияние деформирования деталей на усилие сжатия
в свариваемом контакте

Из силовой схемы двусторонней точечной сварки (см. рис.1.1) следует, что усилие сжатия в контактах электрод–деталь и деталь–деталь равны усилию сжатия деталей электродами. Однако это всегда справедливо только для контактов электрод–деталь. Что же касается усилия сжатия в контакте деталь–деталь, то во многих случаях сварки оно отличается от усилия сжатия деталей электродами. И причиной этого являются зазоры, которые приводят к тому, что некоторая часть усилия сжатия электродов (в дальнейшем будем обозначать ее — F Д ) затрачивается на деформирование свариваемых деталей при их сближении до соприкосновения. Вследствие этого усилие в площади свариваемого контакта FC меньше усилия сжатия электродов F Э на величину F Д .

Оценка величины отклонения FC от F Э важна не только для формирования начальных контактов, а для всего процесса формирования соединений при КТС. Так, устойчивость процесса формирования соединений против образования выплесков при традиционных способах сварки связывают, в частности, с наличием зазоров между свариваемыми деталями. При этом основной причиной образования выплесков при наличии зазоров считают значительное уменьшение усилия сжатия деталей в свариваемом контакте, несмотря на то, что величину зазоров при КТС жестко регламентируют (табл. 2.1) [10, 11, 91, 95].

Очевидно, что такие допуски, в особенности при сборке крупногабаритных изделий, например, при сборке обечаек диаметром в несколько метров с перегородками или набором, выдержать весьма проблематично. Такие ограничения, несомненно, удорожают технологию сборки и сварки. При этом, конкретные результаты исследований, которые бы установили степень влияния F Д на отклонение F С от F Э в процессе КТС и тем самым обосновали бы такое объяснение причин повышенной склонности процесса сварки к образованию выплесков и такие жесткие допуски на величину зазоров, очень немногочисленны.

Таблица 2.1

Допускаемая величина зазоров при КТС

Длина
участка

(мм)

Толщина более тонкой детали — s , мм

0,3 ≤ s < 1

1 ≤ s < 1,5

1,5 ≤ s < 2,5

s ≥ 2,5

Допускаемая величина зазоров δ , мм

100

0,5

0,4

0,3

0,2

200

1,0

0,8

0,6

0,4

300

1,5

1,2

0,9

0,6

По-видимому, наименее трудоемким было бы расчетное определение величины F Д , например, решением известного уравнения С. Жермен – Лагранжа, описывающего прогиб пластинки [96],

, (2.2)

где w – величина прогиба пластинки; x и y – координаты; q – внешняя нагрузка; D – цилиндрическая жесткость листа, равная

;

здесь E – модуль упругости; s – толщина листа; μ – коэффициент Пуассона.

Однако точное решение уравнения (2.2) даже для идеализированных граничных условий представляет большие трудности и, например, по мнению автора работы [97], не всегда оправдано. Кроме того, аналитическое определение величины F Д затрудняется еще и тем, что схема закрепления деталей при точечной сварке, например, посредством уже сваренных точек весьма неопределенна. Она не имеет близких аналогов среди идеализированных схем закрепления пластинок в известных [96…98] аналитических решениях этой задачи.

В экспериментальных исследованиях силового взаимодействия деталей при наличии зазоров [91, 99, 100], величина усилия F Д , необходимая для сближения свариваемых деталей, определялась как функция комплексного влияния ряда технологических факторов точечной сварки (рис. 2.5):

F Д = F(t, t* , u, α, δ , s, R Э ),


где t расстояние между сваренными точками; t * расстояние до соседних сваренных точек; u расстояние от кромки листа до центра свариваемой точки, которое, как правило, равно половине ширины В нахлестки; α угол раскрытия зазора в нахлестке; δ – величина зазора в месте сварки; s толщина деталей; R Э радиус сферы рабочей поверхности электродов.

Так как при точечной сварке зона нагрева ограничена и составляет относительно небольшую часть зоны упругопластической и упругой деформации деталей при их сближении, то считается, что усилие прогиба деталей в процессе сварки не изменяется [95]. Такое допущение позволяет проводить эксперименты по определению F Д на холодных образцах вне сварочной машины.

Моделирование зазоров производилось по известной методике, показанной на (рис. 2.6). В этом случае образцы 1 в местах имитации уже сваренных точек сжимались специальными струбцинами 2 усилием 2…8 кН, которое вполне обеспечивало жесткое закрепление образцов толщиной 1…4 мм при их деформировании электродами в месте сварки (рис. 2.6, а ). Величина зазора δ , а также угол α раскрытия зазора в нахлестке устанавливались прокладками 3. Кроме того, зазоры моделировали и по известной методике [95], в соответствии с которой образцы сваривали через размерные прокладки (рис. 2.6, б ).


Деформация образцов производилась на экспериментальной установке изготовленной на базе разрывной машины УММ-5 (рис. 2.7).

В ней верхний 1 и нижний 2 электрододержатели с установленными в них электродами закреплены в губках разрывной машины 3 и 4. На нижнем электрододержателе 2 жестко закреплена направляющая скоба 5, в направляющей 6 которой верхний электрододержатель 1 установлен с возможностью осевого перемещения. На кронштейне 7, жестко закрепленном на верхнем электрододержателе 1, установлен индикатор перемещения часового типа 8, установка нуля на котором производится регулировочным винтом 9. Деформируемые детали 10 помещаются между электродами перпендикулярно их оси. Поддерживающее приспособление 11 служит для фиксации пространственного положения деформируемых деталей.

Прогиб ω деформируемых деталей 10 измерялся с точностью ± 0,005 мм по сближению h электродов 1 и 2, а величина деформирующего усилия измерялась по шкале разрывной машины с точностью ± 10 Н. Погрешность Δ h измерения сближения деталей h учитывалась как среднестатистическая поправка. Она появляется из-за деформации элементов конструкции установки при нагружении, внецентренного расположения индикатора перемещения и вдавливания электродов в детали. Величина погрешности Δ h , которую определяли при сжатии одного листа, зависит от сжимающего усилия F Д (рис. 2.8). В итоге прогиб одного листа определялся по выражению

.

В экспериментах использовались образцы из сплавов АМц, Д16Т, АМг6 и МА2-1 размером 300 × 400 мм и толщиной 1...5 мм. Измерения деформирующего усилия F Д при сочетании факторов каждой ячейки производились три раза.

Для определения значимости влияния на величину F Д усилия сопротивления деталей их сближению до соприкосновения семи технологических факторов точечной сварки, которые показаны выше (рис. 2.5), планировались четырёхфакторный эксперимент в пяти уровнях (латинский квадрат) и трехфакторный эксперимент в семи уровнях по известным методикам [101…105].

При проведении четырехфакторного эксперимента в пяти уровнях осуществляли проверку значимости влияния на величину F Д факторов t * , α, R Э и s при неизменных значениях параметров t , δ и u . В результате получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, для условий данного эксперимента равным 3,9, следующим образом:

; ;

; .

Таким образом, из этого эксперимента следует, что влияние фактора Д, т. е. толщины деталей s , на величину F Д значимо, а влияние факторов А, В и С, т. е. t * , α и R Э — не значимо.

Проверку значимости влияния исследуемых факторов t , δ, u на величину F Д при неизменных значениях параметров t * , α, R Э и s осуществляли проведением трехфакторного эксперимента в семи уровнях. В результате также получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, который для условий данного эксперимента равен 3,9, следующим образом:

; ; .

Следовательно, все исследуемые в данном эксперименте факторы А, В и С, т. е. расстояние между сваренными точками t , величина зазора в месте сварки δ и расстояние от кромки листа до центра свариваемой точки u на величину F Д влияют значимо.

Степень влияния каждого из факторов на величину усилия сопротивления деталей деформации при их сближении F Д можно оценить по соотношению дисперсий. Тогда значимо влияющие на величину F Д факторы в порядке уменьшения их влияния располагаются следующим образом:

; ; ; .


Таким образом, из семи исследуемых технологических факторов значимо влияют на величину F Д только четыре вышеуказанных: толщина деталей s , расстояние между точками t , величина зазора в месте сварки δ и расстояние от кромки листа до центра свариваемой точки u (рис. 2.9). Влияние же расстояния до соседних сваренных точек t * , угла раскрытия зазора в нахлестке α и радиуса сферы рабочей поверхности электродов R Э в исследуемом диапазоне их изменения не значимо и находится в пределах статистического разброса измеренных значений F Д .

Зависимость F Д от значимо влияющих на его величину факторов однозначна при любых их сочетаниях. Величина F Д возрастает с увеличением s , δ и u , а также с уменьшением t (рис. 2.9). При этом градиент изменения F Д , характеризующий степень влияния каждого из факторов, согласуется с приведенным выше соотношением их дисперсий.

Для определения количественной зависимости между усилием сопротивления свариваемых деталей их прогибу F Д и значимо влияющими на его величину технологическими факторами КТС проводились однофакторные эксперименты по общеизвестной методике. Проведенными исследованиями установлено следующее.


С увеличением толщины деталей s характер увеличения усилия сопротивления свариваемых деталей их прогибу F Д практически не изменяется при всех сочетаниях остальных значимых факторов (рис. 2.10). Это же можно сказать и о характере уменьшения F Д при увеличении расстояния между сваренными точками t (рис. 2.11).

Влияние величины зазора δ и расстояния до кромки листа u на усилие сопротивления свариваемых деталей их прогибу F Д не столь однозначно (рис. 2.12). Так, при сжатии деталей у кромки нахлестки, т. е. при небольших значениях u (кривая 1 на рис. 2.12, а ) или при небольших отношениях δ /t (рис. 2.12, б ), что имеет место при малой величине зазора δ или большом шаге между точками t , увеличение F Д происходит практически пропорционально увеличению зазора. Это объясняется тем, что при таких условиях искривление деталей в месте сжатия небольшое, характер деформации листов близок к чистому изгибу и детали деформируются в упругой области (см. рис. 2.1).


При увеличении отношения δ /t деформирование листов переходит от их изгиба к прогибу по типу мембраны. Кривизна деталей в месте сжатия увеличивается и деформации могут выходить за пределы области упругих. В этом случае детали в области, прилегающей к месту сжатия, могут деформироваться упруго-пластически или даже пластически. В следствие этого прямо пропорциональная зависимость усилия F Д от величины зазора δ нарушается и рост величины F Д замедляется (рис. 2.12, а ).

С увеличением расстояния до кромки нахлестки u усилие сопротивления свариваемых деталей их прогибу увеличивается F Д (рис. 2.13). Однако в этом случае рост F Д происходит только до определенного соотношения между параметрами δ, u и t , а затем прекращается (рис. 2.13, а , б ).


Это объясняется тем (см. рис. 2.1), что по мере увеличения отношения u / t характер деформации деталей изменяется от состояния, близкого к чистому изгибу (при малых значениях отношений u / t и δ/ t ), к состоянию, близкому к чистому прогибу по типу мембраны (при увеличении отношений u / t и δ/ t ). При достижении отношением u / t определенного значения, которое зависит от соотношения s и δ , соответствующего переходу к прогибу по типу мембраны (рис. 2.1, г ), дальнейшее увеличение u на усилие F Д практически не влияет.

2.1.3. Экспериментально-расчетный метод определения усилия
деформирования деталей при их сближении

В связи с тем, что точно рассчитать величину усилия сопротивления свариваемых деталей их прогибу F Д решением уравнения (2.2) для условий точечной сварки представляет большие трудности, то для решения технологических задач рационально использовать приближенный экспериментально-расчетный метод определения при КТС усилий, необходимых для деформирования деталей до их соприкосновения [91, 100]. Его суть заключается в следующем.

Результаты экспериментальных измерений величины усилия сопротивления свариваемых деталей их прогибу F Д при различных сочетаниях технологических факторов значимо влияющих на его величину, приближенно можно описать следующими функциями, которые выражают зависимость F Д от каждого из них при неизменных значениях остальных:

,

где f 1 , f 2 , f 3 , f 4 – функции удовлетворяющие равенствам, которые представляется возможным определить по экспериментальным результатам деформирования свариваемых деталей при конкретных условиях точечной сварки; w – прогиб одной свариваемой детали.

Тогда можно предположить, что существует некая функция f 5 , которая удовлетворяет условию

. (2.3)

Толщину деформируемых деталей в зависимости (2.3) можно выразить через цилиндрическую их жесткость D по зависимости 2.2

,

а величину прогиба свариваемой детали w — через величину зазора δ

,

где D 1 , D 2 — цилиндрическая жесткость деталей, причем D 1 жесткость более тонкой детали.

С учетом приведенных выше зависимостей выражение (2.3) можно преобразовать к следующему виду:

, (2.4)

где f 6 – функция, удовлетворяющая равенству.

Эмпирическая зависимость (2.4) структурно согласуется с зависимостями, полученными при аналитических решениях задач прогиба пластинки для идеализированных граничных условий, например, в работе [97].

Анализом результатов экспериментальных исследований зависимости величины усилия сопротивления свариваемых деталей их прогибу F Д от значимо влияющих на неё технологических факторов точечной сварки установлено, что параметры u / t , (w /t ) и s влияют на величину F Д не однозначно. Так, в области упругих деформаций прогиба деталей значение функции f 6 в основном зависит только от параметра . В области же деформаций упругопластических — значения функции f 6 уменьшаются с увеличением параметра (w /t ) и толщины деталей s .

Определено, что с достаточной для приближенных технологических расчетов точностью функции f 6 может быть аппроксимирована зависимостью вида

,


где А и В – экспериментально определяемые коэффициенты, которые зависят, соответственно, от параметров (u /t ) — и от параметров (w /t ) и s (рис. 2.14).

Тогда, с учетом сказанного выше, зависимость (2.4) для расчетного определения величины усилия F Д сопротивления свариваемых деталей их прогибу можно преобразовать к следующему окончательному виду

, (2.5)

где δ — величина зазора в месте сжатия; D 1 и D 2

 

 

 

 

 

 

 

содержание   ..  168  169  170   ..