Главная      Учебники - Экология     Лекции по экологии - часть 4

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  35  36  37   ..

 

 

Создание научных основ обеззараживания и очистки воды на основе нанотехнологии

Создание научных основ обеззараживания и очистки воды на основе нанотехнологии

Создание научных основ обеззараживания и очистки воды на основе нанотехнологии

Перечислим основные требования к питьевой воде [10,11].


Глава 2. Методы очистки воды

2.2 Традиционные способы очистки питьевой воды

3.1 Очистка воды с помощью нанотехнологий

Качество питьевой воды имеет огромное значение для здоровья людей. Все чаще водопроводная вода по своему составу напоминает химическую и бактериологическую смесь, опасную для нашего здоровья. В ней очень много самых разных твердых частиц, солей тяжелых металлов, мельчайшей ржавчины, органических соединений, нефтепродуктов, опасных микроорганизмов, различных химических соединений, многие из которых являются сильными канцерогенами (например, некоторые соединения хлора с органикой).

Многое из того, что перечислено это результат «вторичного загрязнения» воды в водопроводных сетях. Серьезный износ и плохое состояние водопроводных сетей стали главной причиной «вторичного загрязнения». А постоянное хлорирование воды на водоочистных станциях – прямая связь с возникновением злокачественных опухолей. Только представьте себе – хлорированная вода на 30 % ускоряет процесс старения. А, по мнению ученых, питьевая вода хорошего качества способна увеличить среднюю продолжительность жизни на 20-25 лет! Поэтому проблема обеспечения людей питьевой водой хорошего качества имеет мировой масштаб. Например, в России 19 % проб воды из водопроводной сети не соответствует требованиям нормативов по санитарно-химическим и 8 % – по бактериальным нормам. От 40 до 70% водопроводящих систем изношены и требуют замены. В 2004 г. из общего числа эпидемических заболеваний 77 % носили «водный» характер и были связаны с неудовлетворительным состоянием систем водоснабжения. Требования очистки воды занижены. Они подогнаны под достижимый в настоящее время уровень очистки воды. Для осветления воды применяется коагуляция – химическая обработка воды сульфатом алюминия, который осаждает примеси, делает воду более прозрачной. Однако при этом происходит загрязнение воды остаточным алюминием, который замещает кальций в костях человека. Для обеззараживания воды проводят ее хлорирование. Хлорированная вода убивает бактерии, но загрязняет воду остаточным хлором и хлор-органикой. В воде и после ее очистки остается ржавчина. Она плохо выводится из организма и нарушает работу мозга. Для доочистки воды применяют фильтры. В большинстве фильтров в качестве адсорбента используется активированный уголь. Уголь очищает воду от широкого класса примесей, однако его сорбирующая способность и ресурс не велики, и фильтры нужно часто менять. Производители дают не достоверную информацию о возможностях фильтров. Так, они указывают, например, что фильтр способен уменьшить содержание в воде органических примесей в 100 раз, хотя фильтр уменьшает их только в 2 раза. Кроме того, в угольном фильтре хорошо размножаются бактерии.

Для решения таких проблем нужна новая технология водоочистки. Такая технология появилась. Это нанотехнология очистки воды.

1. Питер Маевски и Чу Пинг Чан недавно разработали дешевый и очень эффективный способ фильтрации питьевой воды [16]. Он основан на способности крошечных частиц кварца, покрытых специальным активным материалом, очищать воду от химических примесей, бактерий, вирусов и других опасных веществ на основе применения нанотехнологии для очистки питьевой воды. Исследователи установили, что частицы кварца можно покрыть нанометровым слоем активного вещества, основанного на углеводороде с кремнесодержащим якорем (фиксатором). Опыты показали, что эти активные наночастицы способны избавлять воду от биологических молекул и патогенов, таких как вирус полиомиелита, кишечная палочка и криптоспоридиоз. Чтобы очистить воду, достаточно просто размешать наночастицы в загрязненной воде и потом отфильтровать жидкость, удалив нанопорошок. При этом, эффект очистки воды, достигается за счет электростатического притяжения патогенов к поверхности покрытых активным слоем наночастиц.

В международном научном журнале Angewandte Chemie опубликована статья, описывающая новый простой в применении и эффективный способ определения содержания в воде мышьяка. Наличие в водопроводной воде мышьяка представляет большую опасность для здоровья человека. Но экспресс-метода анализа воды до сих пор не было разработано. По данным Всемирной Организации Здравоохранения, примерно 140 млн людей в мире употребляют воду с повышенным по сравнению с допустимой нормой содержанием мышьяка. Такой нормой является – 10 миллиардных долей.

Предложенный американскими химиками метод оценки качества питьевой воды с помощью наночастиц золота позволяет определить наличие мышьяка в количестве 3 триллионных долей. Заключается он в следующем: на поверхность золотых частиц нано наносят органические молекулы. Такие молекулы могут быть лигандами для комплексообразования на основе мышьяка. 3 лиганда связывают каждый ион вещества, что вызывает “слипание” наночастиц и увеличение их среднего размера. Цвет коллоидного раствора золота, в свою очередь, и определяется размером этих частиц. Таким образом, частицы слипаются тем сильнее, чем больше в воде мышьяка.

Если в жидкости нет мышьяка, наночастицы золота – красные, при повышении концентрации их цвет плавно меняется на синий. То есть, как по цвету лакмусовой бумаги определяется водородный показатель среды, так и по цвету водного раствора определяется содержание в нем мышьяка.

2. В настоящее время в разных странах мира созданы новые нанофильтрационные устройства, которые очищают воду, отсеивают бактерии, вирусы, органический материал и тяжелые металлы. Распространением этих устройств занимаются специализированные компании США, Японии, Германии и других стран.

Эти компании выпускают несколько видов оборудования для очистки воды:

· трубчатые мембраны;

· слои стекловолокнистых листов;

· малогабаритные оборудования микробиологической очистки воды;

· опреснители.

В настоящее время применяют два основных способа очистки воды – ультрафильтрацию и халькогели.

Ультрафильтрация – это пропускание воды через мембрану, проницаемую для ионов и небольших молекул и непроницаемую для больших частиц, загрязняющих и вредных веществ. Размер ультрафильтрационных мембран составляют 0,002–0,1 мкм. Сама мембрана состоит из трубчатого композита. Такой размер мембраны обеспечивает задержку коллоидных и тонкодисперсных примесей, бактерий и вирусов, растворенных солей свинца, ртути, железа, марганца и др.

Для очистки воды применяют также новый класс соединений – халькогели. Из халькогелей получают высокопористые полупроводящие материалы путем соединения халькогенидных кластеров в каркасы через ионы металлов. При добавлении солей платины образуются полимерные каркасы. Образующийся материал адсорбирует молекулы растворителя, образуя гидрогель. После сушки его в жестких условиях в атмосфере углекислого газа образуется аэрогель, получивший название «халькогель».

Халькогели эффективно очищают воду от тяжелых металлов (ртуть, свинец и т.д.). Изменяя условия получения халькогелей, можно изменять размеры и форму пор и, таким образом, получать материал под определенные частицы загрязнений.

3. Наносистемы для очистки воды активно развиваются и в России. Так Томские ученые создали материалы, удаляющие 100 % вирусов и бактерий, снижающие концентрацию металлов и хлора, уменьшающие жесткость воды.

В Саратове разработан автоматизированный ресурсосберегающий комплекс химводоподготовки технологических котелен с использованием нанотехнологии обессоливания воды. Опытные образцы автоматизированного комплекса внедрены на Увекской нефтебазе и в г. Балаково Саратовской области.

Уникальный материал для эффективной очистки воды, широко применяющийся и в других областях, создал В. И. Петрик. В 1997 г. он создал модификацию углерода, названную углеродной смесью высокой реакционной способности (УСВР). В 2001 г. подтверждено установление научного открытия «Явление образования наноструктурных углеродных комплексов» на основании результатов научной экспертизы Международной ассоциацией авторов научных открытий. Петрик изобрел способ получения из графита УСВР, содержащего до 20 % наноструктур в виде нанотрубок, наноколец, нанофракталов. Кусок графита превращается в легчайший пух, его объем увеличивается в 500 раз. УСРВ имеет глубокий черный цвет, химически инертен, электропроводен, устойчив к агрессивным средам, экологически чист. Удельная поверхность – 2000м2 на 1 г, диапазон рабочих температур от – 60 °С до + 3000 °С. Установлено, что УСВР имеет высокие сорбционные показатели и является уникальным сорбентом для комплексной очистки питьевой воды.

В 2004 г. Американская лаборатория Sierra Jabs. Inc. (США, Калифорния), установила, что 1 г УСВР превосходит 5 г лучшего вида коксового активированного угля, представленного на американском рынке в 50 раз. УСВР хорошо очищает воду от нерастворенных примесей и плохо от растворенных. Таким образом, он не превращает воду в дистиллят, но уменьшает содержание в ней меди в 30 раз, железа в 3 раза, марганца в 2 раза, фосфатов в 35 раз, нитратов в 3 раза и т. д. Такие уникальные сорбционные свойства новый материал обеспечивает за счет огромной совокупной поверхности наноструктур — графенов . Так, 1 грамм вещества имеет общую поверхностную площадь две тысячи квадратных метров.

Установлено, что после УСВР-фильтрации вода приобретает свойства повышать работоспособность, повышать иммунитет к инфекционным заболеваниям. Это связано с тем, что УСВР-фильтрация разрушает водные межмолекулярные связи, поэтому увеличивается поверхность и биологическая активность воды. Вода после УСВР-фильтрации приобретает специфический голубой цвет, как из тающих горных источников. Интересно, что угол химических связей в молекуле воды УСВР-фильтрации равен 108о , а при этом соотношение отрезков ОН | НН равно «золотой пропорции», то есть 0,618.

В настоящее время с использованием УСВР-фильтрации в Москве и Санкт-Петербурге производятся фильтры «Геракл» как для доочистки питьевой воды, так и для фильтрации промышленных стоков. Появление таких фильтров стало возможным благодаря применению уникального наносорбента (УСВР) состоящий до 20% из углеродных наноструктур и обладающий огромной удельной поверхностью (2000 кв.м. на 1 грамм вещества). При смачивании наносорбент образует массу, в которой удерживаются даже самые мелкие примеси и взвеси как органического, так и неорганического происхождения.

3.2 Очистка воды с помощью метода электрохимической активации

В настоящее время на мировом рынке появились установки нового поколения в которых очистка воды производится электрохимическим и каталитическим способами. Водоочистители адсорбционного, ионообменного, мембранного и адсорбционно-мембранного типа задерживают микроорганизмы, которые размножаются на внутренних поверхностях установок, в порах сорбентов, на поверхности фильтрующих мембран. Даже в тех случаях, когда выход из адсорбционной или мембранной системы водоочистной защищен противомикробным фильтром, бактерии могут размножаться на выходной поверхности противомикробного фильтра и на внутренних поверхностях выходных магистралей, что является фактором эпидемиологического риска. Поэтому адсорбционные, ионообменные, мембранные и комбинированные бытовые водоочистительные системы непригодны для работы с водой, небезопасной в микробиологическом отношении.

Адсорбционные устройства для доочистки питьевой воды (чаще угольные) имеют ограниченную сорбционную емкость, которая заполняется со скоростью, зависящей от уровня загрязнений в исходной воде: чем сильнее загрязнена вода, тем быстрее исчерпываются функциональные возможности сорбента. После того как все сорбционные места в порах сорбента заняты различными веществами (адсорбатами), начинается процесс их десорбции. Этот процесс ускоряется при бактериальном заражении установки. В результате качество воды, проходящей через отработанный сорбент, ухудшается в еще большей степени. В зависимости от индивидуальных условий выход из строя угольного водоочистителя по указанным причинам может наступить в сроки от нескольких дней до нескольких месяцев. Следовательно, здесь необходим частый контроль качества воды и при необходимости смена картриджа, а это не всегда возможно по организационным и экономическим причинам. Кроме того, угольные сорбенты и ионообменные смолы плохо удаляют из воды соединения тяжелых металлов и избыточные минеральные компоненты. Мембранные фильтры тонкой очистки согласно рекламным данным задерживают 90-95 % всех находящихся в воде элементов и соединений, в том числе необходимые для человека и животных микро- и ультрамикроэлементы (кальций, магний, калий, натрий, литий, серебро, фтор, йод и другие). Как известно дистиллированная вода минерализацией менее 0,01 г/л заведомо непригодна для питья. Регулярное употребление деминерализованной воды с содержанием солей менее 0,1 г/л обуславливает физиологический дефицит полезных микро- и ультрамикроэлементов, что отрицательно сказывается на состоянии здоровья населения некоторых регионов с низкоминерализованной водой и у полярников, пьющих снеговую воду. В соответствии с ГОСТ 2874-82 минерализация питьевой воды не должна превышать 1,0 г/л. Во многих городах России минерализация питьевой воды 0,2 - 0,5 г/л, после очистки ее методом обратного осмоса или ультрафильтрации потребитель получит воду с концентрацией солей 0,01 - 0,05 г/л. Следовательно существующие системы мембранных водоочистителей, которые пропускают "только воду", создают риск патологии, связанной с потреблением чрезмерно обессоленной воды.

Дефицит микро- и ультрамикроэлементов в организме может быть скорректирован специальной диетой. Однако некоторые микро- и ультрамикроэлементы воды практически незаменимы.

При работе с водой минерализацией 0,1 - 0,5 г/л через электрохимический реактор проходит ток силой 0,3 - 0,4 А. В этом случае общая минерализация обработанной воды почти не меняется, ионы тяжелых металлов переходят в форму нетоксичных и труднорастворимых гидроксидов и гидроксидоксидов, микробы, находящиеся в воде, разрушаются, органические вещества, а также неорганические токсические соединения (в том числе нитраты и нитриты) подвергаются анодной окислительной деструкции. Сильные неорганические окислители (в том числе хлор) и сверхактивные радикальные частицы инактивируются в реакционно-вихревой и каталитической камерах.

В зависимости от типа установки очищенная вода меняет величину ОВП, при этом кислотно-щелочные характеристики очищенной воды близки к нейтральным значениям (рН = 7). Высокий ОВП и ряд других физико-химических условий в анодной камере электрохимического реактора исключают образование токсических хлорорганических веществ и обеспечивают полную окислительную деструкцию диоксинов, если они содержатся в водопроводной воде. Физиологически полезные микро- и ультрамикроэлементы (кальций, калий, магний, литий, фтор и другие) не образуют под влиянием электрохимической обработки нерастворимых соединений и остаются в составе питьевой воды. По данным лаборатории фирмы OaklendCalvertConsaltants, Ltd (Engl.) при содержании в исходной воде ионов серебра 68 мкг/л в очищенной воде содержание ионов серебра составило 56 мкг/л, то есть потерь серебра не было. В то же время токсичные ионы металлов (меди, железа, олова, алюминия, ртути, цинка, хрома удалялись на 85-99,9%.

Присутствующие в воде радионуклиды также превращаются в формы нерастворимых соединений, которые частично оседают на катоде и удаляются при промывании установки. Если эти соединения попадают с водой в желудочно-кишечный тракт, то они не всасываются в кровь и удаляются из кишечника естественным путем. Естественное свойство полезных для организма микро- и ультрамикроэлементов состоит в том, что в результате окислительно-восстановительных реакций они не участвуют в образовании труднорастворимых или нерастворимых комплексов. Это увеличивает вероятность участия этих элементов в биохимических реакциях и делает их совместимыми с организмом. По этой же причине полезные элементы не образуют нерастворимых комплексов при электрохимической обработке и сохраняются в очищенной воде в ионизированной форме. В то же время элементы легко вступают в химические комплексы, в том числе с белковыми соединениями. Как правило они денатурируют белок и поэтому токсичны. Однако по причине склонности вступать в комплексы токсичные элементы при электрохимической обработке переходят в нерастворимые и безопасные для организма формы. Избирательное сохранение в воде полезных ионов и удаление вредных - уникальная естественная особенность электрохимических водоочистителей.

Гидроксиды и гидроксидоксиды тяжелых металлов могут растворятся в крепких кислотах, в том числе в соляной кислоте. Соляная кислота в норме присутствует в желудочном соке. Но желудочный сок сам по себе или в присутствии перевариваемой пищевой массы представляет собой сложную органическую среду, содержащую белки и полисахариды. Эти соединения играют роль внутренних адсорбентов (энтеросорбентов), которые легко связывают молекулы гидроксидов и гидроксидоксидов. В таком виде гидроксиды и гидроксидоксиды тяжелых металлов защищены от действия соляной кислоты. Поэтому они не растворяются в желудке, а затем выводятся из организма естественным путем. Аналогичным образом наши внутренние сорбенты связывают хлопья солей жесткости, оксидов железа. Эти компоненты практически безвредны для организма. Однако их присутствие в питьевой воде меняет ее вкус и нежелательно по эстетическим соображениям. Избавиться от хлопьев солей жесткости или ржавчины можно только с помощью фильтрации. Электрохимическая обработка в этом случае малоэффективна. При работе с водой, содержащей хлопьевидные взвеси, фильтры тонкой очистки воды быстро забиваются и выходят из строя. Суммарное количество органических соединений в воде после электрохимической очистки уменьшается на 1/3. В загрязненной питьевой воде большую опасность представляют гидрофобные токсины. В результате анодного окисления эти токсины переходят в относительно безвредные гидрофильные формы, которые легко удаляются из организма с физиологическими выделениями.

Таким образом, электрохимическая очистка воды при правильной эксплуатации обеспечивает:

· обеззараживание воды;

· эффективное удаление или инактивацию токсических элементов и соединений;

· удаление избыточных концентраций солей и компонент твердого осадка;

· направленное изменение ОВП и активацию воды при сохранении нейтральных

· кислотно-щелочных характеристик;

· сохранение нормального количества биологически полезных микро- и ультрамикроэлементов.

Ряд элементов и соединений в процессе электрохимической обработки подвергаются трансформации и остаются в воде в измененном виде. Возникает вопрос: представляют ли эти вещества опасность для здоровья потребителя? Ответ на подобный вопрос представляется оптимистическим. Дело в том, что интенсивное окислительно-восстановительное воздействие лежит в основе универсального механизма разрушения различных химических ядов. При этом образуются промежуточные менее токсичные или нетоксичные продукты.

Очистка воды в таких реакторах основана на использовании процессов окисления и восстановления, благодаря которым разрушаются и нейтрализуются все токсические вещества в природе. В таких установках природные процессы естественной окислительно-восстановительной деструкции и нейтрализации токсических веществ ускоряются многократно за счет прямых электрохимических реакций, а также благодаря участию в процессах очистки электрохимически синтезированных из самой очищаемой воды и растворенных в ней солей высокоактивных реагентов: озона, атомарного кислорода, пероксидных соединений, диоксида хлора, короткоживущих свободных радикалов. Это обеспечивает высокую эффективность и экологическую безопасность процесса очистки воды в сравнении с другими известными методами.

3.3 Очистка и обеззараживания воды на основе электрофизической ионизации

В настоящее время ощущается нехватка и уменьшение в будущем запасов чистой воды. Поэтому сохранение и увеличение запасов чистой воды является актуальной задачей. Известны более 2000 способов очистки воды. К очистке воды с помощью процессов, происходящих на атомном уровне, можно отнести химические методы очистки воды. В этих методах очистка воды производится на основе известного расхода используемого вещества и их применения. Поэтому при очистке воды направления использование веществ и уменьшения человеческого труда целесообразны. Этим направлением очистки воды можно отметить предлагаемый нами способ электрофизической ионизации [17,18]. Известно, что энергия ионизации соответствует работу выхода электрона, т. е. энергии необходимой, для того чтобы удалить электрон из молекулы воды на бесконечность. Каждый химический элемент обладает потенциалом ионизации. Поэтому, зная потенциал ионизации химического элемента можно возбудить его атом при подаче соответствующего внешнего напряжения. Эксперименты по очистке воды с использованием электроионизационного (электроактивационного) метода и последующий анализ качества очищенной воды показывают, что бактерицидное действие электрического поля в воде проявляется отчётливо уже при энергии 1,63 эВ, то есть при энергии 2,61 10-19 Дж. При более высоких энергиях электрического поля бактерицидное действие проявляется во всём генерируемом диапазоне электрической энергии. Электрическое поле эффективно разрушает всех бактерий, вирусов и других видов микроорганизмов, присутствующих в природных и сточных водах. Для достижения необходимого обеззараживания воды электрическим полем требуется несколько секунды, тогда как при обработке хлором и озоном тратится от 15 до 30 минут. Эффект обеззараживания воды достигается при малых энергиях электрического поля, но кроме обеззараживания важно добиться электронно-химической трансформации многих загрязняющих веществ. Принцип электроактивационной очистки воды от загрязняющих её примесей состоит в том, что под действием электронов, обладающих достаточной энергией, происходит радиолиз воды по схеме:

H2 O + быстрые электроны = H2 O+ + e -,

H2 O+ + H2 O = H3 O+ + “.OH”,


где “.OH” - гидроксильный радикал, который является сильнейшим окислителем. Далее:

e - +( H2 O)n = e- ,

где e- - электрон в сольватной оболочке, который с высокой эффективностью восстанавливает окислы. При прохождении электрического тока через очищаемую воду основным очищающим эффектом является результат воздействия активных агентов, т.е. гидроксильного радикала и электрона в сольватной оболочке, на примеси. В воде, например, могут протекать реакции восстановления и окисления:

Fe3 + e- = Fe2+ ,

Cu2+ + e- = Cu+ ,

“OH” + 2Cl = 2OH- + Cl2 .

В результате восстановленные металлы выпадают в осадок, а газообразные соединения улетучиваются из воды. Те активные химические реагенты, которые образуются в воде при электроактивации, воздействуют на микроорганизмы и бактерии, уничтожают их, т.е. происходит стерилизация очищаемой воды. Установлено, что при этом не образуются новые токсичные вещества.

Основной элемент электроактиватора - набор плоскопараллельных железных пластин (анодов и катодов). В зависимости от объёма очищаемой воды, может быть один или несколько блоков электроактиваторов. Удельные затраты электроэнергии могут быть снижены за счёт оптимизации размеров электродов и расстояния между ними, а также плотности тока в зависимости от степени загрязнения раствора.

Таким образов в основе метода лежит процесс анодного растворения металлов под действием проходящего через жидкость электрического тока. Перешедшие в воду катионы металла (алюминия, железа и др.) гидролизуются с образованием гидроксидов металлов и служат активными коагулянтами для коллоидно-дисперсных примесей. В результате взаимодействия частиц примесей с частицами электрогенерированного коагулянта образуются агрегаты частиц, которые в зависимости от плотности тока выпадают в осадок или всплывают на поверхность жидкости в виде пены. При электроактивации водных растворов большую роль играет материал анода. Мы разработали и изготовили электроактиваторы с железными и алюминиевыми анодами. Эксперименты показали более высокую эффективность железных электродов. После электроактивационной очистки воды образуются осадки, состоящие из гидроксидов металлов преимущественно железа.

Перед нами стоит задача разработки технологии формирования анодов для их использования в электроактивационных устройствах и выявления влияния различных примесей, добавок на электрические свойства активной массы.

Очистка воды данным способом имеет ряд преимуществ:

· при электрофизической ионизации конструкция установки очистки воды очень простая (состоит из алюминиевых колец) и надежная в работе;

· установка очистки воды небольшого размера, отличается легкостью и удобством перестановки и перемещения;

· процессы очистки воды производятся на наноуровне;

· потребление электроэнергии небольшое;

· необходимую для установки очистки воды электрическую энергию можно вырабатывать на установке электрофизической ионизации жидкого раствора;

· для ионизации 1 литра воды в 1 секунду расходуется алюминиевый электрод с площадью поверхности 1 м2 (считая для одного электрода);

· удобство изменения объема устройства очистки воды при любой скорости воды;

· возможность очистки любой массы воды в секунду посредством получения при электрофизической ионизации нового осадочного вещества из веществ в составе воды, увеличивая количество или высоту алюминиевых колец в устройстве очистки воды;

· возможность применения полученного при очистке воды электрофизической ионизацией новых осадочных веществ в качестве сырья.

Наряду с этим, используя устройства электроионизационной очистки питьевой воды, можно определить количества ионизированных атомов в различных химических элементах, имеющихся в воде в 1 секунду и массу твердых осадков, полученных в процессе ионизации.

Результаты этих исследований с применением электроионизационного очистного устройства приведены в таблице 3.1.

Таблица 3.1.

Производительность станций очистки воды, тыс. м3/сут. Размеры земельных участков, га
1. До 0,8 1
2. Более 0,8 до 12 2
3. » 12 » 32 3
4. » 32 » 80 4
5. » 80 » 125 5
6. » 125 » 250 7
7. » 250 » 450 10
9. » 400 » 800 14

R

(см)

L

(см)

Sn

(см2 )

MNa *10-9

(кг)

MCa

*10-9

(кг)

MMo

*10-9

(кг)

MMg *10-9

(кг)

MSi

*10-9

(кг)

m1

*10-9

(кг)

MCd

*10-9

(кг)

MS

*10-9

(кг)

m2

*10-9

(кг)

M=(m1 +

m2 )*10-9

(кг)

0 0,448 17,56 1,91 3,99 2,76 1,699 1,678 12,04 5,05 0,12 5,18 17,22
1 0,5 3,14 1,116*S0 2,132 4,46 3,078 1,896 1,873 13,438 5,64 0,14 5,78 19,22
2 1,0 6,28 2,232*S0 4,264 8,92 6,155 3,79 3,745 26,876 11,28 0,28 11,28 38,16
3 1,5 9,42 3,348*S0 6,396 13,4 9,233 5,6887 5,618 40,314 16,93 0,42 17,35 57,66
4 2,0 12,56 4,4643*S0 8,528 17,8 12,31 7,585 7,49 53,75 22,57 0,56 23,1 76,88
5 2,5 15,7 5,58*S0 10,67 22,3 15,389 9,48 9,364 67,19 28,21 0,70 28,92 96,11
6 3,0 18,84 6,696*S0 12,79 26,7 18,467 11,377 11,236 80,63 33,84 0,84 34,7 115,33
7 3,5 21,98 7,8*S0 14,92 31,2 21,545 13,274 13,109 94,06 39,44 0,98 40,42 134,48
8 4,0 25,12 8,93*S0 17,05 35,7 24,62 15,17 14,982 107,50 45,15 1,12 46,28 153,78
9 4,5 28,26 10,0*S0 19,19 40,1 27,70 17,066 16,855 120,94 50,57 1,26 51,83 172,77
10 5,0 31,4 11,16*S0 21,32 44,6 30,78 18,96 18,73 134,38 56,43 1,40 57,84 192,22
11 5,5 34,54 12,28*S0 23,45 49,0 33,85 20,858 20,60 147,82 62,1 1,54 63,64 211,46
12 6,0 37,68 13,39*S0 25,58 53,5 36,93 22,755 22,473 161,25 67,71 1,69 69,39 230,64
13 6,5 40,82 14,51*S0 27,71 57,9 40,01 24,65 24,346 174,69 73,4 1,83 75,2 249,89
14 7,0 43,96 15,6*S0 29,85 62,4 43,09 26,55 26,22 188,13 78,88 1,97 80,8 268,98
15 7,5 47,1 16,74*S0 31,98 66,9 46,167 28,44 28,091 201,567 84,65 2,10 86,76 288,32
16 8,0 50,24 17,85*S0 34,11 71,3 49,245 30,34 29,964 215,00 90,26 2,25 92,51 307,51
17 8,5 53,38 18,97*S0 36,24 75,8 52,32 32,236 31,84 228,44 95,9 2,39 98,3 326,75
18 9,0 56,52 20,09*S0 38,37 80,3 55,4 34,13 33,71 241,88 101,6 2,53 104,1 346,0
19 9,5 59,66 21,2*S0 40,51 84,7 58,48 36,03 35,58 255,32 107,2 2,67 109,9 365,20
20 10,0 62,8 22,32*S0 42,64 89,2 61,556 37,92 37,45 268,758 112,8 2,81 115,7 384,43
659,4 234,375*S0 447,7 936,4 646,34 398,21 393,28 2821,96 1185,17 29,52 4036,65 4053,07

Из таблицы 3.1 видно, что при увеличении площади электродов электроионизационного устройства с 17.56см2 до 4115.8 см2 масса твердого осадка при очистке питьевой воды возрастает от 0.017мг до 4 мг, т.е масса осадка увеличится в 235 раза. Это означает, что масса осадка, полученное в процессе очистки питьевой воды электроионизационным способом имеет прямую зависимость от площади электродов.

Исходя из таблицы 3.1 определим объем воды, который можно очистить электроионизационным способом при заданных размерах электродов устройства. Для этого скорость воды примем равной 6,25 см/с. Принимая во внимание 3 – 4 – графы таблицы 1 и то, что объем передаваемой населению города Ош воды равен 18000 м3 в сутки, произведены соответствующие расчеты показателей ионизации воды в процентных соотношениях в 1 секунду. Если населению города Ош из ВОС с. Мады подается вода плотностью по трубам поперечным сечением S со скоростью , то очевидно, что масса передаваемой населению воды в единицу времени будет равна произведению S [3]. Поэтому, увеличив скорость передаваемой населению воды и определив высоту ионизирующего устройства относительно величины, равной расстоянию прохождения воды в секунду, можно определить общую площадь поверхности электродов.

Полученные результаты приведены в таблице 3.2.

Таблица 3.2

к/№ Процент. показатель ионизации воды (%) Масса ионизируемой воды в 1 секунду (кг) Площадь поверх. ионизации электродов (м2)
1. 25 72,33 72,33
2. 50 144,67 144,67
3. 75 217,01 217,0
4. 100 289,35 289,35

Таким образом, для полной очистки питьевой воды с помощью электроионизационного устройства, поступающий в г. Ош требуется увеличить площадь одного электрода до 289 м 2 .

После такой высокой очистки питьевой воды необходимость кипячения воды перед употреблением отпадает. Тогда применение очищенной воды к употреблению уже приведет к экономии электрических ресурсов. Приняв к сведению о том, что при кипячении воды на основании закона сохранения энергии затрачивается известное количество теплоты на прогревание вещества (графы 9, 10, и 11 таблицы 3), можно определить количество энергии ненужной затраты. Для определения этой энергии, равной этому количеству теплоты, необходимо произвести расчетное определение количества электрической энергии или угля, газа, дров (Q = c *m * (T – T0 )).

Результаты этих расчетов приведены в таблице 3.3. и 3.4. Как видно из таблицы, если состав кипятимой воды в достаточной мере очищен, то не будет излишнего расхода энергии. Также не было бы появления осадков веществ на дне кипятимой емкости и соответственно, экономилась бы энергия.


Таблица 3.3.

к/№

Иониз. (В) потенциал

Иониз. хим. элемент

Масса хим. элем.

(мГ/л)

Удел. теплоем. хим. элем.

(Дж/(кг*K )

Масса хим. элем. в составе воды (кг)

Расход. кол. тепла /Для массы хим. элем. в составе воды/ Q *107 (дж)
За сутки За месяц За год За сутки За месяц За год
I
1. 8 Na 191,03 4,776 143,273 1743,16
Ca 399,5 655,7 10,0 299,646 3645,7 52,3933 1571,7991 19123,557
Mo 275,7 248,0 6,9 206,829 2481,948 13,6783 410,35 4924,1848
Mg 169,9 1012,14 4,247 127,428 1550,374 34,393 1031,7973 12553,534
Si 167,8 649,45 4,195 125,850 1531,18 21,79586 653,8758 7955,4889
итого 1204,0 2565,28 30,101 903,027 10952,364 122,26 3667,8209 44556,764
II
2. 10 Cd 505,67 234,14 12,64 379,25 4551,03 23,676 710,287 8524,6253
S 12,59 737,367 0,315 9,447 114,938 1,857565 55,72695 678,0
итого 518,26 12,955 388,7 4665,968 25,5338 766,0 9202,6253
Всего 1722,2 43,056 1291,73 15618,332 147,7938 4433,835 53759,389

Таблица 3.4

п/№

Иониз. хим.элем.

Расход. кол. электр. энер. или топливо /Для нагрива. массы хим. элем. в составе воды/ за сутки

Расход. кол. электр. энер. или топливо /Для нагрива. массы хим. элем. в составе воды/

за месяц

Расход. кол. электр. энер. или топливо /Для нагрива. массы хим. элем. в составе воды/

за год

Расчет за электр. энерг. (кВт*час) Расчет за угол. топливо (кг) Расчет за газ. топливо (м3 ) Расчет за дров. топливо (кг) Расчет за электр. энерг. (МВт*час) Расчет за угол топливо (тонна) Расчет за газ. топливо (м3 ) Расчет за дров. топливо (тонна) Расчет за электр. энерг.(МВт*час) Расчет за угол топливо (тонна) Расчет за газ. топливо (м3 ) Расчет за дров. топливо (тонна)
1. Na
Ca 145,5 19,405 5,943 52,4 4,366 0,582 178,28 1,5720 52,393 7,08 2169,12 19,126
Mo 38,0 5,066 1,55 13,67 0,137 0,152 46,543 0,41035 13,678 1,82 558,515 4,924
Mg 95,54 12,74 3,9 34,4 2,866 0,382 117,0 1,03178 34,87 4,649 1423,86 12,553
Si 6,05 8,0725 2,472 21,8 1,816 0,242 74,164 0,65387 22,1 2,946 902,33 7,955
Итого 314,6 45,283 13,86 122,26 7,368 1,358 416,0 3,66780 123,0 16,5 5053,83 44,558
2. Cd 132,1 19,0 5,82 51,34 3,963 0,57 174,6 1,54 47,56 6,845 2095,23 18,482
S 5,16 0,927 0,21 1,857 0,155 0,021 6,32 0,05572 1,883 2,51 769,02 0,678
Итого 137,3 19,942 6,03 53,197 4,118 0,5914 180,92 1,596 49,41 9,355 2170,8 19,15
Всего 451,8 65,2 19,89 175,45 13,55 1,95 596,92 5,26 162,67 23,48 7224,63 63,71

Наряду с этим можно отметить, что полученные в результате электрофизической ионизации осадочные вещества из питьевой воды применяются в соответствующем виде в различных отраслях народного хозяйства и рассматривать их в качестве дополнительного очищенного сырья.

Вышеуказанные показатели рассматриваются как одно из направлений экономии энергетических ресурсов и производства соответствующего сырья.

На основании полученных экспериментальных данных можно сделать следующие выводы:

1. Увеличивается производительность очищения воды водоочистителем при увеличении площади поверхности электродов устройства электрофизической ионизации.

2. Получение новых осадочных веществ при электрофизической ионизации веществ, имеющихся в составе питьевой можно рассматривать как сырье для дальнейшего практического применения.

3. Использование способа электроионизационного способа очистки питьевой воды можно считать как одно из направлений экономии энергетических ресурсов и уменьшения вредного экологического влияния на организм человека.


Заключение

Сегодня многие просто даже и не задумываются о том, насколько важно для организма употребление качественной питьевой воды. Качество питьевой воды напрямую влияет на наше здоровье. Достаточно сказать о том, что более половины всех болезней связаны с употреблением некачественной питьевой воды. Плохая вода – одна из основных причин многих заболеваний, а зачастую диагностируют и лечат уже последствия. Все чаще водопроводная вода по своему составу напоминает химическую и бактериологическую смесь, опасную для нашего здоровья. В ней очень много самых разных твердых частиц, солей тяжелых металлов, мельчайшей ржавчины, органических соединений, нефтепродуктов, опасных микроорганизмов, различных химических соединений, многие из которых являются сильными канцерогенами (например, некоторые соединения хлора с органикой).

Многое из того, что перечислено это результат «вторичного загрязнения» воды в водопроводных сетях. Серьезный износ и плохое состояние водопроводных сетей стали главной причиной «вторичного загрязнения». А постоянное хлорирование воды на водоочистных станциях – прямая связь с возникновением злокачественных опухолей. Только представьте себе – хлорированная вода на 30 % ускоряет процесс старения. А, по мнению ученых, питьевая вода хорошего качества способна увеличить среднюю продолжительность жизни на 20-25 лет!

Кипячение и отстаивание, к сожалению, не решают всех проблем, а многие даже усугубляют. А бутилированная вода часто ничем не лучше, чем вода из во допроводного крана.

Метод электрической ионизации позволяет очищать питьевую воду до высочайшего уровня качества.

Степень очистки это еще не единственный плюс. Благодаря от применения эффекта электрической активации вода обеззараживается и приобретает еще ряд целебных свойств – структурируется, в ней сохраняются многие полезные соли и микроэлементы.


Литература

1. Эмомото М. Послания воды: Тайные коды кристаллов льда. София, 2005.-95с.

2.Эмомото М. Энергия воды для самопознания и исцеления. София, 2006.-96с.

3. Бембель Е.И. Память воды. Савременный взгляд на эффект памяти воды. ООО «Геофон», Тюменский государственнгый нефтегазовый университет. // www.geofon.ru/art/art_26_geofon.doc

4. Карюхина Т.А., Чурбанова И.Н. Химия воды и микробиология. М: Стройиздат, 1983.-345с.

5. Аксенов С.И. Вода и ее роль в регуляции биологических процессов. М.: Наука, 1990.-120с.

6. Белая М.Л., Левадный В.Г. Молекулярная структура воды. М.: Знание, 1987.-64с.

7. Эйзенберг Д., Кауцман В. Строение и свойства воды. Л.: Гидрометеоиздат, 1975. - с.

8. С.В. Зенин. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. Диссертация. Доктор биологических наук. Государственный научный Центр «Институт медико-биологических проблем» (ГНЦ «ИМБП»). Защищена 1999. 05. 27. УДК 577.32:57.089.001.66.207 с. Библиогр.: 213 назв.

9. М.В.Курик. О фрактальности питьевой воды. //Физика сознания и жизни, космология и астрофизика. 2001. №3.

10. Беспамятнов Г.П.,Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде Л.: Химия 1987.-245с.

11. Методика технологического контроля работы очистных сооружений городской канализации. М: Стройиздат, 1977.-278с.

12. Абрамович С.Ф. Раппорт Я.Д. Тенденции развития водоснабжения городов за рубежом. Обзор М.: ВНИИИС, 1987.-187с.

13. А.с. SU 1223956 (1986.04.15). Установка для очистки воды.

14. ГОСТ Р 51871-2002. Устройства водоочистные. Общие требования к эффективности и методы ее определения.

15. Унифицированные методы исследования качества воды. 2-е издание СЭВ. Москва. 1974. -380с.

16. Нанотехнологии в очистке питьевой воды: за и против. Расчёты, испытания, отчёты, экспертизы. - http://vik-nik-2009.narod.ru/VODA_june.pdf.

17. Ташполотов Ы. Акматов Б. Ж. Очистка электрофизической ионизацией подаваемой населению города Ош воды из ВОС с. Озгур//Научно-технический журнал Кыргызско-Узбекского ун-та. Наука.Образование. Техника, 2010, №2.

18. Акматов Б. Ж. Суюк аралашманын курамындагы химиялык элементтердин толук оздук массаларын электрофизикалык ионизациялоо ыкмада аныктоо. // Наука и новые технологии, 2010, №1.

19. Шангин-Березовский Г.Н., Лазарева Н.Ю. Возможность замены минеральных удобрений на воду с памятью о них для развития растений. Москва. МНТЦ ВЕНТ. 1991. Препр.№9.

21. Бембель Е.И.. Шантарин В.Д. Практическое использование свойства «памяти» воды. Материалы 4-ой региональной научно-практической конференции студентов, аспирантов и молодых ученых. Новые технологии – нефтегазовому региону.Тюмень,ТюмГНГУ, 2005.

 

 

 

 

 

 

 

содержание   ..  35  36  37   ..