Главная      Учебники - Экология     Лекции по экологии - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  106  107  108   ..

 

 

Важкі метали та їх виявлення в стічних водах підприємств

Важкі метали та їх виявлення в стічних водах підприємств

Зміст


Розділ 3. Практична частина. Отримання та аналіз важких металів із стічних вод підприємств методом сорбції

Розглянемо основні методи сорбції важких металів із стічних вод підприємств. Аналіз стічних вод має одну особливість, а саме – достатньо великі об’єми аналізованих розчинів, що дозволяє використовувати методи концентрування. Для концентрування стічних вод використовують методи екстракції, випарювання, сорбції. Кожен із приведених методів має як свої позитивні так і негативні сторони. Процеси екстракції потребують використання органічних розчинників: хлороформу, бензолу, толуолу, чотири хлористого вуглецю. Але використання органічних розчинників, випарювання їх досить вогненебезпечне. Методи випарювання не потребують ніяких розчинників, проводяться у водному середовищі, але по часу вони доволі тривалі і їх не можна використати для експрес-аналізу. Метод сорбції потребує використання спеціальних органічних чи неорганічних сорбентів. Метод сорбції в останній час активно розвивається, у його розвитку використовують методи та методики сорбції, які були розроблені раніше для виділення урану, плутонію. Наприклад, в Україні такі роботи велися на Придніпровському гірничо-збагачувальному комбінаті, де на основі методик первинного збагачення уранової руди розробили установки для промислової сорбції рідкоземельних та благородних металів. В останній час викликають інтерес природні сорбенти – цеоліти, які проявляють активну сорбційну дію.

3.1 Виділення важких металів із стічних вод методом сорбції

При аналізі стічних вод широкими можливостями володіє метод сорбції. При його використанні можна досягти коефіцієнтів концентрування до . Сорбцію проводять як у статичних так і у динамічних умовах, використовують сорбційні фільтри. У якості сорбентів використовують активне вугілля, сульфовугілля, синтетичні іоніти, комплексоутворюючі сорбенти.

Розроблені методи поглинання хелатів [8, 10], а саме Cd, Co, Cr, Cu, Dy, Eu, Hf, Hg, Mn, Ni, Pb, Re, Sm, Tb, Znпереводили в 8-оксихінолінати при РН = 8 та поглинали утворені хелатні сполуки активованим вугіллям. Мікроелементи поглиналися кількісно, коефіцієнт поглинання досягав значення . Для подальшого аналізу використовували методи атомно-абсорбційної спектрометрії.

Ще більш зручні для проведення експрес-аналізів сорбційні фільтри. Фільтр із привитими групами кількісно поглинає близько 12 мікроелементів (в основному важкі метали та благородні), які містяться у стічних водах та промислових водах підприємств у звішеному та іонному вигляді. Після висушування фільтр аналізують методом ренггено-фазового аналізу, границя виявлення мікроелементів складає .

Високі значення коефіцієнтів концентрування досягаються при використанні статичних умов сорбції. Наприклад в [8] у якості сорбента запропоновано використати метатитанову кислоту. По методиці до проби об’ємом 2 літри додають 200 мг сорбента і перемішують. Після відстоювання осаду фільтрують для отримання осаду, потім осад разом із беззольним фільтром (баритові фільтри) прожарюють при температурі 350 – 400ºС. отриманий концентрат змішують із хімічно чистим графітовим порошком та хлоридом натрію та аналізують. Цим методом досягають кількісної сорбції більшості металів, а саме Al, Bi, Co, Cg, Cr, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sn, W, V, Zn. Коефіцієнт концентрування складає , границя виявлення мікроелементів .

Серед неорганічних сорбентів особливе місце по поширеності та по дешевизні займає активне вугілля різних марок та видів. Активне вугілля являється селективним полі функціональним катіонітом. Воно легко регенерується, досить стійке до хімічного, радіаційного та термічного впливу. Із допомогою активного вугілля проводять визначення хрому, молібдену та ванадію у водах різноманітної природи. Їх поглинають окисненим вугіллям та в подальшому спалюють отриманий концентрат в пальниках при атомно-емісійному аналізі.

В [12] розглянуто процеси сорбції на сорбентах різноманітної хімічної природи.

У книзі приведено класифікацію сорбентів на основі їх хімічної будови та властивостей. Згідно [12] виділяють сорбенти із комплексоутворюючими групами, сорбенти на неорганічній матриці, сорбенти модифіковані комплексоутворюючими реагентами, неорганічні сорбенти.

Промисловістю виготовляються промислові сорбенти із різноманітними комплексоутворюючими групами. Наприклад сорбент Келекс – 100 використовується для одночасного концентрування кадмію, кобальту, заліза, молібдену та нікелю при аналізі вод різної природи та біологічних об’єктів у токсикологічному аналізі. Для виявлення важких металів запропоновані умови: об’єм проби – 200 мл, РН = 7 – 8, тиски 200 – 300 кПа, час концентрування 20 хв. Фільтри після концентрування аналізують рентгенофлуоресцентним методом [12].

Останнім часом синтезовано сорбенти із різноманітними комплексоутворюючими групами. Наприклад сорбент Р-Д містить привитий дитизон (рис.3.1.), матрицею його слугує полістирол.

Рис. 3.1. Залишок комплексоутворюючой групи сорбента Р-Д.

Сорбент використовували для сорбції рідкоземельних та благородних металів із стічних вод гальванічних цехів, підприємств кольорової металургії.

Також синтезовані сорбенти ПВБ-МП, ПОЛІСОРГ VI, матрицями яких є сополімери стирола із дивініл бензолом, полівініленові волокна із комплексоутворюючими групами:

Отримані сорбенти використовують для аналізу та концентрування в основному благородних металів та деяких рідкоземельних металів при одночасному перебуванні у розчині таких поширених металів як мідь, алюміній, кобальт, нікель, залізо та інші.

У якості матриці використовують не тільки синтетичні полімери, а і природні, найчастіше целюлозу. Так волокнистий сорбент Мтилон Т, який містить групу , запропоновано для аналізу стічних вод гальванічних цехів, для концентрування таких металів як мідь, срібло, золото.

Такі метали як Al, Bi, Co, Cg, Cr, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sn, W, V, Znзапропоновано концентрувати за допомогою целюлозних обмінних фільтрів, попередньо в целюлозу вводиди групу хромотропової кислоти. Утворену сполуку можна зобразити формулою, що приведена на рисунку 3.2.

Рис. 3.2. структура целлюлозно-хромотропового сорбента.

Розроблений метод відрізняється простотою, оскільки целюлозні фільтри можна без попередньої обробки аналізувати за допомогою рентгено-флуоресцентного методу.

Також для концентрування важких металів запропоновано в [12] використовувати целюлозу оброблену 1-(2-оксофенілазо)-2-нафтолом:

Обмінна ємність отриманої смоли рвівна 0,5 мМоль/г.

Комплексоутворюючі групи можна привити не тільки на органічні речовини, створено велику кількість сорбентів на основі мінеральних матриць. У якості останніх найчастіше використовують силікагель та скляні кульки чи гранули. Отримані таким чином ненабухаючі сорбенти – це своєрідний гібрид синтетичних органічних та неорганічних сорбентів.

Комплексоутворюючі групи не обов’язково зв’язувати із матрицею хімічним шляхом, у всякому випадку міцними ковалентними зв’язками. Такі реагенти можна закріпити на поверхні іоніта у вигляді другого шару – шару притиіонів або ж використати пористі матриці у яких розчинятиметься комплексоутворювач.

Із допомогою вказаних вище модифікованих комплексоутворювачами сорбентів запропоновано концентрувати важкі метали, а зокрема ртуть та кадмій. Для цього використовували диетилтіокарбінат нартрію, який наносили на сорбент хромосорб W-DMCS.В залежності від природи іону та типу осаджувача отримані коефіцієнти концентрування 50 – 300.

До числа неорганічних сорбентів відносять оксиди та гідроксиди металів (силікагель, оксид алюмінію, гідратований оксид титану)солі металів (сульфіди, фосфат цирконію), солі гетерополікислот. Механізмом їх діє є комплексоутворення та іонний обмін. Перевагами неорганічних сорбентів є стійкість до нагрівання, радіації, органічних розчинників, висока вибірковість. До недоліків неорганічних сорбентів можна віднести невисоку ємність, не відтворюваність сорбційних властивостей у різних партіях сорбентів.

У якості перспективного сорбента можна використати гідратований оксид титану, який є напівпродуктом виробництва титанових пігментів из ільменіту. Йому притаманні дешевизна та поширеність, низька розчинність, стійкість до термообробки та старіння. При його допомозі в [23] розглянуто виділення тривалентного заліза, нікелю та міді із промислових вод.

У якості сорбента використовують також гідроксид та фосфат цирконію, які володіють по даних [15] високою вибірковістю, термічною та хімічною стійкістю, а також високою обмінною ємністю порівняно із іонітами та гідроксидами заліза, титану та алюмінію.

У якості неорганічних сорбентів використовуються гідратовані оксиди сурми (V), цирконію, для виявлення та сорбції сполук ртуті використовують сульфід свинцю. Але по цих речовинах точних данних та результатів досліджень недостатньо.

Із сказаного вище можна зробити висновок, що процеси сорбції дозволяють кількісно виділити велику кількість важких металів із розчинів. Високе значення коефіцієнту концентрування, яке складає для більшості адсорбентів величину порядку дозволяє проводити аналізи малої кількості речовин та розчинів. Ала відсутність селективних сорбентів не дозволяє використовувати фотометричні чи хімічні методи аналізу, більш поширеними є рентгено-спектральні та інші спектрометричні методи.

3.2 Методика виявлення іонів важких металів у розчинах

Визначення більшості іонів важких металів являється можливим за умови їх концентрації у розчині більшій за 100 мкг/л. Методи сорбції, екстракція чи випарювання дозволяють концентрувати розчини. Разом із тим потрібно підкреслити, що іноді аналізовані розчини потрібно не концентрувати, а розбавляти із метою отримання більш достовірних даних аналізів та зменшення похибок.

Для аналізування розчинів найчастіше використовують атомно-абсорбційний аналіз, рентгенівську спектрометрію. Хімічні методи використовують рідко із – за потреби маскування перешкоджаючих іонів.

Прилади для атомно-абсорбційного аналізу розрізняються і по конструкції і по методиці роботи із ними. Тому потрібно строго слідувати інструкціям. Наведемо лише загальні основи проведення аналізу.

При визначенні певного елемента вставляють пустотілу катодну лампу призначену для визначення певного хімічного елемента. Встановлюють необхідну довжину хвилі випромінювання. Визначають оптимальне співвідношення подачі горючого газу та газу-окисника. Визначають час досягнення рівноважного стану після приску аналізованої проби. Знаходять оптимальну ширину щілини, визначають оптимальну висоту оптичної осі над пальником, визнають максимум адсорбції стандартного розчину при переміщенні пальника в вертикальному напрямі.

Для побудови градуювального графіка вводять в полум’я робочі стандартні розчини, починаючи від мінімальної концентрації речовини. Для побудови графіка потрібно, згідно правил, використати не менш чотирьох точок, тобто чотирьох різних концентрацій. Кожен вимір проводять не менш трьох разів, для побудови графіка беруть середнє значення величини.

При визначенні заліза та марганцю в калібрувальні стандартні розчини (а згодом і в аналізований розчин) вводять по 25 мл розчину солі кальцію на 100 мл аналізованого розчину. При визначенні магнію та кальцію в розчини вводять по 25 мл солі лантану на 100 мл аналізованого розчину.

Абсорбцію аналізованих розчинів проводять аналогічно аналізу стандартних розчинів. Але попередньо потрібно промити прилад дистильованою водою в яку додають 15 мл концентрованої азотної кислоти на 1 літр води.

3.2.1 Визначення концентрації міді

Іони міді реагують із діетилкарбаматом натрію із утворенням коричневого нерозчинного у воді діетилкарбамата міді, який легко екстрагується хлороформом, забарвлюючи останній в жовто-коричневий колір. Інтенсивність забарвлення в широких межах пропорційна концентрації міді. Екстрагують утворену речовину із аміачних розчинів, що містять цитрат амонію та коплексон ІІІ, який маскує більшість металів, які також вступають у дану реакцію. Описаним методом можна виявити від 0,05 до 1 мг міді на 1 літр розчину.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 324,7 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.2 Визначення концентрації свинцю

Для виявлення свинцю отримують дитизонат свинцю, який має червоний колір та розчинний у . Дитизонат свинцю екстрагують при РН рівному 8 – 9 в ціанідному середовищі, в якому маскується наявність більшості металів, які реагують із дитизоном. В 100 мл проби можна визначити свинець при концентрації 0,1 – 1 мг/л.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 283,3 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.3 Визначення концентрації цинку

Для виявлення свинцю отримують дитизонат цинку, який має червоний колір та розчинний у . Утворена комплексна сполука із дитизоном має червоний колір і її концентрація пропорційна кольору комплексу. Цинк вступає у реакцію із дитизоном при РН 4 – 7. у цьому середовищі із дитизоном реагують також і мідь, кадмій, свинець, нікель, кобальт та інші метали. Щоб зменшити перешкоджаючий вплив даних металів екстракцію ведуть при РН = 5 із тіосульфатом та ціанідом. Ціанід додають для зв’язування кадмію, кобальту, нікелю та паладію. В таких умовах із дитизоном реагує тільки олово (ІІ). В обробленій пробі можна визначити 0,005 – 0,03 мг цинку на літр розчину.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 213,9 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.4 Визначення концентрації нікелю

Іони нікелю в аміачному буферному розчині в присутності сильного окисника вступають у реакцію із диметилгліоксимом із утворенням комплексної сполуки червоного кольору. Інтенсивність забарвлення пропорційна концентрації нікелю. Прямим способом можна визначити 0,2 – 5 мг/л нікелю.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 232,0 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.5 Визначення концентрації кадмію

Іони кадмію екстрагують розчином дитизону в із сильно лужних розчинів, що містять тар трат-іони. Інтенсивність забарвлення екстракту, що містить дитизонат кадмію червоного коьолору, в певних межах пропорційна концентрації кадмію. Наведеним способом можна виявити 0,01 – 0,5 мг кадмію в 1 літрі розчину.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 228,8 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.6 Визначення концентрації кобальту

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 240,7 нм. Горючий газ – ацетилен, окисник – повітря.

3.2.7 Визначення концентрації ртуті

Під час екстрагування водного розчину солі ртуті дитизоном в хлороформі утворюється оранжевий дитизонат ртуті, який у хлороформі не розчиняеться. В середовищі ацетатного буфера та в присутності ЕДТА та роданіду калію реакція ртуті із дитизоном практично специфічна. Надлишок вільного дитизону із екстракту видаляють страхуванням із із розчином гідроксиду амонію та визначають оптичну густину розчину дитизоната ртуті у хлороформі.

При обробці 100 мл проби можна визначити ртуть в концентрації 0,05 – 1 мг/л із точністю до . Більш низькі концентрації ртуті можна визначати екстрагуванням із більшого об’єму проби (до 500 мл), випарюванням або ж сорбцією.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 253,7 нм. Проводять безполуменевий аналіз на наявність іонів ртуті.

3.2.8 Визначення концентрації заліза

Залізо виявляють фото колориметричним методом в вигляді забарвленої сполуки із роданідом амонію в кислому середовищі тривалентне залізо утворює червону сполуку із роданідом. Склад сполуки неоднорідний, залежить від температури, РН розчину. Інтенсивність забарвлення пропорційна концентрації заліз у розчині. Прямим методом можна виявити 0,05 – 4 мг заліза на 1 літр води.

Крім реакції із роданідом використовують також реакцію із сульфосаліциловою кислотою та о-фенантроліном. Чутливість даних реакцій одного порядку як і у реакції із роданідом.

При використанні атомно-абсорбційного аналізу вимірюють інтенсивність лінії 248,3 нм. Горючий газ – ацетилен, окисник – повітря.


Висновки

Зростання кількості промислових стоків та викидів спричиняє посилений техногенний тиск на природне середовище. Окремі органічні та неорганічні речовини значною мірою змінюють органолептичні властивості води, або ж роблять її взагалі непридатною для споживання. Та промислових цілей. Тому технохімічний аналіз стічних та промислових вод є досить важливим завдання санітарно-епідеміологічних служб та заводських лабораторій. Розвиток техніки та технологій в останній час значною мірою покращив матеріальну базу лабораторій, більшість заводських лабораторій та лабораторій обласних СЕС обладнано сучасною технікою, що дозволяє проводити аналізи на сучасному технологічному рівні із використанням спектрометрії як у ІЧ-, УФ та рентгенівському діапазоні.

Проведення аналізу та визначення важких металів у стічних водах є досить важкою задачею, оскільки потрібно забезпечити відбір проб у польових умовах, забезпечити постійність складу, тощо. Деякі вадкі метали можуть міститися у стічних водах у досить малих концентраціях, тому для концентрування проб запропоновано досить багато методів. Метод сорбції є одним із найпростіших і може бути проведений у польових умовах, із використанням сорбційних фільтрів чи сорбційних колонок. Це виключає проблему консервування проб та їх транспортування в лабораторію. В лабораторії аналізу можна буде піддати тільки вже отримані сорбовані речовини. Метод сорбції також дозволяє значною мірою (до ) підвищити концентрацію важких металів у аналізованому розчині. Використання селективних сорбентів дозволяє виділяти окремі метали із сумішей іонів чи взвішених частинок.

Метод сорбції є одним із перспективних методів концентрування важких металів, що дозволяє в подальшому покращити точність їх виявлення у стічних водах підприємств.


Список використаної літератури.

1. Васильев В. П. Аналитическая химия. В 2 кн. Кн. 2. Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технологическим специальностям – 2-е изд., перераб. и доп. - М.: Дрофа, 2002. - 384 с.

2. Глинка Н. Л. Общая химия. – Л.: Химия, 1988. – 702 с.

3. Гороновский И. Т., Назаренко Ю. П., Некряч Е. Ф. Краткий справочник по химии. – К.: Издательство АН СССР, 1962, 658 с.

4. Жарский И. М., Новиков И. Г. Физические методы исследования в неорганической химии. – М.: Высшая школа, 1988, - 271 с.

5. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. – М.:Металлургия, 1991.

6. Крешков А. П., Ярославцев А. А. Курс аналитической химии. – М.: Химия, 1964. – 430 с.

7. Кузьмин Н. М. Концентрирование следов элементов. – М.: Наука, 1988, - 267 с.

8. Лурье Ю. Ю. Аналитическая химия промышленных сточных вод. – М.: Химия, 1984.

9. Лурье Ю. Ю. Унифицированные методы анализа вод. – М.: Химия, 1973, - 376 с.

10. Меркин Э.Н. Экстракция металлов некоторыми органическими катионообменными реагентами - М.: Наука, 1968.

11. Моросанова С. А. Методы анализа природных и промышленных объектов. - М.: Издательство МГУ, 1988.

12. Москвин Л. Н., Царицина Л. Г. Методы разделения и концентрирования в аналитической химии. – Л.: Химия, 1991.

13. Муринов И. Ю. Экстракция металлов SN – органическими соединениями. - М.: Наука, 1993.

14. Некрасов Б.В. "Основы общей химии" т.1. - М.: Химия, 1973.

15. Определение малых концентраций элементов. Под ред. Ю. Ю. Лурье. - М.: Наука, 1986.

16. Ритчи Г.М., Эшбрук А.В. "Экстракция: принципы и применение в металлургии." Пер. с англ. - М.:Металлургия, 1983.

17. Скуг Д., Уэст Д. Основы аналитической химии. В 2 т. Пер. с англ. –М.: Мир, 1979, - 438 с.

18. Справочник химика. В 3-х т. - М.: Химия, 1966, - 1070 с.

19. Упор Андре Фотометрические методы определения следов неорганических соединений. – М.: Мир, 1985.

20. Физическая химия. Практическое и теоретическое руководство. Под ред. Б. П. Никольского, - Л.: Химия, 1987. – 875 с.

21. Химия и технология редких и рассеянных элементов. Ч. ІІІ. - М.: Высшая школа, 1976, - 320 с.

22. Химия: Справочное издание/ под ред. В. Шретер, К.-Х, Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. – М.: Химия, 1989.– 648 с.

23. Химическая энциклопедия в 5 т. / под ред. И. Л. Кнунянца. – М.: Советская энциклопедия, 1990.

 

 

 

 

 

 

 

содержание   ..  106  107  108   ..

 

Елемент Доза, мг/кг
Нормальна Токсична Летальна
Миш'як 0,04-1,4 5-50 50-340
Ртуть 0,004-0,02 0,4 150-300
Мідь 0,5-6 175-250
Алюміній 0,0014-0,08 60 1300-6200
Кадмій 0,07-0,3 3-330 1500-9000
Фтор 0,3-5 20 2000
Хром 0,01-1,2 200 3000-8000
Цинк 5-40 150-600 6000
Свинець 0,06-0,5 10000
Залізо 6-40 200 7000-35000