Nissan Murano Z50 (2004 year). Manual - part 69

 

  Index      Manuals     Nissan Murano Z50 (2004 year) - Service and Repair Manual

 

Search            copyright infringement  

 

 

 

 

 

 

 

 

Content      ..     67      68      69      70     ..

 

 

Nissan Murano Z50 (2004 year). Manual - part 69

 

 

INDEX FOR DTC

EC-15

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

*1: 1st trip DTC No. is the same as DTC No.
*2: This number is prescribed by SAE J2012.
*3: In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.
*4: When engine is running.
*5: The troubleshooting for these DTCs need CONSULT-II.
*6: When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.
*7: CONSULT-II screen terms are shown differently depending on the version of CONSULT-II card.

P1283

1283

A/F SENSOR1 (B2)

2

×

EC-465

P1284

1284

A/F SENSOR1 (B2)

2

×

EC-474

P1286

1286

A/F SENSOR1 (B2)

2

×

EC-483

P1288

1288

A/F SENSOR1 (B2)

2

×

EC-492

P1289

1289

A/F SENSOR1 (B2)

2

×

EC-504

P1444

1444

PURG VOLUME CONT/V

2

×

EC-516

P1446

1446

VENT CONTROL VALVE

2

×

EC-524

P1564

1564

ASCD SW

1

EC-531

P1572

1572

ASCD BRAKE SW

1

EC-538

P1574

1574

ASCD VHL SPD SEN

1

EC-546

P1610 - P1615

1610 - 1615

NATS MALFUNCTION

2

EC-62

P1700

1700

CVT C/U FUNCT

1

EC-548

P1706

1706

P-N POS SW/CIRCUIT

2

×

EC-549

P1715

1715

IN PULY SPEED

2

EC-554

P1720

1720

V/SP SEN (A/T OUT)

2

EC-556

P1740

1740

LU-SLCT SOL/CIRC

(—)*

7

2

×

CVT-166

P1777

1777

STEP MOTR CIRC

1

×

CVT-172

P1778

1778

STEP MOTR FNC

2

×

CVT-176

P1800

1800

VIAS S/V CIRC

2

EC-558

P1805

1805

BRAKE SW/CIRCUIT

2

EC-563

P2122

2122

APP SEN 1/CIRC

1

×

EC-568

P2123

2123

APP SEN 1/CIRC

1

×

EC-568

P2127

2127

APP SEN 2/CIRC

1

×

EC-574

P2128

2128

APP SEN 2/CIRC

1

×

EC-574

P2135

2135

TP SENSOR

1

×

EC-581

P2138

2138

APP SENSOR

1

×

EC-588

DTC*

1

Items

 (CONSULT-II screen terms)

Trip

MIL lighting 

up

Reference page

CONSULT-II

GST*

2

ECM*

3

EC-16

PRECAUTIONS

Revision: 2004 November

2004 Murano

PRECAUTIONS

PFP:00001

Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT 
BELT PRE-TENSIONER”

ABS008FT

The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.

WARNING:

To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.

Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.

Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.

On Board Diagnostic (OBD) System of Engine and CVT

ABS004A3

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.

CAUTION:

Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.

Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)

Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to 

PG-62, "HAR-

NESS CONNECTOR"

  .

Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.

Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.

Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.

Precaution

ABS004A4

Always use a 12 volt battery as power source.

Do not attempt to disconnect battery cables while engine is
running.

Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect battery
ground cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.

Before removing parts, turn ignition switch OFF and then
disconnect battery ground cable.

SEF289H

PRECAUTIONS

EC-17

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Do not disassemble ECM.

If a battery cable is disconnected, the memory will return to
the ECM value.
The ECM will now start to self-control at its initial value.
Engine operation can vary slightly when the terminal is dis-
connected. However, this is not an indication of a malfunc-
tion. Do not replace parts because of a slight variation.

When connecting ECM harness connector, fasten it
securely with levers as far as they will go as shown at right.

When connecting or disconnecting pin connectors into or
from ECM, take care not to damage pin terminals (bend or
break).
Make sure that there are not any bends or breaks on ECM
pin terminal, when connecting pin connectors.

Securely connect ECM harness connectors.
A poor connection can cause an extremely high (surge)
voltage to develop in coil and condenser, thus resulting in
damage to ICs.

Keep engine control system harness at least 10 cm (4 in)
away from adjacent harness, to prevent engine control sys-
tem malfunctions due to receiving external noise, degraded
operation of ICs, etc.

Keep engine control system parts and harness dry.

Before replacing ECM, perform “ECM Terminals and Refer-
ence Value” inspection and make sure ECM functions prop-
erly. Refer to 

EC-95

  .

Handle mass air flow sensor carefully to avoid damage.

Do not disassemble mass air flow sensor.

Do not clean mass air flow sensor with any type of deter-
gent.

Do not disassemble electric throttle control actuator.

Even a slight leak in the air intake system can cause seri-
ous incidents.

Do not shock or jar the camshaft position sensor (PHASE),
crankshaft position sensor (POS).

PBIB1164E

PBIB1512E

PBIB0090E

MEF040D

EC-18

PRECAUTIONS

Revision: 2004 November

2004 Murano

After performing each TROUBLE DIAGNOSIS, perform DTC
Confirmation Procedure or Overall Function Check.
The DTC should not be displayed in the DTC Confirmation
Procedure if the repair is completed. The Overall Function
Check should be a good result if the repair is completed.

When measuring ECM signals with a circuit tester, never
allow the two tester probes to contact.
Accidental contact of probes will cause a short circuit and
damage the ECM power transistor.

Do not use ECM ground terminals when measuring input/
output voltage. Doing so may result in damage to the ECM's
transistor. Use a ground other than ECM terminals, such as
the ground.

B1 indicates the bank 1, B2 indicates the bank 2 as shown
in the figure.

SEF217U

SEF348N

SEC893C

PRECAUTIONS

EC-19

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Do not operate fuel pump when there is no fuel in lines.

Tighten fuel hose clamps to the specified torque.

Do not depress accelerator pedal when starting.

Immediately after starting, do not rev up engine unneces-
sarily.

Do not rev up engine just prior to shutdown.

When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.

Keep the antenna as far as possible from the electronic
control units.

Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.

Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.

Be sure to ground the radio to vehicle body.

Wiring Diagrams and Trouble Diagnosis

ABS004A5

When you read wiring diagrams, refer to the following:

GI-14, "How to Read Wiring Diagrams"

PG-3, "POWER SUPPLY ROUTING CIRCUIT"

 for power distribution circuit

When you perform trouble diagnosis, refer to the following:

GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"

GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident"

 

PBIB1356E

SEF709Y

SEF708Y

EC-20

PREPARATION

Revision: 2004 November

2004 Murano

PREPARATION

PFP:00002

Special Service Tools

ABS004A6

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number
(Kent-Moore No.)
Tool name

Description

EG17650301
(J-33984-A)
Radiator cap tester 
adapter

Adapting radiator cap tester to radiator cap and 
radiator filler neck
a: 28 (1.10) dia.
b: 31.4 (1.236) dia.
c: 41.3 (1.626) dia.
Unit: mm (in)

KV10117100
(J-36471-A)
Heated oxygen 
sensor wrench

Loosening or tightening heated oxygen sensors 
with 22 mm (0.87 in) hexagon nut

KV10114400
(J-38365)
Heated oxygen 
sensor wrench

Loosening or tightening heated oxygen sensors
a: 22 mm (0.87 in)

(J-44321)
Fuel pressure gauge 
kit

Checking fuel pressure

(J-44626)
Air fuel ratio (A/F) 
sensor wrench

Loosening or tightening air fuel ratio (A/F) sensor 1

KV109E0010
(J-46209)
Break-out box

Measuring the ECM signals with a circuit tester

KV109E0080
(J-45819)
Y-cable adapter

Measuring the ECM signals with a circuit tester

S-NT564

S-NT379

S-NT636

LEC642

LEM054

S-NT825

S-NT826

PREPARATION

EC-21

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Commercial Service Tools

ABS004A7

Tool name
(Kent-Moore No.)

Description

Leak detector 
i.e.: (J-41416)

Locating the EVAP leak

EVAP service port 
adapter
i.e.: (J-41413-OBD)

Applying positive pressure through EVAP service 
port

Fuel filler cap adapter
i.e.: (MLR-8382)

Checking fuel tank vacuum relief valve opening 
pressure

Socket wrench

Removing and installing engine coolant 
temperature sensor

Oxygen sensor thread 
cleaner
i.e.: (J-43897-18)
(J-43897-12)

Reconditioning the exhaust system threads 
before installing a new oxygen sensor. Use with 
anti-seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for 
Zirconia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for 
Titania Oxygen Sensor

Anti-seize lubricant 

i.e.: (Permatex

TM

   

133AR or equivalent 
meeting MIL 
specification MIL-A-
907)

Lubricating oxygen sensor thread cleaning tool 
when reconditioning exhaust system threads.

S-NT703

S-NT704

S-NT815

S-NT705

AEM488

S-NT779

EC-22

ENGINE CONTROL SYSTEM

Revision: 2004 November

2004 Murano

ENGINE CONTROL SYSTEM

PFP:23710

System Diagram

ABS004A8

PBIB2307E

ENGINE CONTROL SYSTEM

EC-23

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Vacuum Hose Drawing

ABS004A9

Refer to 

EC-22, "System Diagram"

   for Vacuum Control System.

PBIB1297E

EC-24

ENGINE CONTROL SYSTEM

Revision: 2004 November

2004 Murano

System Chart

ABS004AA

*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This sensor is not used to control the engine system under normal conditions.
*3: This input signals is sent to the ECM through CAN communication line.
*4: This output signals is sent from the ECM through CAN communication line.

Input (Sensor)

ECM Function

Output (Actuator)

Camshaft position sensor (PHASE)

Crankshaft position sensor (POS)

Mass air flow sensor

Engine coolant temperature sensor

Air fuel ratio (A/F) sensor 1

Throttle position sensor

Accelerator pedal position sensor

Park/neutral position (PNP) switch

Intake air temperature sensor

Power steering pressure sensor

Ignition switch

Battery voltage

Knock sensor

Refrigerant pressure sensor

Stop lamp switch

ASCD steering switch

ASCD brake switch

Fuel level sensor*

1

  *

3

EVAP control system pressure sensor

Fuel tank temperature sensor*

1

Heated oxygen sensor 2 *

2

TCM (Transmission control module) *

3

Air conditioner switch*

3

Wheel sensor*

3

Primary speed sensor*

3

Secondary speed sensor*

3

Electrical load signal*

3

ABS actuator and electric unit (control unit)

Fuel injection & mixture ratio control

Fuel injector

Electronic ignition system

Power transistor

Nissan torque demand control system

Electric throttle control actuator

Fuel injector

Fuel pump control

Fuel pump relay

ASCD vehicle speed control

Electric throttle control actuator

On board diagnostic system

MIL (On the instrument panel)*

4

Power valve control

VIAS control solenoid valve

Engine mount control

Electronic controlled engine mount

Air fuel ratio (A/F) 1 heater control

Air fuel ratio (A/F) 1 heater

Heated oxygen sensor 2 heater control

Heated oxygen sensor 2 heater

EVAP canister purge flow control

EVAP canister purge volume control 
solenoid valve

Air conditioning cut control

Air conditioner relay*

4

Cooling fan control

Cooling fan relay

ON BOARD DIAGNOSIS for EVAP system

EVAP canister vent control valve

ENGINE CONTROL SYSTEM

EC-25

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Multiport Fuel Injection (MFI) System

ABS004AB

INPUT/OUTPUT SIGNAL CHART

*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This signals is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.

<Fuel increase>

During warm-up

When starting the engine

During acceleration

Hot-engine operation

When selector lever is changed from N to D

High-load, high-speed operation

<Fuel decrease>

During deceleration

During high engine speed operation

Sensor

Input Signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)

Engine speed*

3

Piston position

Fuel injection 
& mixture ratio 
control

Fuel injector

Camshaft position sensor (PHASE)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Air fuel ratio (A/F) sensor 1

Density of oxygen in exhaust gas

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Park/neutral position (PNP) switch

Gear position

Knock sensor

Engine knocking condition

Battery

Battery voltage*

3

Power steering pressure sensor

Power steering operation

Heated oxygen sensor 2 *

1

Density of oxygen in exhaust gas

Air conditioner switch*

2

Air conditioner operation

Wheel sensor*

2

Vehicle speed

EC-26

ENGINE CONTROL SYSTEM

Revision: 2004 November

2004 Murano

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses air
fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air
fuel ratio (A/F) sensor 1, refer to 

EC-449, "DTC P1271, P1281 A/F SENSOR 1"

 . This maintains the mixture

ratio within the range of stoichiometric (ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.

Deceleration and acceleration

High-load, high-speed operation

Malfunction of A/F sensor 1 or its circuit

Insufficient activation of A/F sensor 1 at low engine coolant temperature

High engine coolant temperature

During warm-up

After shifting from N to D

When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1.
This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoret-
ical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally
designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes dur-
ing operation (i.e., injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-
oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in
fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.

SEF503YB

ENGINE CONTROL SYSTEM

EC-27

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The six injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System

ABS004AC

INPUT/OUTPUT SIGNAL CHART

*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best air-
fuel ratio for every running condition of the engine. The ignition tim-
ing data is stored in the ECM. This data forms the map shown.
The ECM receives information such as the injection pulse width and
camshaft position sensor signal. Computing this information, ignition
signals are transmitted to the power transistor.
e.g., N: 1,800 rpm, Tp: 1.50 msec

°

BTDC

During the following conditions, the ignition timing is revised by the
ECM according to the other data stored in the ECM.

At starting

During warm-up

SEF179U

Sensor

Input Signal to ECM

ECM function

Actuator

Crankshaft position sensor (POS)

Engine speed*

2

Piston position

Ignition timing 
control

Power transistor

Camshaft position sensor (PHASE)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Knock sensor

Engine knocking

Park/neutral position (PNP) switch

Gear position

Battery

Battery voltage*

2

Wheel sensor*

1

Vehicle speed

SEF742M

EC-28

ENGINE CONTROL SYSTEM

Revision: 2004 November

2004 Murano

At idle

At low battery voltage

During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Nissan Torque Demand (NTD) Control System

ABS007ZL

INPUT/OUTPUT SIGNAL CHART

*: This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

NTD control system decides the target traction based on the accelerator operation status and the current driv-
ing condition. It then selects the engine torque target by correcting running resistance and atmospheric pres-
sure, and controlling the power-train. Using electric throttle control actuator, it achieves the engine torque
development target which corresponds linearly to the driver's accelerator operation.
Running resistance correction control compares the engine torque estimate value, measured vehicle acceler-
ation, and running resistance on a flat road, and estimates vehicle weight gain and running resistance varia-
tion caused by slopes to correct the engine torque estimate value.
Atmospheric pressure correction control compares the engine torque estimate value from the airflow rate and
the target engine torque for the target traction, and estimates variation of atmospheric pressure to correct the
target engine torque. This system achieves powerful driving without reducing engine performance in the prac-
tical speed range in mountains and high-altitude areas.

Sensor

Input signal to ECM

ECM function

Actuator

Camshaft position sensor (PHASE)

Engine speed

NTD control

Electric throttle con-
trol actuator and fuel 
injector

Crankshaft position sensor (POS)

Mass air flow sensor

Amount of intake air

Engine coolant temperature sensor

Engine coolant temperature

Throttle position sensor

Throttle position

Accelerator pedal position sensor

Accelerator pedal position

Park/Neutral position (PNP) switch

Gear position

Power steering pressure sensor

Power steering operation

Battery

Battery voltage

TCM*

CVT control signal

A/C auto. amp.*

Air conditioner operation

ABS actuator and electric unit (control unit)*

VDC/TCS/ABS operation

Wheel sensor*

Vehicle speed

Primary speed sensor*

Inputshaft revolution signal

Electrical load*

Electrical load signal

ENGINE CONTROL SYSTEM

EC-29

C

D

E

F

G

H

I

J

K

L

M

A

EC

Revision: 2004 November

2004 Murano

Air Conditioning Cut Control

ABS004AD

INPUT/OUTPUT SIGNAL CHART

*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used.
Under the following conditions, the air conditioner is turned off.

When the accelerator pedal is fully depressed.

When cranking the engine.

At high engine speeds.

When the engine coolant temperature becomes excessively high.

When operating power steering during low engine speed or low vehicle speed.

When engine speed is excessively low.

When refrigerant pressure is excessively low or high.

Fuel Cut Control (at No Load and High Engine Speed)

ABS004AE

INPUT/OUTPUT SIGNAL CHART

*: This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine
speed over is 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies
based on engine speed.
Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.
NOTE:
This function is different from deceleration control listed under “Multiport Fuel Injection (MFI) System”, 

EC-25

  .

Sensor

Input Signal to ECM

ECM function

Actuator

Air conditioner switch*

1

Air conditioner ON signal

Air conditioner 
cut control

Air conditioner relay

Accelerator pedal position sensor

Accelerator pedal position

Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)

Engine speed*

2

Engine coolant temperature sensor

Engine coolant temperature

Battery

Battery voltage*

2

Refrigerant pressure sensor

Refrigerant pressure

Power steering pressure sensor

Power steering operation

Wheel sensor*

1

Vehicle speed

Sensor

Input Signal to ECM

ECM function

Actuator

Park/neutral position (PNP) switch

Neutral position

Fuel cut con-
trol

Fuel injector

Accelerator pedal position sensor

Accelerator pedal position

Engine coolant temperature sensor

Engine coolant temperature

Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)

Engine speed

Wheel sensor*

Vehicle speed

EC-30

ENGINE CONTROL SYSTEM

Revision: 2004 November

2004 Murano

CAN Communication

ABS004AF

SYSTEM DESCRIPTION

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle mul-
tiplex communication line with high data communication speed and excellent error detection ability. Many elec-
tronic control units are equipped onto a vehicle, and each control unit shares information and links with other
control units during operation (not independent). In CAN communication, control units are connected with 2
communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.
Each control unit transmits/receives data but selectively reads required data only.
Refer to 

LAN-8, "CAN COMMUNICATION"

 , about CAN communication for detail.

 

 

 

 

 

 

 

Content      ..     67      68      69      70     ..