Nissan Qashqai J11. Manual - part 183

 

  Index      Nissan     Nissan Qashqai J11 - Service and Repair Manual

 

Search            

 

 

 

 

 

 

 

 

 

Content   ..  181  182  183  184   ..

 

 

Nissan Qashqai J11. Manual - part 183

 

 

ECH-30

< SYSTEM DESCRIPTION >

[HRA2DDT]

SYSTEM

The richness is managed by heated oxygen sensors shown in the following scheme:

Two sensors measure the combustion efficiency:

Heated Oxygen Sensor 1

The heated oxygen sensor 1 enables the richness closed loop mode. This is a differential sensor and the rich-
ness signal directly depends on the information given by this component:
• Lean (less fuel than air) if the voltage is under 450 mV, so mixture needs an enrichment.
• Rich (more fuel than air) if the voltage is above 450 mV, so mixture needs a richness reduction.

Heated Oxygen Sensor 2

The heated oxygen sensor 2 enables the application of the richness double loop mode and diagnosis of cata-
lyst. Its working technology is the same as the heated oxygen sensor 1.
To be operational very quickly, theses sensors need to be warmed by electric signal and exhaust gas.
The richness regulation is managed by the heated oxygen sensor 1. It consists in applying a correction on the
injection time which depends on the richness states.
Those states depend on the engine speed and engine load. In closed loop mode, fuel injected mass is regu-
lated by the information given by heated oxygen sensors (around reference point). In open-loop mode, rich-
ness is no more regulated and is specific to the mode (above reference point). In full load, richness increase in
order to have the best performance (maximal richness).
Closed loop richness mode is a regulation system using heated oxygen sensor information to quantify the fuel
injected mass; it enables the engine to stay in the catalytic working window, which reduces pollutant emis-
sions. Those sensors (heated oxygen sensor 1 and 2) reflect efficiency of the combustion. More precisely, if
the mixture lacks fuel (lean mixture) the system will then increase the fuel rate, in the opposite case (rich mix-
ture) the fuel rate will be decreased.
The richness double loop regulation is managed by the heated oxygen sensor 2. It consists in computing one
more correction, added to the richness in order to have the best three way catalyst efficiency. For its activation,
the driver has to run nearly 1.5 minutes with a warm running engine out of the idle speed state.
The richness management also includes richness adaptation function.
It consists in learning the injectors lift and wearing effects on richness basic settings. It also shifts the engine
richness mean value around the reference point with a correction, directly modifying the injection time.
The richness is affected by the ‘wall wetting’ phenomena (deposit of a fuel film in the intake ports). ECM com-
pensates the effects by a correction on the fuel injected mass set point.
In order to respect pollutants emissions rules, a gasoline engine needs a catalyst.
The catalyst warm-up quickly enables to trigger this component. There are different phases during this cycle;
several of them affecting richness (richness increased) especially in cold temperature conditions.

AFTER TREATMENT SYSTEM

JPBIA5640GB

SYSTEM

ECH-31

< SYSTEM DESCRIPTION >

[HRA2DDT]

C

D

E

F

G

H

I

J

K

L

M

A

ECH

N

P

O

AFTER TREATMENT SYSTEM : System Description

INFOID:0000000010379032

THREE WAY CATALYST PRINCIPLE

The three way catalyst possesses one main function:
• Use the present oxygen in exhaust gases to transform CO in CO2 and the HC in CO2 + H2O.
A ceramic (honey comb) support dressed in a fine layer of miscellaneous precious metals (platinum, palladium
and rhodium) constitutes the catalytic converter.
The toxic components of exhaust gases (hydrocarbons, nitric oxides and carbon monoxides) are transformed
into harmless substances (steam) during their access in the three way catalyst by a chemical process (cataly-
sis) which puts in contact toxic gases and precious metals.
The heated oxygen sensor 1 placed upstream to the exhaust line controls the content in oxygen of exhaust
gases and controls the refusals (effluents). The pre-catalytic converter treats the not burnt hydrocarbons and
the carbon monoxide. The temperature sensor allows the ECM to determine the state of saturation of the cat-
alytic converter.

COOLING FAN CONTROL

COOLING FAN CONTROL : System Description

INFOID:0000000010379033

SYSTEM DESCRIPTION

The cooling of the engine is done by a double speed motor driven fan unit (FAN1: low speed; FAN2: high
speed). The ECM controls cooling fan relays through CAN communication line.

When the engine is running

To cool the engine, a request for FAN1 activation is sent when the engine coolant temperature exceeds 101

°

C

(213.8

°

F) and a deactivated request is sent when the engine coolant temperature becomes lower than 99

°

C

(210.2

°

F).

When the engine coolant temperature continues to increase, a request for FAN2 activation is sent when the
engine coolant temperature exceeds 105

°

C (221

°

F) and a deactivated request is sent when the engine cool-

ant temperature becomes lower than 103

°

C (217.4

°

F).

When the engine coolant temperature continues to increase and exceeds the alert threshold calibrated at
115

°

C (239

°

F), ECM judges the engine is over temperature status until the temperature becomes lower than

110

°

C (230

°

F).

In case of an abnormally high engine coolant temperature, the maximum engine torque is reduced; the driver
will then feel a lack of engine power.

When the engine is not running

Only a FAN1 activation request can be sent for anti-percolation purpose (engine stopped with high engine
coolant temperature). The anti-percolation function is active after ignition switch OFF for a defined maximum
time. At ignition switch OFF, a FAN1 activation request is sent if the engine coolant temperature exceeds
specified temperature and a cutting request is sent when the engine coolant temperature becomes lower.
When there is a default on the engine coolant temperature signal, the FAN1 activation is permanently
requested (engine running).
In addition to this, depending on the equipment mounted on the vehicle, the ECM can also send an activation
request for air conditioning needs or automatic transmission needs.

THERMOSTAT CONTROL

THERMOSTAT CONTROL : System Description

INFOID:0000000010437169

SYSTEM DESCRIPTION

The engine coolant bypass valve circulates engine coolant within a narrow range and accelerates a warm-up
by closing the valve and cutting off the engine coolant passage.
ECM applies power to the engine coolant bypass valve control solenoid valve when engine coolant tempera-
ture is low.
The engine coolant bypass valve control solenoid valve switches the passage of negative pressure (vacuum)
sent from the vacuum pump. When power is applied to the solenoid valve, negative pressure is applied to the
engine coolant bypass valve. Accordingly, the engine coolant bypass valve closes.

ENERGY MANAGEMENT SYSTEM

ECH-32

< SYSTEM DESCRIPTION >

[HRA2DDT]

SYSTEM

ENERGY MANAGEMENT SYSTEM : System Description

INFOID:0000000010500314

DESCRIPTION

ECM transmits a target power generation voltage signal received from IPDM E/R to the generator via LIN
communication.
The generator includes a self-diagnosis function and transmits a diagnosis signal to ECM via LIN communica-
tion when detecting a malfunction. When ECM receives a diagnosis signal, ECM detects DTC and transmits a
charge warning lamp request signal to the combination meter to turn ON the charge warning lamp.
For details of ENERGY MANAGEMENT SYSTEM, refer to 

CHG-8, "ENERGY MANAGEMENT SYSTEM :

System Description"

.

STOP/START SYSTEM

SYSTEM

ECH-33

< SYSTEM DESCRIPTION >

[HRA2DDT]

C

D

E

F

G

H

I

J

K

L

M

A

ECH

N

P

O

STOP/START SYSTEM : System Description

INFOID:0000000010499034

SYSTEM DIAGRAM

INPUT/OUTPUT SIGNAL CHART

JSBIA5071GB

 

 

 

 

 

 

 

Content   ..  181  182  183  184   ..