Сооружения и оборудование механической очистки сточных вод

 

  Главная       Учебники - Очистка воды      Свод правил СП 32.13330.2012 канализация. Наружные сети и сооружения. Актуализированная редакция СНиП 2.04.03-85 - 2012 год

 поиск по сайту           правообладателям

 

 

 

 

 

 

 

 

содержание   ..  1  2  3  4  5  6   ..

 

 

 

9.2 Сооружения и оборудование механической очистки сточных вод

9.2.1 Оборудование для предварительного процеживания

9.2.1.1 В составе станций очистки сточных вод необходимо предусматривать оборудование для задержания грубодисперсных примесей.

Прозоры решеток (размеры отверстий сит) должны быть не более 16 мм. Рекомендуется использовать решетки с прозорами не более 10 мм. Допускается, в зависимости от принимаемой технологической схемы очистных сооружений, применение решеток (сит) с меньшими прозорами, процеживателей, измельчителей, двухступенчатых схем процеживания (грубые и тонкие решетки) и т.п.

Примечание - Допускается не предусматривать решетки в случае подачи сточных вод на станцию очистки насосами при установке перед насосами решеток с прозорами не более 16 мм или решеток-дробилок, при этом: длина напорного трубопровода не должна превышать 500 м и на насосных станциях предусматривается вывоз задержанных на решетке отбросов.

9.2.1.2 Число единиц оборудования надлежит определять по паспортным данным оборудования и расчетным расходом сточных вод.

Нормы съема отбросов, расстояние между оборудованием, вспомогательное и грузоподъемное оборудование следует определять согласно паспортным данным оборудования, с учетом содержания грубодисперсных примесей в сточных водах.

Количество отбросов, задерживаемых решетками из городских сточных вод, в зависимости от ширины прозоров может составлять при ширине прозоров от 5 до 80 мм, соответственно от 25 до 1,5 л/ЭЧЖ в год, при средней плотности отбросов 750 кг/м3;

9.2.1.3 Рекомендуется осуществлять отмывку отбросов с решеток технической водой и их прессование. Накопление и перевозку отбросов следует предусматривать в герметически закрывающихся контейнерах. При накоплении отбросов свыше 2 сут необходима их пересыпка обеззараживающим реагентом в контейнере по мере накопления. Накопление отбросов свыше 5 сут запрещается.

Задержанные отбросы следует:

вывозить в места обработки (захоронения) твердых бытовых и промышленных отходов;

обезвоживать и направлять для совместной термической обработки с осадками сточных вод и/или ТБО;

компостировать совместно с осадками сточных вод.

9.2.1.4 В здании решеток необходимо предусматривать мероприятия предотвращающие поступление холодного воздуха через подводящие и отводящие каналы.

Пол здания решеток следует располагать выше расчетного уровня сточной воды в каналах не менее, чем на 0,5 м. Потери напора в решетках следует принимать по паспортным данным производителя. До и после каждой решетки (процеживателя, измельчителя) необходимо предусматривать запорные устройства для их отключения.

9.2.2 Сооружения для отделения песка

9.2.2.1 Песколовки необходимо предусматривать в составе станции биологической очистки городских и близких к ним по составу производственных сточных вод, производительностью более 100 м3/сут.

Число песколовок принимать не менее двух, причем все песколовки или отделения должны быть рабочими. До и после каждой песколовки необходимо предусматривать затворы, отключающие ее на периоды минимального притока и время ремонта.

Тип песколовки необходимо принимать с учетом производительности станции очистки, схемы очистки сточных вод и обработки их осадков, характеристики взвешенных веществ, компоновочных решений и т.п. Песколовки следует рассчитывать на гидравлическую крупность удаляемого песка не более 0,15 мм.

9.2.2.2 Удаление задержанного песка из песколовок всех типов надлежит предусматривать механическим или гидромеханическим способом. При объеме задерживаемого песка менее 0,05 м3/сут допускается удаление песка вручную.

Объем песковых приямков следует принимать из расчета на накопление не более двухсуточного объема выпадающего песка. Угол наклона, стенок приямка к горизонту - не менее 60°.

9.2.2.3 Для отмывки от органических примесей и обезвоживания удаляемого из песколовок песка необходимо предусматривать специальное оборудование (пескопромыватели и т.п.).

Для обезвоживания песка (без его отмывки) допускается использовать песковые площадки или бункеры.

Необходимо предусматривать резервирование механического оборудования для обработки песка путем установки одной дополнительной линии, либо устройства резервных песковых площадок.

Дренажную воду из сооружений для обезвоживания песка следует возвращать в поток очищаемых сточных вод перед решетками.

Высоту борта над уровнем воды в аэрируемых песколовках следует принимать не менее 0,5 м, для других типов - 0,3 м.

9.2.3 Усреднители

9.2.3.1 Необходимость усреднения состава и расхода сточных вод следует определять технико-экономическим расчетом.

9.2.3.2 Тип усреднителя (барботажный, с механическим перемешиванием, многоканальный и т.д.) необходимо выбирать с учетом характера колебаний расходов сточных вод и концентраций загрязняющих веществ (циклические, произвольные колебания и залповые сбросы), а также вида и количества взвешенных веществ.

9.2.3.3 Число секций усреднителей необходимо принимать не менее двух, причем обе рабочие. Допускается использование односекционного усреднителя при обеспечении возможности механической очистки его от отложений без опорожнения.

9.2.3.4 Необходимо предусматривать мероприятия по предотвращению осаждения взвешенных веществ в усреднителе, а также загнивания в нем сточных вод (если этот процесс не является желательным для процесса очистки сточных вод).

9.2.4 Сооружения осветления сточных вод

9.2.4.1 Сооружения осветления сточных вод рекомендуется применять на очистных сооружениях производительностью свыше 1000 м3/сут. С этой целью могут быть использованы первичные отстойники, механические процеживатели, а также для производственных сточных вод и их смеси с бытовыми - масло-, жиро-, нефтеловушки, гидроциклоны, флотаторы и др.

При обосновании допускается отказ от стадии осветления бытовых сточных вод. В этом случае прозоры процеживающих решеток должны быть не более 6 мм, а время пребывания в песколовках - не менее 10 мин.

9.2.4.2 Тип первичного отстойника (вертикальный, радиальный, горизонтальный, двухъярусный, тонкослойный и др.) следует выбирать с учетом принятой технологической схемы очистки сточных вод, производительности станции, компоновки сооружений, числа эксплуатируемых единиц, конфигурации и рельефа площадки, геологических условий, уровня грунтовых вод и т.п.

9.2.4.3 Число отстойников рекомендуется принимать исходя из условия надежности их действия при ремонте одного из них, но не менее двух.

При минимальном числе эксплуатируемых единиц (секций) отстойников их расчетный объем необходимо увеличивать так, чтобы перегрузка одного отстойника (секции) при расчетном расходе не превышала 25 %.

9.2.4.4 Расчет отстойников следует производить по кинетике осаждения взвешенных веществ с учетом требуемого эффекта осветления и коэффициента использования объема сооружения.

В отсутствие эксплуатационных или экспериментальных данных величину БПК5 в осветленной бытовой сточной воде допускается принимать исходя из количества БПК5 на одного жителя по выражению

БПК5 = 60 - 0,35Э,                                                    (22)

где Э - эффективность очистки от взвешенных веществ, %.

9.2.4.5 Основные конструктивные параметры отстойников следует принимать:

впуск исходной и сбор осветленной воды равномерно по периметру впускного и сборного устройств;

высоту нейтрального слоя на 0,3 м выше днища на выходе (для первичных отстойников),

угол наклона конического днища вертикальных отстойников и стенок осадочных приямков горизонтальных и радиальных отстойников - 50 - 55°.

9.2.4.6 Перемещение выпавшего осадка к приямкам следует предусматривать механическим способом, либо созданием соответствующего наклона днища.

9.2.4.7 Удаление осадка из приямка отстойника необходимо предусматривать самотеком, под гидростатическим давлением, либо насосами, предназначенными для перекачки осадков. При обосновании допускается применять удаление осадка гидроэлеваторами, эрлифтами, а при высокой плотности образующегося осадка производственных сточных вод - грейферами и т.д.

Гидростатическое давление при удалении осадка из первичных отстойников городских сточных вод следует принимать не менее 15 кПа (1,5 м вод. ст).

Диаметр труб для удаления осадка надлежит принимать не менее 200 мм.

9.2.4.8 Влажность осадка городских бытовых сточных вод необходимо принимать равной 95 - 96 % для всех типов первичных отстойников при самотечном удалении (под гидростатическим давлением) и 94 - 95 % при удалении насосами. При сбросе осадка станций водоподготовки в систему канализации содержание сухого вещества в осадке следует принимать на 15 - 30 % ниже, в зависимости от доли этого осадка, параметров воды, очищаемой на станции водоподготовки (максимальное значение - для высокоцветной обрабатываемой воды) и применяемых реагентов.

Влажность осадка производственных сточных вод допускается принимать по экспериментальным данным.

9.2.4.9 Удаление осадка из отстойников допускается непрерывное или периодическое.

Интервал времени при периодическом удалении следует устанавливать исходя из объема образующегося осадка и вместимости зоны его накопления, но не более двух суток.

При механизированном удалении осадка вместимость зоны накопления его в первичных отстойниках следует принимать по количеству выпавшего осадка за период не более 8 ч.

9.2.4.10 В целях улучшения биологического удаления фосфора допускается осуществлять в отстойниках частичную ацидофикацию. В этом случае следует предусматривать соответствующие мероприятия, включая увеличенное время пребывания осадка, его рециркуляцию или взмучивание. Для проведения ацидофикации допускается также использовать отдельные сооружения.

9.2.4.11 Для удержания всплывших веществ перед водосбросным устройством следует предусматривать полупогружные (не менее 0,3 м) перегородки и удаление накопленных на поверхности веществ.

Высоту борта отстойника над поверхностью воды надлежит принимать 0,3 м.

9.2.4.12 Кромку водослива на водоприемных (сборных) лотках необходимо предусматривать регулируемой по высоте.

9.2.5 Сооружения биологической очистки

9.2.5.1 Сооружения аэробной биологической очистки (незатопленные и затопленные биофильтры, аэротенки, циклические реакторы, биореакторы других типов, биологические пруды, искусственные болотные экосистемы) следует применять как основные для очистки сточных вод от органических загрязнений, поддающихся биохимическому разложению, соединений азота. Также рекомендуется использовать их для удаления фосфора.

При обосновании для производственных сточных вод и их смесей с бытовыми сточными водами допускается использование двух- и более ступеней биологической очистки.

9.2.5.2 Для сточных вод, высококонцентрированных по органическим загрязнениям, а также содержащих высокие концентрации сульфатов допускается использовать сооружения анаэробной биологической очистки.

9.2.5.3 Для эффективной аэробной биологической очистки загрязненных биоразлагаемыми органическими соединениями производственных сточных вод, либо их смеси с хозяйственно-бытовыми сточными водами, необходимо обеспечивать содержание биогенных элементов не менее 5 мг/л азота и 1 мг/л фосфора на каждые 100 мг/л БПКполн. При меньшем содержании биогенных элементов следует добавлять их в виде солевых растворов, либо других материалов (отходов и др.), содержащих их в большом количестве.

9.2.5.4 Дополнительное удаление азота надлежит предусматривать с помощью биологической нитри-денитрификации. Дополнительное удаление фосфора возможно производить с помощью биологического (так называемое улучшенное биологическое удаление фосфора), химического (с помощью солей железа или алюминия), либо комбинацией этих методов (биолого-реагентное удаление).

9.2.5.5 При использовании реагентов их допускается добавлять перед сооружениями осветления, в аэробные зоны сооружений (либо в аэробной части цикла процесса очистки), перед илоразделителями, либо в возвратный ил. При добавлении реагентов не в аэрируемые зоны необходимо предусматривать мероприятия по их смешению с жидкостью в соответствии с требованиями СП 31.13330. Проектирование узлов приема реагентов, приготовления и дозирования их растворов также следует в соответствии с требованиями СП 31.13330.

Запрещается использовать в качестве реагентов для осаждения фосфора на сооружениях биологической очистки городских сточных вод отходы переменного состава, а также содержащие тяжелые металлы в концентрациях, превышающих требования к содержанию этих элементов в коагулянтах для питьевого водоснабжения более, чем в пять раз.

9.2.5.6 Для очистных сооружений с нагрузкой свыше 50 тыс. ЭКЖ следует использовать биологическое, либо биолого-реагентное удаление фосфора.

При применении биологического удаления азота и фосфора необходимо обеспечивать максимальную эффективность использования органических загрязнений сточной воды как субстрата для процессов денитрификации и дефосфотации. При использовании в технологической схеме стадии осветления сточной воды ее эффективность должна регулироваться исходя из обеспечения оптимального поступления органических загрязнений на стадию биологической очистки (с учетом энергоэффективности сооружений в целом).

При необходимости обеспечения концентрации общего фосфора в очищенной воде менее 1 мг/л следует предусматривать комбинированные биолого-реагентные удаления фосфора.

Расчет процессов удаления фосфора надлежит производить на основе содержания общего фосфора в поступающей (осветленной) сточной воде.

9.2.5.7 При использовании реагентов следует предусматривать следующие соотношения для достижения концентрации фосфора фосфатов менее 1 мг/л:

с использованием железа - 2,7 кг железа/кг осажденного фосфора;

с использованием алюминия - 1,3 кг алюминия/кг осажденного фосфора.

Для получения концентраций фосфора фосфатов менее 0,5 мг/л необходимо увеличить указанное соотношение не менее, чем в два раза, менее 0,2 мг - не менее, чем в три раза.

Дополнительный прирост избыточного активного ила следует принимать:

при улучшенном биологическом удалении фосфора - 3 кг сухого веществ/кг удаленного общего фосфора;

2,5 кг сухого вещества/кг добавленного железа;

4 кг сухого вещества/кг добавленного алюминия.

9.2.5.8 В качестве исходных параметров для расчета процессов биологической очистки с удалением азота (либо азота и фосфора) допускается использовать значения средней нагрузки по БПК5, взвешенным веществам, общему азоту и общему фосфору за две недели холодного периода года, характеризующиеся максимальной нагрузкой по БПК за три года наблюдений. Если средние значения максимальной нагрузки за указанные 2 недели не могут быть определены из-за недостаточной частоты отбора проб (как минимум 4 значения в неделю), следует использовать в качестве расчетной нагрузку 85 % обеспеченности, причем необходимо анализировать не менее 40 известных значений нагрузки за каждый год из трех лет наблюдений. При наличии выраженной тенденции изменения загрязненности сточных вод допускается исходные данные принимать по последнему году наблюдений. При отсутствии таких данных, либо для сооружений, обслуживающих менее 20 тыс. ЭКЖ, расчетную нагрузку следует определять в соответствии с 9.1.4.

В отсутствие данных по содержанию в поступающей и осветленной сточной воде соединений общего азота и общего фосфора, допускается использовать в качестве исходных данных концентрацию азота аммонийных солей и фосфора фосфатов с повышающими коэффициентами 1,25 и 1,6 соответственно.

9.2.5.9 Значения минимальной и максимальной расчетной температуры сточных вод следует принимать как среднее за две недели с соответствующими экстремальными значениями за три года наблюдений, а при отсутствии данных - по экстремальной величине из аналогичных данных для трех, близких по производительности населенных пунктов, расположенных в одной климатической зоне, для аналогичного типа канализационной системы.

9.2.5.10 Температура в сооружениях аэробной биологической очистки не должна быть ниже 10 °С и выше 37 °С. При наличии меньших и больших значений при обосновании необходимо предусматривать корректировку температуры (подогрев, либо охлаждение), либо применять другие методы очистки.

9.2.5.11 При обосновании (при недостаточно благоприятном соотношении в сточных водах БПК к общему азоту и/или общему фосфору, а также при технико-экономическом обосновании) допускается использование для обеспечения процессов биологической денитрификации и/или дефосфотации органических реагентов или материалов, либо нетоксичных отходов (5-го класса опасности):

для денитрификации - любых хорошо биоразлагаемых растворенных (либо растворимых) органических веществ, как реагентов (уксусная кислота, технический этиловый спирт и др.), так и отходов (молочная и сырная сыворотка и др.), либо продуктов (патока и др.). Использование метилового спирта в качестве реагента для денитрификации запрещается;

для дефосфотации - муравьиной и уксусной кислот.

Потребность во внешнем углероде допускается принимать из расчета 5 кг ХПК/кг азота, подлежащего денитрификации и не обеспеченного субстратом. При использовании органических реагентов надлежит принимать необходимые меры по минимизации их потребления (автоматизация контроля необходимости и дозирования реагентов), а также учитывать добавляемое количество органического вещества при расчетах потребности сооружения в кислороде, а также прироста избыточного ила (биопленки).

9.2.6 Биологические фильтры (биофильтры)

9.2.6.1 Биофильтры допускается применять как основные сооружения биологической очистки от органических загрязнений при одноступенчатой схеме или в качестве одной или нескольких ступеней для очистки от органических загрязнений и/или аммонийного азота при многоступенчатой схеме очистки.

9.2.6.2 Капельные биофильтры следует устраивать с естественной аэрацией, высоконагружаемые - как с естественной, так и с искусственной аэрацией (аэрофильтры).

9.2.6.3 В качестве загрузочного материала для биофильтров допускается применять изделия из пластмасс, способные выдержать температуру от 6 до 40 °С без потери прочности, а также щебень или гальку прочных горных пород, керамзит и подобные искусственные неорганические материалы.

Все загрузочные материалы, за исключением пластмасс, должны выдерживать:

нагрузку не менее 0,1 МПа (1 кг/см2) при насыпной плотности до 1000 кг/м3;

не менее чем пятикратную пропитку насыщенным раствором сернокислого натрия;

не менее 10 циклов испытаний на морозостойкость;

кипячение в течение 1 ч в 5 %-ном растворе соляной кислоты, масса которой должна превышать массу испытуемого материала в три раза.

После вышеперечисленных испытаний загрузочный материал не должен иметь заметных повреждений и его масса не должна уменьшаться более чем на 10 % первоначальной.

9.2.6.4 Распределение сточных вод по поверхности биофильтров следует осуществлять с помощью: качающихся желобов, разбрызгивателей, реактивных оросителей и т.п.

Возможно применение баков-дозаторов для периодической подачи очищаемых сточных вод.

Расчет распределительной и отводящей систем биофильтров должен производиться по максимальному расходу воды с учетом рециркуляционного расхода.

9.2.6.5 Число биофильтров должно быть не менее двух, причем все они должны быть рабочими.

9.2.6.6 В зависимости от климатических условий района строительства, производительности станции очистки, режима притока сточных вод, их температуры в зимний период биофильтры следует размещать на открытом воздухе или в помещениях (отапливаемых или не отапливаемых), что должно быть обосновано теплотехническим расчетом с учетом опыта эксплуатации сооружений, работающих в аналогичных условиях.

9.2.6.7 Допускается предусматривать рециркуляцию очищенных сточных вод. Коэффициент рециркуляции следует определять исходя из получения концентрации смеси, подаваемой на фильтр, в пределах указанных ограничений.

В случае возможного прекращения притока сточных вод на биофильтр необходимо предусматривать рециркуляцию во избежание высыхания поверхности загрузки.

9.2.6.8 Определение расчетных параметров биофильтров следует выполнять в зависимости от состава и расчетного расхода сточных вод, требуемой степени очистки. При расчете необходимо определять необходимое количество загрузочного материала, расход рециркуляции, подаваемого воздуха (для аэрофильтров), прирост избыточной биопленки.

Биофильтры для очистки производственных сточных вод допускается рассчитывать по окислительной мощности, определяемой экспериментально.

9.2.6.9 Количество избыточной биопленки, выносимой из биофильтров допускается принимать:

8 г/(чел×сут) по сухому веществу - для капельных фильтров;

28 г/(чел×сут) - для аэрофильтров.

Влажность биопленки допускается принимать равной 96 %.

9.2.7 Аэротенки

9.2.7.1 Аэротенки (непрерывно работающие сооружения аэробной биологической очистки со свободноплавающим илом) допускается применять как в виде отдельно расположенных сооружений, так и в виде комбинированных установок, где аэротенки совмещены с илоотделителями, либо другими сооружениями (аэротенки - отстойники, аэротенки - биофильтры, мембранные биореакторы и др.).

9.2.7.2 При БПК5 поступающей в аэротенки сточной воды более 200 мг/л, а также при наличии в воде повышенных концентраций токсичных веществ при использовании аэротенков допускается предусматривать регенерацию активного ила, если это не противоречит применению технологии биологического удаления азота и фосфора.

9.2.7.3 Число секций аэротенков следует принимать не менее двух (все рабочие). Для станций очистки сточных вод производительностью до 100 м3/сут допускается одна секция аэротенка.

9.2.7.4 Рабочую глубину аэротенка рекомендуется принимать 3 - 6 м. Допускается использование большей глубины, включая башенные и шахтные аэротенки. При использовании коридорной конструкции аэротенка соотношение ширины коридора к рабочей глубине рекомендуется принимать в пределах от 0,5:1 до 2:1. В аэротенках не коридорной конструкции соотношение ширины и глубины рекомендуется определять исходя из гидродинамических и конструктивных соображений. Высоту борта аэротенка над поверхностью воды необходимо принимать не менее 0,5 м.

9.2.7.5 Для удаления соединений азота в аэротенках следует предусматривать специальные мероприятия, в том числе:

выделять отдельные зоны с аэрацией и без аэрации (аноксидные зоны), обеспечивая рециркуляцию в последние иловой смеси (и/или возвратного ила), содержащей нитраты, образованные в аэробных зонах;

обеспечивать периодическое чередование аэробных и аноксидных условий;

обеспечивать необходимые окислительно-восстановительные условия путем поддержания оптимальной концентрации растворенного кислорода;

концентрацию растворенного кислорода для одновременного протекания аноксидных и аэробных процессов.

9.2.7.6 В аноксидных зонах (либо при аноксидных условиях) следует обеспечивать перемешивание для предотвращения осаждения активного ила. Перемешивание рекомендуется осуществлять электромеханическими мешалками. Допускается при обосновании осуществлять перемешивание воздухом, обеспечив минимальное растворение в иловой смеси кислорода воздуха, либо рециркулирующего газа, а также с помощью пневмомеханических, гидравлических и других подобных устройств. Допускается осуществлять перемешивание путем создания в двух и более коридорах аэротенка продольного циркуляционного потока со скоростью, достаточной для поддержания ила во взвешенном состоянии.

Рециркуляцию иловой смеси между зонами, необходимую для реализации выбранной технологической схемы, допускается осуществлять погружными низконапорными насосами, обеспечивающими минимально необходимый напор. При малых расходах рециклов (менее 50 м3/ч) для рециркуляции из аэробной зоны допускается использование эрлифтов.

9.2.7.7 Для осуществления процесса улучшенного биологического удаления фосфора следует организовывать в аэротенках анаэробные зоны, в дополнение к аноксидным и аэробным, обеспечивая в них наименьшее содержание не только растворенного кислорода, но и нитратов, также принимать меры по предотвращению избыточного растворения кислорода в сточной воде, поступающей на такие сооружения, избегая значительных перепадов потока на водосливах, столкновений потоков и т.п. Биологическое удаление фосфора рекомендуется предусматривать совместно с биологическим удалением азота.

При использовании технологий совместного биологического удаления азота и фосфора объемы анаэробной, аноксидной и аэробной зон (либо периоды с аноксидными и аэробными условиями), а также конфигурацию расположения зон рекомендуется определять при помощи методов математического моделирования.

9.2.7.8 При расчете аэротенков в качестве расчетного расхода допускается принимать среднечасовое поступление сточной воды в часы максимального притока за период ее обработки.

Расход циркулирующего активного ила при расчете рабочего объема аэротенков не учитывается.

9.2.7.9 При расчете аэротенков следует определять, как минимум:

для всех типов технологий - время нахождения сточной жидкости в различных технологических зонах и объемы этих зон, расходы технологических рециклов, необходимое количество кислорода и расход воздуха с учетом характеристик используемой аэрационной системы, прирост избыточного активного ила;

для всех технологий, предусматривающих окисление аммонийного азота - аэробный возраст ила (отношение массы сухого вещества ила в аэрируемых зонах к ежесуточной массе сухого вещества выводимого избыточного ила);

для технологий биологического удаления фосфора - предельную эффективность этого процесса для данной сточной воды и расчетного возраста ила.

9.2.7.10 Необходимо обеспечивать возраст ила, достаточный для надежного протекания процесса нитрификации. При расчетной концентрации азота аммонийного после аэротенков менее 0,5 мг/л аэробный возраст ила рекомендуется принимать не менее 8 сут или уточнять методом математического моделирования, или экспериментально.

9.2.7.11 При расположении зон с различным кислородным режимом (анаэробным, аноксидным, аэробным) в пределах одного коридора (без применения продольных циркуляционных потоков) рекомендуется разделять зоны друг от друга перегородками с проемами, обеспечивающими прохождение потока иловой смеси и всплывающих веществ к концу аэротенка, а также позволяющими осуществлять беспрепятственное опорожнение всех зон.

В конце открытых каналов, отводящих иловую смесь на вторичные отстойники, рекомендуется предусматривать устройства по сбору и удалению пены, которая может образовываться на поверхности аэротенков.

9.2.7.12 Тип аэраторов в аэротенках следует выбирать с учетом технико-экономических характеристик (в том числе с учетом затрат электроэнергии на аэрацию) и надежности.

9.2.7.13 Расход воздуха, требуемый для очистки сточных вод в аэротенках при использовании пневматической аэрации, следует принимать по расчету на основании потребности процесса в кислороде при необходимой эффективности удаления загрязняющих веществ, используемой технологии, удельной эффективности растворения кислорода воздуха используемыми аэраторами, глубины аэротенка, температуры сточных вод, коэффициента качества сточных вод (альфа-фактор), с учетом соотношения площадей аэрируемой зоны и аэротенка, минимально допустимого расхода на перемешивание. Количество используемых аэраторов необходимо определять расчетом по данным производителей с учетом зависимости эффективности растворения кислорода от нагрузки на аэраторы.

Оборудование для механической и пневмомеханической аэрации подбирать по данным организаций-производителей и проектных организаций.

9.2.7.14 При определении расчетной потребности сооружений биологической очистки в кислороде следует учитывать потребление кислорода на окисление органических веществ и соединений азота (аммонийного и органического), с учетом использования кислорода нитратов и коэффициента часовой неравномерности поступления сточных вод.

9.2.7.15 В качестве воздухоподающего оборудования допускается применять воздуходувки, газодувки и нагнетатели, струйные аэраторы, механические и пневмомеханические аэраторы. Рабочее давление воздухоподающего оборудования нагнетательного типа следует принимать в соответствии с заглублением аэраторов, потерями напора в коммуникациях и аэраторах (с учетом их сопротивления на конец расчетного срока службы), а также с учетом сезонных и климатических факторов, влияющих на физические свойства воздуха.

При использовании технологий биологического удаления азота и фосфора рекомендуется предусматривать гибкое, либо ступенчатое управление системой подачи воздуха в аэротенки с использованием средств автоматизации.

9.2.8 Биореакторы с прикрепленной биопленкой

9.2.8.1 Допускается использование для биологической очистки с удалением биогенных элементов, либо глубокой доочистки затопленных биореакторов с прикрепленной биопленкой. Биореакторы могут использоваться как в комбинации с аэротенками (в качестве одной из зон технологического процесса, как правило - нитрификации) или самостоятельно, без применения свободно плавающего ила. В последнем случае в соответствующих ситуациях необходимо предусматривать реагентное удаление фосфора.

При использовании биореакторов в качестве основной ступени биологической очистки, либо для денитрификации после них необходимо предусматривать отделение избыточной биопленки. При использовании биореакторов в качестве 1-й ступени в многоступенчатой технологии очистки или в качестве сооружения глубокой нитрификации очищенных вод при обосновании допускается отказ от сооружений для отделения биопленки.

9.2.8.2 При использовании биореакторов может быть использован как закрепленный или неподвижно размещенный, так и движущийся (плавающий) загрузочный материал. При использовании неподвижного (закрепленного) материала следует обеспечивать необходимую надежность конструктивных решений с учетом его обрастания биопленкой.

9.2.8.3 В качестве загрузочного материала для прикрепления биопленки допускается применять изделия из пластмасс, органических гелей, а также неорганические загрузки природного происхождения, либо искусственные (плавающие, либо способные к псевдоожижению, а также неподвижные загрузки). Требования к загрузочным материалам неорганического происхождения следует принимать в соответствии с 9.2.5.10.

9.2.9 Сооружения для илоотделения

9.2.9.1 Для отделения очищенной воды от активного ила (биопленки) следует использовать сооружения для илоотделения: вторичные отстойники, осветлители со взвешенным слоем осадка, флотационные установки, мембранные модули и др. Для интенсификации работ сооружений гравитационного илоотделения допускается применение тонкослойных модулей.

9.2.9.2 Тип вторичного отстойника (вертикальный, радиальный, горизонтальный) необходимо выбирать с учетом производительности станции, компоновки сооружений, числа эксплуатируемых единиц, конфигурации и рельефа площадки, геологических условий, уровня грунтовых вод и т.п.

9.2.9.3 Вторичные отстойники для отделения ила и биопленки необходимо рассчитывать по гидравлической нагрузке на поверхность м3/(м2×ч) с учетом коэффициента использования объема сооружения, илового индекса и концентрации ила (биопленки). При определении площади отстойников после биофильтров необходимо учитывать рециркуляционный расход.

При расчетах значений величины выноса активного ила из отстойников должно приниматься не менее 10 мг/л.

При проектировании сооружений совместного биологического удаления азота и фосфора иловый индекс следует принимать не менее 150 см3/г, а гидравлическую нагрузку на вторичные отстойники - не более 1,5 м3/(м2×ч) по максимальному часовому притоку в сутки максимального водоотведения.

9.2.9.4 Основные конструктивные параметры вторичных отстойников следует принимать:

впуск иловой смеси и сбор очищенной воды - равномерными по периметру впускного и сборного устройств;

высоту нейтрального слоя на 0,3 м выше днища на выходе, глубину слоя ила 0,3 - 0,5 м;

угол наклона конического днища вертикальных отстойников и стенок иловых приямков горизонтальных и радиальных отстойников должен быть 55 - 60°.

Допускается уточнять основные конструктивные параметры отстойников при совместном использовании математического и гидравлического моделирования.

9.2.9.5 Удаление ила, выпавшего на днище радиальных и горизонтальных отстойников, следует осуществлять либо через приямки, куда ил перемещается механическим способом (илоскребом), либо непосредственно с днища с помощью илососов. При использовании илососов каждое приемное устройство должно иметь индивидуальный отвод в сборный желоб. Для удаления биопленки в отстойниках этих типов следует использовать илоскребы.

Удаление ила и биопленки в вертикальных отстойниках необходимо осуществлять самопроизвольно путем создания угла наклона днища 50 - 60°.

9.2.9.6 Вместимость приямков вторичных отстойников при гидростатическом удалении осадка после биофильтров следует предусматривать не более двухсуточного объема удаляемого осадка, после аэротенков - не более двухчасового пребывания удаляемого активного ила.

Удаление осадка из приямка отстойника рекомендуется предусматривать самотеком, под гидростатическим давлением.

Гидростатическое давление при удалении осадка из вторичных отстойников следует принимать, не менее:

12 кПа (1,2 м вод. ст.) - после биофильтров;

9 кПа (0,9 м вод. ст.) - после аэротенков.

Для вторичных отстойников рекомендуется предусматривать возможность регулирования высоты гидростатического напора. Диаметр труб для удаления осадка принимать не менее 200 мм.

9.2.9.7 Влажность удаляемого ила следует определять расчетом с учетом коэффициента рециркуляции, типа сборно-транспортирующего устройства и илового индекса.

9.2.9.8 Удаление ила из вторичных отстойников допускается непрерывное или периодическое (недопустимо при использовании биологического удаления фосфора).

Интервал времени при периодическом удалении ила следует устанавливать исходя из объема образующегося осадка и вместимости зоны его накопления, но не более трех часов.

Вместимость приямков вторичных отстойников после биофильтров при периодическом удалении осадка следует предусматривать не более двухсуточного его объема, вторичных отстойников после аэротенков - не более двухчасового пребывания активного ила.

9.2.9.9 Высоту борта вторичного отстойника над поверхностью воды следует принимать не менее 0,3 м.

9.2.9.10 Кромку водослива на водоприемных (сборных) лотках следует предусматривать регулируемой по высоте. Нагрузка на 1 м водослива во вторичных отстойниках не должна превышать 10 л/с.

Допускается для сбора очищенной воды использовать погружные перфорированные трубы.

9.2.10 Сооружения для глубокой очистки сточных вод

9.2.10.1 Сооружения предназначены для увеличения степени очистки сточных вод после основной стадии биологической (или физико-химической) очистки перед сбросом в водный объект или повторным использованием их в производстве или сельском хозяйстве.

9.2.10.2 Для глубокой очистки биологически очищенных сточных вод могут быть применены сооружения для удаления взвешенных веществ и реагентного удаления фосфора (фильтры и осветлители различных конструкций, ультрафильтрационные мембраны), глубокого окисления органических и азотных загрязнений (биофильтры и биореакторы различных конструкций, биологические пруды, установки обработки окислителями - озоном и др.). Глубокая очистка также может быть применена для удаления из производственных сточных вод специфических загрязняющих веществ (солей тяжелых металлов, бионеразлагаемых органических соединений и др.) и снижения в них общего солесодержания (обратноосмотические мембраны и др.).

9.2.10.3 Выбор типа и конструкций сооружений для глубокой биологической очистки определять технико-экономическим расчетом.

9.2.11 Обеззараживание сточных вод

9.2.11.1 Хозяйственно-бытовые сточные воды и их смеси с производственными сточными водами, сбрасываемые в водные объекты, либо используемые для технических целей, должны подвергаться обеззараживанию. Обеззараживание следует производить после биологической очистки сточных вод (либо физико-химической очистки, если биологическая очистка не может быть использована).

9.2.11.2 Обеззараживание сточных вод, сбрасываемых в водные объекты, рекомендуется производить ультрафиолетовым излучением. Допускается обеззараживание хлором или другими хлорсодержащими реагентами (хлорной известью, гипохлоритом натрия, получаемым в виде продукта с химических предприятий, электролизом растворов солей или минерализованных вод, прямым электролизом сточных вод и др.) при обеспечении обязательного дехлорирования обеззараженных сточных вод перед сбросом в водный объект.

9.2.11.3 Доза ультрафиолетового облучения определяется характером и качеством очистки сточных вод, но она должна быть не менее 30 мДж/см2. Тип и количество рабочего ультрафиолетового оборудования необходимо принимать на основании рекомендаций производителя. Резервное ультрафиолетовое оборудование корпусного типа необходимо предусматривать не менее одной установки. Резервирование открытых ультрафиолетовых систем лоткового типа в зависимости от их конфигурации допускается предусматривать одним каналом или одной секцией в каждом канале, или одним модулем.

9.2.11.4 Расчетную дозу активного хлора следует принимать с учетом хлоропоглощаемости сточных вод при обеспечении остаточного хлора в очищенной воде после контакта не менее 1,5 мг/л. Для расчетов допускается принимать дозу активного хлора после механической очистки (допускается использовать только в качестве аварийного мероприятия) - 10 мг/л; после биологической, физико-химической и глубокой очистки - 3 мг/л.

9.2.11.5 Хлорное хозяйство и электролизные установки следует проектировать согласно СП 31.13330. Хлорное хозяйство станций очистки сточных вод должно обеспечивать возможность увеличения расчетной дозы хлора до 1,5 раз без изменения вместимости склада.

9.2.11.6 Для смешения сточной воды с хлорсодержащими реагентами можно применять смесители любого типа.

9.2.11.7 Продолжительность контакта хлора с водой в отводящей системе (резервуарах, лотках, каналах и трубопроводах) до выпуска в водный объект следует принимать 30 мин.

9.2.12 Сооружения для насыщения очищенных сточных вод кислородом

9.2.12.1 При необходимости дополнительного насыщения очищенных сточных вод

кислородом перед выпуском их в водный объект следует предусматривать специальные устройства: многоступенчатые водосливы-аэраторы или быстротоки - при наличии перепада уровней между сооружениями станции очистки сточных вод и в водном объекте приемнике очищаемых вод, барботажные сооружения - в остальных случаях.

9.2.13 Сооружения для очистки сточных вод малой производительности

9.2.13.1 Для очистки сточных вод от поселений с ЭЧЖ менее 5000 условных жителей, отдельно стоящих предприятий, вахтовых поселков, оздоровительно-рекреационных и гостиничных организаций, воинских частей, фермерских хозяйств, и т.п. допускается применение комплектных установок биологической (либо, при неблагоприятных климатических условиях, либо при сезонной работе - физико-химической очистки) заводского изготовления, при условии гарантии предприятием-изготовителем (поставщиком) необходимого эффекта очистки, согласованного с местными органами надзора.

9.2.13.2 Допускается применение естественных методов очистки сточных вод (полей орошения, полей подземной фильтрации, фильтрующих колодцев и траншей, биологических прудов и т.п.) от объектов, при соответствующем обосновании: благоприятных грунтовых условиях, низком уровне стояния грунтовых вод, надежности защиты подземных вод и водоисточников от загрязнения, удовлетворительных климатических условиях.

9.2.13.3 Для предварительной механической очистки в автономных системах очистки сточных вод, обслуживающих не более 100 ЭЧЖ, допускается принимать септики. Расчетный объем септика следует принимать: при расходе до 25 ЭЧЖ - не менее 3-кратного суточного притока, при расходе свыше 25 ЭЧЖ - не менее 2,5-кратного.

9.2.13.4 В зависимости от расхода сточных вод необходимо принимать: однокамерные септики - при ЭЧЖ не более пяти, двухкамерные - при ЭЧЖ до 50 и трехкамерные - при ЭЧЖ 50 - 100. В септиках следует предусматривать устройства для задержания плавающих веществ и естественную вентиляцию. Присоединение выпусков из зданий к септику следует выполнять через смотровой колодец.

9.2.14 Сооружения для обработки осадка сточных вод

9.2.14.1 Осадки, образующиеся в процессе очистки сточных вод (песок из песколовок, осадок первичных отстойников, избыточный активный ил и др.), должны подвергаться обработке с целью обезвоживания, стабилизации, снижения запаха, обеззараживания, улучшения физико-механических свойств, обеспечивающих возможность их экологически безопасной утилизации или размещения (хранения или захоронения) в окружающей среде.

9.2.14.2 Выбор технологических схем обработки осадков следует производить по результатам технико-экономических расчетов с учетом их состава и свойств, физико-химических и теплофизических характеристик и с учетом последующих методов использования или размещения в окружающей среде.

При обосновании допускается перекачка (перевозка автотранспортом) осадков для обработки на других очистных сооружениях.

9.2.14.3 При расчете сооружений обработки осадков необходимо учитывать сезонную и суточную неравномерность их образования. При расчетах количеств образующихся осадков, полученных в соответствии с 9.1.5 и 9.2.5.11, учет неравномерности может быть определен использованием дополнительного коэффициента 1,2.

9.2.14.4 Для повышения концентрации избыточного активного ила перед его дальнейшей обработкой рекомендуется осуществлять его уплотнение (сгущение) в сооружениях и оборудовании различных типов (гравитационные, механические, либо флотационные уплотнители и т.п.). Содержание сухого вещества перед подачей ила в метантенки должно быть не менее 4,5 %.

9.2.14.5 При обработке избыточного активного ила от сооружений улучшенного биологического удаления фосфора необходимо принимать меры по предотвращению выделения фосфатов в иловую воду: не допускать возникновения анаэробных условий в иле. Не допускается гравитационное уплотнение такого ила при времени пребывания свыше трех часов. Не допускается смешение такого ила с осадком первичных отстойников, за исключением камеры смешения перед метантенками и камеры смешения, либо расходного резервуара перед обезвоживанием (сгущением). В последнем случае в камеру смешения и расходный резервуар рекомендуется подавать воздух.

9.2.14.6 Осадки очистных сооружений с нагрузкой свыше 50 тыс. ЭКЖ должны подвергаться стабилизации. Допускается использование биологических, химических, термических и термо-химических методов стабилизации. Стабилизации могут подвергаться жидкие, либо обезвоженные (либо подсушенные в естественных условиях) осадки сточных вод.

При применении на очистных сооружениях установок термической сушки или сжигания (пиролиза и т.п.), а также захоронении осадка на полигонах, оборудованных системой сбора и утилизации свалочного биогаза, предварительная стабилизация осадка не является обязательной.

9.2.14.7 Жидкие осадки могут быть стабилизированы с использованием метода анаэробного метанового сбраживания, анаэробно-аэробной, аэробно-анаэробной обработки; аэробной стабилизации.

Механически обезвоженные осадки, а также осадки, подсушенные в естественных условиях, могут быть стабилизированы методами компостирования с органо-содержащими наполнителями и/или путем выдержки в естественных условиях на площадках стабилизации и обеззараживания в течение 1 - 3 лет в зависимости от климатических районов (I и II климатических районов - не менее трех лет; III климатического района - не менее двух лет; IV климатического района - не менее одного года). Сроки стабилизации при наличии достаточных площадей могут быть увеличены с целью улучшения качественных характеристик осадков и сокращения конечных объемов осадков, подлежащих дальнейшей утилизации или размещению в окружающей среде.

9.2.14.8 Анаэробное (метановое) сбраживание рекомендуется для стабилизации осадков на очистных сооружениях с нагрузкой свыше 100 тыс. ЭЧЖ (при обосновании допускается и на сооружениях с нагрузкой 50 - 100 тыс. ЭЧЖ). Процесс сбраживания следует проводить в метантенках. При технико-экономическом обосновании допускается применение анаэробного сбраживания при последующем сжигании или пиролизе.

9.2.14.9 Допускается добавление в метантенки других видов сбраживаемых отходов (навоз, птичий помет, жидкие органические отходы пищевой промышленности, некондиционная пищевая продукция, специально подготовленные (глубоко измельченные) органические компоненты твердых бытовых отходов, другие близкие к ним по составу нетоксичные для процесса промышленные отходы). При этом следует обеспечить изъятие из этих отходов грубодисперсных примесей и оседающих неорганических включений, а также необходимую гомогенизацию подаваемой в метантенки смеси.

9.2.14.10 Допускается проводить сбраживание в мезофильном (температура около 35 °С) и термофильном (температура 50 - 60 °С) режимах. При обосновании допускается также использование двухфазного термофильно-мезофильного режима сбраживания. Выбор температурного режима следует производить по результатам технико-экономических проработок с учетом методов дальнейшей обработки и утилизации осадка, санитарных требований, метода утилизации образующегося биогаза и теплотехнических расчетов.

9.2.14.11 Осадок, подаваемый в метантенки, должен быть процежен на решетках (ситах) с прозорами не более 6 мм с целью дополнительного удаления грубодисперсных включений.

9.2.14.12 Допускается использование методов предварительной термической (до 180 °С), механической, ферментативной и ультразвуковой обработки осадков, а также их сочетания, перед сбраживанием для повышения степени распада органического вещества и увеличения выхода биогаза.

9.2.14.13 Объем метантенков следует определять расчетом по органической нагрузке на рабочий объем сооружения. Объемная доза загрузки осадка не должна превышать для термофильного процесса - 15 %, для мезофильного процесса - 7 %.

Степень распада органического вещества осадка следует определять расчетом с учетом типов осадков, температуры процесса, наличия и методов предобработки.

9.2.14.14 Для обеспечения эффективности и надежности процесса сбраживания осадка при проектировании метантенков необходимо предусматривать:

возможность промывки всех трубопроводов;

перемешивание метантенков мешалками или газом (использование насосов для перемешивания допускается только в качестве резервного оборудования);

устройство систем пеногашения;

два трубопровода выгрузки сброженного осадка - из нижней и верхней частей сооружения;

систему аварийного перелива;

герметично закрывающиеся люки-лазы как в верхней части сооружения (на газовом колпаке), так и в нижней;

эффективную теплоизоляцию;

использование рекуперационных теплообменников при применении термофильного режима сбраживания, с рекуперацией не менее 15 °С.

9.2.14.15 Весовое количество газа, получаемого при сбраживании (биогаза), следует принимать 0,9 л на 1 г распавшегося беззольного вещества осадка, теплотворная способность - 5500 ккал/м3.

9.2.14.16 Необходимо предусматривать обязательную утилизацию биогаза, образующегося при сбраживании следующими методами:

сжигание в котельных для производства пара и горячей воды, как раздельно, так и совместно с природным газом;

использование в качестве моторного топлива в электрогенераторах, а также при обосновании в двигателях приводов воздуходувок и на автотранспорте;

использование в качестве топлива в установках термической сушки и сжигания осадка.

9.2.14.17 При использовании биогаза в качестве моторного топлива рекомендуется предусматривать его очистку от примесей, оказывающих неблагоприятное воздействие на работу двигателей внутреннего сгорания (вода, взвешенные частицы, сероводород, силоксаны и др.).

9.2.14.18 При проектировании метантенков следует предусматривать:

мероприятия по взрывопожаробезопасности комплекса в целом, оборудования и обслуживающих помещений;

герметичность резервуаров метантенков, рассчитанных на избыточное давление до 5 кПа (500 мм вод. ст.);

автоматический контроль уровня осадка давления в метантенках;

расстояние от метантенков до высоковольтных линий - не менее 1,5 высоты опоры;

ограждение территории метантенков;

газгольдеры для усреднения расхода биогаза. Допускается использовать «мокрые» и сухие газгольдеры на давление 1,5 - 2,5 кПа (0,15 - 0,25 м вод. ст.), рассчитанные на 2-часовой выход биогаза. При технико-экономическом обосновании допускается использование шарообразных газгольдеров под более высоким давлением. Их следует проектировать в соответствии с требованиями к сооружениям для хранения природного газа.

9.2.14.19 Проектирование газового хозяйства метантенков (газосборных пунктов, газовой сети, газгольдеров и т.п.) необходимо осуществлять в соответствии с СП 62.13330.

9.2.14.20 Аэробную стабилизацию осадка допускается проводить без подогрева ила (в субмезофильном режиме при температуре не менее 15 - 20 °С), так и в автотермофильном режиме.

При расчетах субмезофильного аэробного кондиционирования следует принимать: степень распада органического вещества осадка не более 20 %. При использовании автотермофильного режима допускается принимать степень распада до 45 %. При расчетах следует определять: время аэробной обработки, необходимый расход воздуха, а для термофильной аэробной стабилизации - условия автотермичности процесса.

9.2.14.21 При проведении аэробной стабилизации высококонцентрированной смеси осадков необходимо предусматривать механическую и пневмо-механическую аэрацию.

9.2.14.22 Все жидкие осадки должны обезвоживаться до влажности не более 82 % естественным или механическим методами (с использованием обезвоживающего оборудования, либо с использованием фильтрующих мешков или геотуб).

При новом проектировании очистных сооружений с нагрузкой свыше 15 тыс. ЭЧЖ надлежит предусматривать обезвоживание осадков механическими методами, иловые площадки допускаются только в качестве резервных сооружений.

Допускается периодическое обезвоживание осадка с помощью передвижных установок, обслуживающих несколько очистных сооружений. В этом случае необходимо предусматривать достаточную емкость накопителя жидкого осадка, в котором следует предусматривать мероприятия по предотвращению загнивания и ухудшения водоотдающих свойств осадка.

9.2.14.23 Для всех типов осадков перед обезвоживанием рекомендуется предусматривать промежуточные расходные емкости. Для усреднения осадка и предотвращения процессов сбраживания нестабилизированных осадков (с учетом 9.2.14.3) и их всплытия рекомендуется перемешивание воздухом. Время пребывания осадков в промежуточных расходных емкостях не должно превышать 24 ч.

9.2.14.24 Для механического обезвоживания осадков рекомендуется использовать центрифуги и ленточные фильтр-прессы. При обосновании допускается использовать камерные фильтр-прессы, шнековые прессы и другое оборудование. Тип оборудования и число рабочих и резервных аппаратов следует устанавливать по характеристикам и требованиям производителей оборудования.

9.2.14.25 В качестве реагентов для улучшения водоотдающих свойств осадков городских сточных вод и схожих с ними по составу рекомендуется использовать органические полимеры (флокулянты). При технико-экономическом обосновании допускается использование реагентов и присадок, улучшающих процесс обезвоживания, а также подогрев осадка за счет утилизации низкопотенциального тепла от других процессов.

9.2.14.26 При механическом обезвоживании осадков, термофильно-сброженных при дозе загрузки в метантенки менее 10 %, следует предусматривать промывку сброженного осадка технической водой при соотношении объемов 1:2,5 - 1:3 с последующим уплотнением при времени уплотнения (по исходному осадку) не менее 96 ч. Количество резервуаров промывки и уплотнителей следует предусматривать не менее двух.

Допускается осуществлять двухступенчатое уплотнение промытых сброженных осадков (с дополнительным гравитационным уплотнением сливной воды), а также использование фильтрата от механического сгущения (обезвоживания) осадка в качестве части промывной воды.

9.2.14.27 При проектировании сооружений промывки осадка (смешения его с технической водой) следует предусматривать устройства для удаления и последующей обработки отделяемого в них песка.

9.2.14.28 Влажность сброженного промытого и уплотненного осадка надлежит принимать 95,0 - 96,5 % в зависимости от доли активного ила и осадков водоподготовки в сбраживаемой смеси, а также нагрузки на метантенки по органическому веществу. Содержание взвешенных веществ в сливной воде уплотнителей сброженного осадка допускается принимать: по взвешенным веществам 800 - 1300 мг/л, по БПК5 - 400 - 600 мг/л.

9.2.14.29 При технико-экономическом обосновании допускается предусматривать сооружения аэробной обработки сброженных осадков с целью улучшения их водоотдающей способности и сокращения рецикла биогенных веществ.

9.2.14.30 Используемые методы улучшения водоотдающих свойств осадка должны обеспечить максимальное содержание сухого вещества в обезвоженном осадке в соответствии с применяемым обезвоживающим оборудованием. Концентрация взвешенных веществ в фильтрате (фугате) от обезвоживания осадка не должна превышать 500 мг/л.

9.2.14.31 При наличии требований по ограничению содержания песка и грубодисперсных примесей в осадке, подаваемом на аппараты механического обезвоживания, следует предусматривать соответствующую обработку осадка, обеспечивающую снижение их содержания: выделение песка, процеживание, либо измельчение осадка и т.п.

9.2.14.32 При проектировании сооружений механического обезвоживания осадка необходимо предусматривать:

при наличии резервных иловых площадок (на 20 % годового расхода осадка): 1 резервный фильтр-пресс при числе рабочих до трех включительно, и 2 - при четырех и более рабочих агрегатах, 1 резервная центрифуга при числе рабочих до двух включительно, и 2 - при числе рабочих три и более;

при технико-экономическом обосновании допускается отказ от использования резервных иловых площадок (при отсутствии возможности или экономической нецелесообразности создания или эксплуатации существующих иловых площадок) при условии применения комплекса мероприятий по обеспечению приема и обработки осадка в аварийных ситуациях, в состав которых должны входить, как минимум: накопители осадка с временем пребывания не менее 2 сут, увеличенное не менее, чем на 1 аппарат количество резервного обезвоживающего оборудования, резервирование всех вспомогательных узлов отделения обезвоживания (транспортерное оборудование, бункеры, насосы, компрессоры, реагентные узлы и др.).

9.2.14.33 Следует предусматривать резервирование общих для нескольких аппаратов механического обезвоживания систем транспортирования обезвоженного осадка. Допускается использование насосной перекачки обезвоженного осадка.

9.2.14.34 Допускается использование бункеров для хранения и последующей загрузки обезвоженного осадка в автотранспорт. В этом случае бункер должен иметь коническое днище с углом наклона 55 - 60°, либо днище, оснащенное шнеками для выгрузки осадка.

Допускается использовать для накопления и последующего транспортирования обезвоженного осадка сменные специальные бункеры с крышками, а также рельсовые системы для подачи этих бункеров под загрузку осадком и под погрузку в автотранспорт.

9.2.14.35 При технико-экономическом обосновании допускается предусматривать сооружения локальной очистки фильтрата и фугата, а также сливной воды от уплотнителей сброженного осадка от взвешенных веществ, аммонийного азота и/или фосфатов (в частности, методами нитри-денитрификации, анаэробного окисления аммония, извлечения фосфатов в виде струвита и т.п.)

9.2.14.36 Для подготовки механически обезвоженных осадков, не подвергнутых термофильному сбраживанию, к дальнейшей утилизации в качестве органических удобрений или для технической рекультивации нарушенных земель допускается предусматривать выдержку осадков на площадках стабилизации и обеззараживания сроком от 1 до 5 лет или компостирование. В процессе выдержки достигается дополнительная подсушка, минерализация органических веществ, обеззараживание, улучшение структуры.

В первый год выдержки высоту слоя осадка рекомендуется принимать 0,5 - 0,8 м, в последующие годы осадок выдерживать в буртах.

Площадки стабилизации и обеззараживания должны быть на искусственном основании. Следует предусмотреть отвод фильтрата, дождевых и талых вод на очистные сооружения.

9.2.14.37 При подсушивании осадка в естественных условиях нагрузку на иловые площадки в районах со среднегодовой температурой воздуха 3 - 6 °С и количеством осадков не более 500 мм/год следует принимать по таблице 20 с учетом рисунка 1.

9.2.14.38 При использовании метода естественной сушки осадка следует предусматривать:

конструкцию иловых площадок (на естественном или искусственном основании, с дренажом, каскадные, уплотнители и т.п.) - в зависимости от гидрогеологических и климатических условий, рельефа местности;

число карт - не менее четырех;

рабочую глубину карт - 0,7 - 1 м;

высоту оградительных валиков - на 0,3 м выше рабочего уровня.

Таблица 20 - Допустимая нагрузка на иловые площадки для различного типа осадков

Характеристика осадка

Иловые площадки

на естественном основании

на естественном основании с дренажом

на искусственном асфальтобетонном основании с дренажом

каскадные с отстаиванием и поверхностным удалением иловой воды на естественном основании

площадки-уплотнители

Анаэробно сброженная в мезофильных условиях смесь осадка из первичных отстойников и активного ила

1,2

1,5

2,0

1,5

1,5

То же, в термофильных условиях.

Смесь осадка из первичных отстойников и активного ила

0,8

1,0

1,5

1,0

1,0

Анаэробно сброженный осадок из первичных отстойников и осадок из двухъярусных отстойников

2,0

2,3

2,5

2,0

2,3

Аэробно стабилизированная смесь активного ила и осадка из первичных отстойников или стабилизированный активный ил

1,2

1,5

2,0

1,5

1,5

 

Рисунок I - Климатические коэффициенты для определения величины нагрузки на иловые площадки (сплошные и пунктирные линии) и продолжительности периода намораживания на иловых площадках, дни (точечные линии)

9.2.14.39 Площадь иловых площадок следует проверять на намораживание. Продолжительность периода намораживания следует принимать равной числу дней со среднесуточной температурой воздуха ниже минус 10 °С. Количество намороженного осадка следует принимать в количестве 75 % поданного на иловые площадки за период намораживания.

9.2.14.40 Необходимо предусматривать периодическое перемешивание и буртование подсушенного осадка на иловых площадках.

9.2.14.41 Сливная вода с иловых площадок должна подаваться на очистку (непосредственно на очистные сооружения, либо в систему канализации). При технико-экономическом обосновании допускается предусматривать локальную очистку сливной воды, а также, при условии очистки и обеззараживания до действующих требований - использование сливной воды для орошения сельскохозяйственных культур, питомников и т.п. При использовании сливной воды для орошения при отсутствии дополнительной возможности подачи сливной воды на централизованные очистные сооружения в периоды, когда орошение не производится, следует предусматривать емкости-накопители достаточной вместимости.

9.2.14.42 Допускается смешение осадка с песком из песколовок, строительным песком, неплодородным грунтом для получения почвогрунта или рекультиванта для технической рекультивации нарушенных земель.

9.2.14.43 Для подготовки механически обезвоженных осадков и осадков, подсушенных в естественных условиях на иловых площадках, в качестве местных органических удобрений рекомендуется их компостирование с органо-содержащими наполнителями (торфом, опилками, измельченной корой деревьев и растительными отходами). Допускается для снижения расхода наполнителя использовать готовый компост до 30 % объема наполнителя.

Компостирование может осуществляться: в буртах на обвалованных площадках с твердым покрытием и на площадках с искусственным основанием, а также в коридорных и других сооружениях. Допускается компостирование в ферментерах. Смешение осадков и наполнителя может осуществляться непосредственно в цехе механического обезвоживания в аппаратах для смешения, или на площадках компостирования.

9.2.14.44 При расчете процесса компостирования следует определять: соотношение исходного осадка с наполнителями, расход подаваемого воздуха (при принудительной аэрации) и частоту перемешивания, время обработки на каждой из стадий компостирования (в зависимости от сезона и типа наполнителя).

9.2.14.45 Для ускорения процесса компостирования допускается использование специальных укрывных теплоизолирующих материалов с односторонней проницаемостью, а также добавление биопрепаратов, интенсифицирующих термофильную стадию и уменьшающих выделение дурнопахнущих веществ. Для подготовки сброженного осадка к почвенной утилизации он также может быть подвергнут компостированию. Компостированный осадок должен быть отделен от крупных включений.

9.2.14.46 Для обеззараживания осадков сточных вод в жидком виде или после обезвоживания могут применяться также следующие методы обработки:

прогревание до 60 °С с выдерживанием при этой температуре не менее 20 мин;

термическая сушка в сушильных аппаратах (за исключением низкотемпературных сушилок с температурой сушки менее 60 °С);

применение обеззараживающих реагентов, а также других методов.

Для осадков, подвергнутых анаэробному термофильному сбраживанию при температуре не менее 53 °С, компостированию, выдержке в естественных условиях по 9.2.14.10 дополнительное обеззараживание не требуется.

9.2.14.47 Термосушка также может применяться для подготовки осадка к вывозке и размещению на полигонах, сжиганию, утилизации осадка в качестве топлива на других предприятиях. Допускается осуществлять сушку осадка в местах его дальнейшей утилизации, при наличии соответствующих тепловых ресурсов.

9.2.14.48 При термосушке следует предусматривать:

максимально возможное обезвоживание осадка перед подачей на сушильные аппараты;

использование для сушки имеющихся (возможных) тепловых ресурсов, при обосновании - получение и использование низкопотенциального тепла от сушилок;

отделение высушенного осадка от крупных и пылевидных частиц, с возвратом их в процесс сушки;

очистку газовых выбросов из сушильных аппаратов;

мероприятия по обеспечению взрыво- и пожаробезопасности установки сушки, а также бункеров и складов высушенного осадка.

9.2.14.49 Для термической утилизации осадка допускается применять печи сжигания различных типов, установки пиролиза, газификации, и т.п., допускается совместное использование сушки осадка и сжигания. При использовании высокотемпературного пиролиза и газификации осадка его предварительно следует подвергать сушке.

9.2.14.50 Необходимо предусматривать автотермичный режим процесса термической утилизации, либо, по обоснованию, минимизировать подачу дополнительного топлива. При технико-экономическом обосновании для высокотемпературной обработки осадка допускается использование дополнительного топлива, в том числе твердого, а также технического кислорода.

9.2.14.51 Допускается совместная термическая утилизация обезвоженных осадков и твердых бытовых отходов, а также производственных отходов.

9.2.14.52 Газовые выбросы от этих установок необходимо очищать до установленных норм выброса в атмосферный воздух.

9.2.14.53 Необходимо предусмотреть утилизацию тепловых ресурсов, получаемых от установок термической обработки, прежде всего для нужд процессов предварительной обработки осадка, обогрева и горячего водоснабжения зданий очистных сооружений.

9.2.14.54 Временное (перед дальнейшей обработкой или использованием) хранение обезвоженных осадков следует предусматривать на специально оборудованных площадках или складах с механизацией погрузочно-разгрузочных работ.

9.2.14.55 Допускается захоронение осадков в местах, согласованных с органами надзора. При захоронении осадков надлежит предусматривать мероприятия по защите от загрязнения грунтовых и поверхностных вод, атмосферного воздуха и почв. Влажность захораниваемого осадка не должна превышать 75 %. Захоронение осадков следует проводить посекционно с последовательным заполнением секций.

9.2.14.56 Необходимо предусматривать систему дренажа по дну сооружения захоронения с откачкой выделяющегося фильтрата на очистку.

9.2.14.57 Захоронение нестабилизированных осадков допускается только при оборудовании сооружения по захоронению системой отбора и утилизации свалочного биогаза. При этом отдельные секции сооружения по захоронению должны заполняться за период времени, не превышающий 3 мес. В ходе работ по заполнению секции следует предусматривать мероприятия по предотвращению распространения дурнопахнущих веществ.

Примечания

1 По согласованию с контролирующими органами допускается многолетнее складирование обезвоженного осадка в накопителях, оборудованных аналогично полигонам захоронения, с последующей утилизацией осадка, демонтажом накопителя и рекультивацией нарушенной территории.

2 Допускается захоронение осадка на специально подготовленной площадке непосредственно в геотубах, в которых он подвергался обезвоживанию.

9.2.14.58 Допускается размещение на площадках очистных сооружений установок по приготовлению почвогрунтов (смесей) с использованием обезвоженных и стабилизированных осадков сточных вод, с добавлением других ингредиентов.

 

 

 

 

содержание   ..  1  2  3  4  5  6   ..