Nissan Murano Z50 (2005 year). Manual - part 79

 

  Index      Manuals     Nissan Murano Z50 (2005 year) - Service and Repair Manual

 

Search            copyright infringement  

 

 

 

 

 

 

 

 

Content      ..     77      78      79      80     ..

 

 

Nissan Murano Z50 (2005 year). Manual - part 79

 

 

PRECAUTIONS

EC-19

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

Do not operate fuel pump when there is no fuel in lines.

Tighten fuel hose clamps to the specified torque.

Do not depress accelerator pedal when starting.

Immediately after starting, do not rev up engine unneces-
sarily.

Do not rev up engine just prior to shutdown.

When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.

Keep the antenna as far as possible from the electronic
control units.

Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.

Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.

Be sure to ground the radio to vehicle body.

PBIB1356E

SEF709Y

SEF708Y

EC-20

PREPARATION

Revision: 2005 August

2005 Murano

PREPARATION

PFP:00002

Special Service Tools

ABS004A6

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number
(Kent-Moore No.)
Tool name

Description

EG17650301
(J-33984-A)
Radiator cap tester 
adapter

Adapting radiator cap tester to radiator cap and 
radiator filler neck
a: 28 (1.10) dia.
b: 31.4 (1.236) dia.
c: 41.3 (1.626) dia.
Unit: mm (in)

KV10117100
(J-36471-A)
Heated oxygen 
sensor wrench

Loosening or tightening heated oxygen sensor with 
22 mm (0.87 in) hexagon nut

KV10114400
(J-38365)
Heated oxygen 
sensor wrench

Loosening or tightening heated oxygen sensor
a: 22 mm (0.87 in)

(J-44321)
Fuel pressure gauge 
kit

Checking fuel pressure

KV109E0010
(J-46209)
Break-out box

Measuring the ECM signals with a circuit tester

KV109E0080
(J-45819)
Y-cable adapter

Measuring the ECM signals with a circuit tester

S-NT564

S-NT379

S-NT636

LEC642

S-NT825

S-NT826

PREPARATION

EC-21

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

Commercial Service Tools

ABS004A7

Tool name
(Kent-Moore No.)

Description

Leak detector 
i.e.: (J-41416)

Locating the EVAP leak

EVAP service port 
adapter
i.e.: (J-41413-OBD)

Applying positive pressure through EVAP service 
port

Fuel filler cap adapter
i.e.: (MLR-8382)

Checking fuel tank vacuum relief valve opening 
pressure

Socket wrench

Removing and installing engine coolant 
temperature sensor

Oxygen sensor thread 
cleaner
i.e.: (J-43897-18)
(J-43897-12)

Reconditioning the exhaust system threads 
before installing a new oxygen sensor. Use with 
anti-seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for 
Zirconia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for 
Titania Oxygen Sensor

Anti-seize lubricant 

i.e.: (Permatex

TM

   

133AR or equivalent 
meeting MIL 
specification MIL-A-
907)

Lubricating oxygen sensor thread cleaning tool 
when reconditioning exhaust system threads.

S-NT703

S-NT704

S-NT815

S-NT705

AEM488

S-NT779

EC-22

ENGINE CONTROL SYSTEM

Revision: 2005 August

2005 Murano

ENGINE CONTROL SYSTEM

PFP:23710

System Diagram

ABS004A8

PBIB2307E

ENGINE CONTROL SYSTEM

EC-23

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

Multiport Fuel Injection (MFI) System

ABS004AB

INPUT/OUTPUT SIGNAL CHART

*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This signals is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.

<Fuel increase>

During warm-up

When starting the engine

During acceleration

Hot-engine operation

When selector lever is changed from N to D

High-load, high-speed operation

<Fuel decrease>

During deceleration

During high engine speed operation

Sensor

Input Signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)

Engine speed*

3

Piston position

Fuel injection 
& mixture ratio 
control

Fuel injector

Camshaft position sensor (PHASE)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Air fuel ratio (A/F) sensor 1

Density of oxygen in exhaust gas

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Park/neutral position (PNP) switch

Gear position

Knock sensor

Engine knocking condition

Battery

Battery voltage*

3

Power steering pressure sensor

Power steering operation

Heated oxygen sensor 2*

1

Density of oxygen in exhaust gas

Air conditioner switch*

2

Air conditioner operation

Wheel sensor*

2

Vehicle speed

EC-24

ENGINE CONTROL SYSTEM

Revision: 2005 August

2005 Murano

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses air
fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air
fuel ratio (A/F) sensor 1, refer to 

EC-483, "DTC P1271, P1281 A/F SENSOR 1"

 . This maintains the mixture

ratio within the range of stoichiometric (ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.

Deceleration and acceleration

High-load, high-speed operation

Malfunction of A/F sensor 1 or its circuit

Insufficient activation of A/F sensor 1 at low engine coolant temperature

High engine coolant temperature

During warm-up

After shifting from N to D

When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1.
This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoret-
ical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally
designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes dur-
ing operation (i.e., injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-
oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in
fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.

SEF503YB

ENGINE CONTROL SYSTEM

EC-25

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The six injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or oper-
ation of the vehicle at excessively high speeds.

Electronic Ignition (EI) System

ABS004AC

INPUT/OUTPUT SIGNAL CHART

*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

Firing order: 1 - 2 - 3 - 4 - 5 - 6
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is revised by the ECM according to the other data stored in
the ECM.

At starting

During warm-up

At idle

At low battery voltage

SEF179U

Sensor

Input Signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)

Engine speed*

2

Piston position

Ignition timing 
control

Power transistor

Camshaft position sensor (PHASE)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Knock sensor

Engine knocking

Park/neutral position (PNP) switch

Gear position

Battery

Battery voltage*

2

Wheel sensor*

1

Vehicle speed

EC-26

ENGINE CONTROL SYSTEM

Revision: 2005 August

2005 Murano

During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Fuel Cut Control (at No Load and High Engine Speed)

ABS004AE

INPUT/OUTPUT SIGNAL CHART

*: This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine
speed over is 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies
based on engine speed.
Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.

NOTE:
This function is different from deceleration control listed under “Multiport Fuel Injection (MFI) System”, 

EC-23

 .

Sensor

Input Signal to ECM

ECM function

Actuator

Park/neutral position (PNP) switch

Neutral position

Fuel cut con-
trol

Fuel injector

Accelerator pedal position sensor

Accelerator pedal position

Engine coolant temperature sensor

Engine coolant temperature

Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)

Engine speed

Wheel sensor*

Vehicle speed

AIR CONDITIONING CUT CONTROL

EC-27

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

AIR CONDITIONING CUT CONTROL

PFP:23710

Input/Output Signal Chart

ABS004AD

*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.

System Description

ABS00E9M

This system improves engine operation when the air conditioner is used.
Under the following conditions, the air conditioner is turned off.

When the accelerator pedal is fully depressed.

When cranking the engine.

At high engine speeds.

When the engine coolant temperature becomes excessively high.

When operating power steering during low engine speed or low vehicle speed.

When engine speed is excessively low.

When refrigerant pressure is excessively low or high.

Sensor

Input Signal to ECM

ECM function

Actuator

Air conditioner switch*

1

Air conditioner ON signal

Air conditioner 
cut control

Air conditioner relay

Accelerator pedal position sensor

Accelerator pedal position

Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)

Engine speed*

2

Engine coolant temperature sensor

Engine coolant temperature

Battery

Battery voltage*

2

Refrigerant pressure sensor

Refrigerant pressure

Power steering pressure sensor

Power steering operation

Wheel sensor*

1

Vehicle speed

EC-28

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Revision: 2005 August

2005 Murano

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description

ABS004PK

INPUT/OUTPUT SIGNAL CHART

*: This signal is sent to the ECM through CAN communication line

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.
Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed
without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/
h (25 MPH) and 144 km/h (89 MPH).
ECM controls throttle angle of electric throttle control actuator to regulate engine speed.
Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any
malfunction occurs in ASCD system, it automatically deactivates control.
NOTE:
Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press MAIN switch. (The CRUISE indicator in combination meter illuminates.)
When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89
MPH), press SET/COAST switch. (Then SET indicator in combination meter illuminates.)

ACCEL OPERATION

If the RESUME/ACCELERATE switch is pressed during cruise control driving, increase the vehicle speed until
the switch is released or vehicle speed reaches maximum speed controlled by the system.
And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

CANCEL switch is pressed.

More than 2 switches at ASCD steering switch are pressed at the same time (Set speed will be cleared.).

Brake pedal is depressed.

Selector lever is changed to N, P, R position.

Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed.

VDC/TCS system is operated.

CVT control system has a malfunction. Refer to 

EC-594, "DTC P1700 CVT CONTROL SYSTEM"

 .

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform
the driver by blinking indicator lamp.

Engine coolant temperature is slightly higher than the normal operating temperature, CRUISE lamp may
blink slowly.
When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will
stop blinking and the cruise operation will be able to work by pressing SET/COAST switch or RESUME/
ACCELERATE switch.

Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle
speed memory will be erased.

Sensor

Input signal to ECM

ECM function

Actuator

ASCD brake switch

Brake pedal operation

ASCD vehicle speed control

Electric throttle control 
actuator

Stop lamp switch

Brake pedal operation

ASCD steering switch

ASCD steering switch operation

Park/Neutral position (PNP) 
switch

Gear position

Unified meter and A/C amp.*

Vehicle speed

TCM*

Powertrain revolution

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

EC-29

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

COAST OPERATION

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the
switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

When the RESUME/ACCELERATE switch is pressed after cancel operation other than pressing MAIN switch
is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must
meet following conditions.

Brake pedal is released.

CVT selector lever is in other than P and N positions.

Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH).

Component Description

ABS004PL

ASCD STEERING SWITCH

Refer to 

EC-577

 .

ASCD BRAKE SWITCH

Refer to 

EC-584

  and 

EC-688

 .

STOP LAMP SWITCH

Refer to 

EC-584

 ,

EC-609

  an

EC-688

 .

ELECTRIC THROTTLE CONTROL ACTUATOR 

Refer to 

EC-420

 , 

EC-422

 , 

EC-428

   an

EC-433

 .

ASCD INDICATOR

Refer to 

EC-695

 .

EC-30

CAN COMMUNICATION

Revision: 2005 August

2005 Murano

CAN COMMUNICATION

PFP:23710

System Description

ABS00E9H

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle mul-
tiplex communication line with high data communication speed and excellent error detection ability. Many elec-
tronic control units are equipped onto a vehicle, and each control unit shares information and links with other
control units during operation (not independent). In CAN communication, control units are connected with 2
communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.
Each control unit transmits/receives data but selectively reads required data only.
Refer to 

LAN-29, "CAN COMMUNICATION"

 , about CAN communication for detail.

EVAPORATIVE EMISSION SYSTEM

EC-31

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

EVAPORATIVE EMISSION SYSTEM

PFP:14950

Description

ABS004PB

SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel
system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.
The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the
vapor is stored there when the engine is not operating or when refueling to the fuel tank.
The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the
engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the
engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is
proportionally regulated as the air flow increases.
EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and
idling.

PBIB1631E

EC-32

EVAPORATIVE EMISSION SYSTEM

Revision: 2005 August

2005 Murano

EVAPORATIVE EMISSION LINE DRAWING

PBIB1296E

EVAPORATIVE EMISSION SYSTEM

EC-33

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2005 August

2005 Murano

PBIB1385E

EC-34

EVAPORATIVE EMISSION SYSTEM

Revision: 2005 August

2005 Murano

Component Inspection

ABS004PC

EVAP CANISTER

Check EVAP canister as follows:

1.

Block port B .

2.

Blow air into port A   and check that it flows freely out of port C .

3.

Release blocked port B .

4.

Apply vacuum pressure to port B   and check that vacuum pres-
sure exists at the ports A   and C .

5.

Block port A   and B .

6.

Apply pressure to port C   and check that there is no leakage.

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)

1.

Wipe clean valve housing.

2.

Check valve opening pressure and vacuum.

3.

If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incor-
rect fuel filler cap is used, the MIL may come on.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to 

EC-338

 an

EC-569

 .

FUEL TANK TEMPERATURE SENSOR

Refer to 

EC-270

 an

EC-274

 .

EVAP CANISTER VENT CONTROL VALVE

Refer to 

EC-344

 an

EC-575

 .

EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to 

EC-348

 ,

EC-354

  an

EC-362

 .

PBIB1044E

SEF445Y

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm

2

 , 2.22 

- 2.90 psi)

Vacuum:

6.0 to 

3.3 kPa (

0.061 to 

0.034 kg/cm

2

 , 

0.87 to 

0.48 psi)

SEF943S

 

 

 

 

 

 

 

Content      ..     77      78      79      80     ..