Главная      Учебники - Разные     Лекции (разные) - часть 23

 

Поиск            

 

Указания методические по эксплуатации конденсационных установок паровых турбин электростанций рд 34. 30. 501

 

             

Указания методические по эксплуатации конденсационных установок паровых турбин электростанций рд 34. 30. 501

УДК 621.175.004.1

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВТЕХУПРАВЛЕНИЕ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ЭКСПЛУАТАЦИИ КОНДЕНСАЦИОННЫХ УСТАНОВОК ПАРОВЫХ ТУРБИН ЭЛЕКТРОСТАНЦИЙ

РД 34.30.501

(МУ 34-70-122-85)

Срок действия установлен

с 01.07.86 г. до 01.07.96 г.

продлен до 31.12.99г.

РАЗРАБОТАНО Московским головным предприятием ПО "Союзтехэнерго" и Всесоюзным дважды ордена Трудового Красного Знамени научно-исследовательским теплотехническим институтом им. Ф.Э. Дзержинского (ВТИ)

ИСПОЛНИТЕЛИ А.К. Кирш, Г.М. Коновалов (ПО "Союзтехэнерго"), Л.Д. Берман, Э.П. Зернова (ВТИ)

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 04.06.85 г.

Заместитель начальника Д.Я. Шамараков

Срок действия продлен 25.04.1996

Настоящие Методические указания, обобщающие накопленный за многие годы опыт обеспечения надежной и эффективной работы конденсационных установок паровых турбин на электростанциях системы Минэнерго СССР, предназначены для персонала районных энергоуправлений, электростанций и наладочных организаций. В них рассматриваются основные особенности рабочего процесса и конструкции элементов конденсационных установок - конденсаторов, воздушных, конденсатных и циркуляционных насосов и водоочистных устройств (исключая гидротехнические сооружения и водоохладители систем циркуляционного водоснабжения), даются рекомендации по контролю за их работой в условиях эксплуатации, рассматриваются основные причины неполадок в работе и способы их устранения.

Использование ЭВМ для контроля за технико-экономическими показателями конденсационных установок не рассматривается в настоящих Методических указаниях, поскольку оно является одной из функций АСУ ТП всего энергоблока (см. "Типовой алгоритм расчета технико-экономических показателей конденсационных энергоблоков мощностью 300, 500, 800 и 1200 МВт" М.: СПО Союзтехэнерго, 1980).

Выпуск Методических указаний не исключает составление и выпуск более детальных и учитывающих местные особенности электростанций указаний и инструкций по эксплуатации отдельных узлов конденсационных установок.

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Назначение конденсационной установки

1.1.1. Основным назначением конденсационной установки паротурбинного агрегата является конденсация отработавшего пара турбины и обеспечение за последней ступенью при номинальных условиях давления пара не выше расчетного, определенного исходя из технико-экономических соображений.

Среднее давление отработавшего пара р 2 для принятых при проектировании конденсатора номинальных условий (расхода пара в конденсатор, температуры и расхода охлаждающей воды; составляет обычно 3,5-6 кПа (0,035-0,060 кгс/cм2 ). Поскольку оно значительно ниже атмосферного (барометрического), ему отвечает разрежение в паровом пространстве конденсатора. В отличие от номинальных значений параметров свежего пара перед турбиной давление отработавшего пара р 2 не может поддерживаться в эксплуатации на определенном заданном уровне, а заметно изменяется в зависимости от режимных условий. Его значения, отвечающие различным условиям работы конденсационной установки при удовлетворительном ее состоянии, определяются по тепловым характеристикам (см. разд. 2.2 и 5.3).

1.1.2. Помимо поддержания давления отработавшего пара на требуемой для экономичной работы турбоагрегата уровне конденсационная установка должна также обеспечивать:

- сохранение конденсата отработавшего пара, используемого в системе питания парового котла, и его качество, соответствующее после смешения с водами, поступающими в конденсатор извне, требованиям ПТЭ (ограничение в допустимых пределах содержания в нем кислорода, растворенных солей и продуктов коррозии);

- предотвращение переохлаждения конденсата на выходе из конденсатора по отношению к температуре насыщения отработавшего пара, приводящего к потере теплоты;

- прием при нормальной работе, а также при пусках и остановах энергоблока предусмотренных его тепловой схемой сбросов в конденсатор (непосредственно через паросбросные устройства, расширители или БРУ-К) пара, горячих дренажей из других аппаратов и добавочной воды для системы питания парового котла.

1.2. Оборудование конденсационной установки

1.2.1. Применяющиеся одно- или многокорпусные поверхностные конденсаторы с водяным охлаждением, как правило, представляют собой горизонтальные кожухотрубные теплообменные аппараты, в которых на наружной поверхности трубок конденсируется отработавший пар, поступающий из турбины, а внутри трубок протекает охлаждающая вода, отводящая теплоту конденсата пара. Образовавшийся на трубках конденсат стекает из трубного пучка на днище корпуса и затем в конденсатосборники, из которых он удаляется конденсатными насосами. На рис. 1.1 приведена принципиальная схема, конденсационной установки.

Пар, поступающий в конденсатор, содержит обычно примесь неконденсирующихся газов, в основном воздуха, проникающего через неплотности в вакуумной системе турбоагрегата (см. разд. 12.1).

Для поддержания разрежения в паровом пространстве конденсатора неконденсирующиеся газы должны постоянно удаляться. Это осуществляется с помощью воздушных насосов, паро- или водоструйных эжекторов или роторных вакуум-насосов, например водокольцевых, отсасывающих из конденсатора неконденсирующиеся газы (воздух) с остаточным содержанием пара, сжимающих паровоздушную смесь и выбрасывающих ее в атмосферу.

1.2.2. При некоторых режимах работы энергоблоков (см. п. 1.1.2) осуществляется сброс свежего пара в конденсатор помимо турбины через приемно-сбросные устройства, в которых пар дросселируется и охлаждается.

1.2.3. Охлаждающая вода подается в конденсатор по напорным трубопроводам циркуляционными насосами, связывающие конденсационную установку с системой технического водоснабжения, которая в зависимости от местных условий выполняется прямоточной или оборотной.

При прямоточной системе водоснабжения вода забирается из естественного источника (реки, озера, моря) и после однократного ее использования сбрасывается в тот же источник, а при оборотной - поступает после конденсатора в водоохлаждающее устройство (градирню, брызгальный бассейн или водохранилище-охладитель); где отдает воспринятую в конденсаторе теплоту наружному воздуху, после чего вновь используется для охлаждения конденсатора.

1.2.4. При прямоточной системе водоснабжения или оборотной с водохранилищем-охладителем охлаждающая вода поступает в водоприемное устройство, в котором установлены очистные решетки и сетки, и которое объединено большей частью с береговой насосной или соединено с приемными колодцами насосов самотечными водоводами.

При оборотной системе водоснабжения с градирнями или брызгальным бассейном вода поступает в циркуляционные насосы из водосборных резервуаров градирен или из бассейна и подается циркуляционными насосами в конденсаторы с давлением, достаточным для подъема подогретой воды из конденсатора на отметку водораспределительного устройства градирен или для обеспечения достаточного давления воды перед соплами брызгального бассейна.

1.2.5. Для уменьшения затраты электроэнергии на циркуляционные насосы (при прямоточном водоснабжении или оборотном с водохранилищем-охладителем) на сбросе воды из конденсатора используется обычно сифон, а из сифонного колодца вода сбрасывается, как правило, самотеком по открытому каналу.

Сброс теплой воды производится ниже водозабора на расстоянии, исключающем ее попадание в водоприемное устройство. В месте сброса воды устраивается участок канала с большим уклоном - быстроток.

Рис. 1.1. Принципиальная схема конденсационной установки турбины К-800-240 ЛМЗ:

1 - ЦНД; 2 - конденсатор; 3 - циркуляционные насосы; 4 , 5 - конденсатные насосы первого и второго подъема; 6 - основные эжекторы; 7 - эжекторы циркуляционной системы; 8 - охладитель пара лабиринтовых уплотнений; 9 - охладитель дренажа подогревателя сетевой воды; 10 - блочная обессоливающая установка; 11 , 12 - приемно-сбросное устройство пара промперегрева и БРОУ;

- пар

- охлаждающая вода;

- конденсат;

- паровоздушная смесь

2. ОСОБЕННОСТИ РАБОЧЕГО ПРОЦЕССА И ПОКАЗАТЕЛИ РАБОТЫ КОНДЕНСАЦИОННОЙ УСТАНОВКИ

2.1. Условия теплопередачи в конденсаторе

2.1.1. Конденсация отработавшего в турбине пара, содержащего примесь неконденсирующихся газов, сопровождается как конвективной теплоотдачей, так и массоотдачей - переносом пара к поверхности трубок и выделением при этом теплоты фазового перехода. Отданная паром при его конденсации теплота передается через стенку трубок охлаждающей воде.

Условия тепло- и массообмена в конденсаторах определяются тем, что пар конденсируется из паровоздушной смеси при вакууме, причем степень конденсации пара превосходит 99,9%. Вследствие того, что по мере конденсации пара скорость паровоздушной смеси уменьшается, а концентрация в ней воздуха растет, локальные значения поверхностной плотности теплового потока, а соответственно, и плотности поперечного потока массы (конденсирующегося пара) сильно изменяются по пути движения пара (паровоздушной смеси) в трубном пучке конденсатора. Неоднородность распределения плотностей теплового потока в трубном пучке увеличивается еще из-за неравномерности распределения поступающего пара по периметру трубного пучка или отдельных его модулей и влияния конденсата, стекающего в пучке с верхних рядов трубок на нижние.

2.1.2. Основное влияние на внешние показатели работы конденсатора (средний коэффициент теплопередачи, температурный напор, давление пара, паровое сопротивление и др.), а соответственно, и на характеристики работы конденсатора при переменных режимах оказывает то обстоятельство, что по пути движения пара в трубном пучке образуются две основные зоны, различающиеся между собой условиями теплообмена с паровой стороны:

- зона интенсивной конденсации пара, в которой его температура сохраняется практически неизменной, а локальные значения коэффициента теплопередачи и плотности теплового потока, наибольшие на стороне входа пара в трубный пучок, снижаются по пути движения пара из-за уменьшения коэффициента теплоотдачи с паровой стороны по мере уменьшения скорости пара и повышения концентрации воздуха;

- зона охлаждения паровоздушной смеси, характеризующаяся относительно низкими и слабо изменяющимися локальными значениями коэффициента теплопередачи и плотности теплового потока.

2.1.3. Положение границы между двумя зонами трубного пучка зависит от режима работы конденсатора - паровой нагрузки, температуры и расхода охлаждающей воды, расхода воздуха, содержащегося в поступающем паре, а также от его состояния, в особенности степени чистоты, количества включенных воздушных насосов, их характеристики и состояния. Изменение любого из перечисленных факторов вызывает изменение и перераспределение локальных параметров парового потока в трубном пучке. Доля поверхности охлаждения, приходящаяся на зону охлаждения паровоздушной смеси, может при некотором сочетания этих факторов (например, при большой паровой нагрузке и высокой температуре охлаждающей воды) не выходить за пределы выделяемой в трубном пучке конденсатора воздухоохладительной секции и даже приближаться к нулю, а при другом их сочетании (например, при пониженной паровой нагрузке, низкой температуре охлаждающей воды, повышенном присосе воздуха) - возрастать за счет соответствующего уменьшения доли поверхности, приходящейся на зону интенсивной конденсации пара.

2.1.4. Уменьшение зоны интенсивной конденсации пара и соответствующее увеличение зоны охлаждения смеси влечет за собой, как правило, уменьшение среднего коэффициента теплопередачи, отнесенного к полной поверхности конденсатора. Лишь при уменьшении расхода (скорости) охлаждающей воды размеры зоны интенсивной конденсации увеличиваются, а значение среднего коэффициента теплопередачи уменьшается вследствие снижения коэффициента теплоотдачи с водяной стороны.

При уменьшении зоны интенсивной конденсации пара уменьшается обычно и падение давления пара в трубном пучке (паровое сопротивление конденсатора). Так, в случае понижения температуры охлаждающей воды давление пара в конденсаторе становится меньшим, а его удельный объем и скорости растут, но из-за уменьшения размеров зоны интенсивной конденсации пара падение давления в трубном пучке обычно не увеличивается, а даже становится меньшим. Увеличение при этом размеров зоны охлаждения паровоздушной смеси способствует повышению содержания кислорода в конденсаторе (см. разд. 13).

2.1.5. Между работой конденсатора и воздушного насоса существует тесная взаимная связь, проявляющаяся при всех режимах работы конденсационной установки. Любое изменение режима работы конденсатора вызывает изменение температуры отсасываемой из него паровоздушной смеси t см и, как следствие этого, изменение давления на стороне всасывания воздушного насоса и давления в конденсаторе.

2.1.6. Указанные выше особенности условий теплопередачи в конденсаторе определяют рациональную компоновку трубного пучка, при которой обеспечивается эффективное использование его поверхности охлаждения. Трубный пучок должен иметь достаточно большое живое сечение на стороне входа в него отработавшего пара и по пути движения потока пара в зоне интенсивной его конденсации, чтобы уменьшить падение давленая пара в этой зоне при больших локальных значениях коэффициента теплопередачи, определяющихся здесь преимущественно интенсивностью теплоотдачи с водяной стороны. В отличие от этого скорости потока в зоне охлаждения паровоздушной смеси должны быть несколько повышены по сравнению с их значениями на выходе из зоны интенсивной конденсации для повышения локальных значений коэффициента теплоотдачи от смеси к трубкам и уменьшения содержания пара в смеси, удаляемой из конденсатора, а соответственно, и давления этой смеси р н перед воздушным насосом.

Из того, что давление отработавшего пара в конденсаторе можно определить как

р 2 = р н + Dр к ,

где Dр к - падение давления пара в конденсаторе и на тракте "конденсатор - воздушный насос", видно, что чем меньше при данной поверхности охлаждения конденсатора значения р н и Dр к , тем глубже обеспечиваемый вакуум.

2.1.7. Пленка конденсата, отекающего в конденсаторе по трубкам, имеет со стороны стенки трубки температуру, сравнительно не на много превосходящую температуру охлаждающей воды, а со стороны ее свободной поверхности равную или приближающуюся к температуре насыщения омывающего ее пара. Поэтому средняя температура конденсата, стекающего с трубок, в том числе и с нижних рядов трубок пучка на днище конденсатора, ниже температуры пара. Для устранения переохлаждения конденсата, поступающего в конденсатные насосы, по отношению к температуре отработавшего пара t 2 в трубном пучке предусматривается один или несколько сквозных проходов, через которые часть отработавшего пара поступает непосредственно под трубный пучок, где этот пар, конденсируясь на поверхности стекающих из пучка струй и капель переохлажденного конденсата, догревает его до температуры t 2 ("регенерирует" конденсат). Образование проходов в трубном пучке способствует также увеличению свободного периметра трубного пучка, доступного для поступающего пара, а благодаря этому и уменьшению скорости пара на входе в трубный пучок.

2.1.8. Требования, предъявляемые к выполнению трубного пучка конденсатора, могут быть наиболее полно удовлетворены при двухзонных ленточной и модульно-ленточной его компоновках, примеры которых представлены на рис. 2.1, 2.2 и (см. также рис. 3.1-3.3). При таких компоновках основная часть трубного пучка (или модуля) имеет в поперечном разрезе форму ленты, толщина которой определяет длину пути пара в этой части, а воздухоохладительная секция - форму трапеции, суживающейся в направлении движения паровоздушной смеси.

2.1.9. Содержание кислорода в конденсате, поступающем из конденсатора в питательный тракт, не должно превосходить допустимого по ПТЭ значения.

Рис. 2.1. Компоновка трубного пучка конденсатора турбины К-750-65/3000 ПОАТ ХТЗ

(один из четырех корпусов)

Рис. 2.2. Компоновка трубного пучка конденсатора с боковым подводом пара:

1 - основной трубный пучок; 2 – воздухоохладитель; 3 - короб отвода паровоздушной смеси; 4 - сбросный короб паровоздушной смеси

В конденсаторе кислород поступает в конденсат главным образом двумя путями: он абсорбируется (растворяется) в конденсате при контакте последнего с паровоздушной смесью и попадает в конденсат вместе с механически захватываемым им при стекании в трубном пучке воздухом.

Часть этого воздуха, содержащегося в конденсате, при отекании его в виде струй и капель из трубного пучка и тонким слоем по днищу конденсатора и конденсатосборнику выделяется из жидкости и удаляется воздушным насосом.

2.2. Показатели работы конденсационной установки

2.2.1. Давление отработавшего пара в конденсаторе р 2 ,как указывалось, изменяется при эксплуатации турбоагрегата в широких пределах. Оно зависит от следующих режимных условий: расхода отработавшего пара D 2 ; определяющегося электрической, а для теплофикационных установок также и тепловой нагрузкой турбины, расхода W и начальной температуры t охлаждающей воды. Поэтому для осуществления систематического эксплуатационного контроля за работой конденсационной установки необходимо располагать нормативными характеристиками, определяющими зависимость показателей ее работы при исправном состоянии оборудования и допустимых по ПТЭ присосах воздуха от указанных режимных условий. Сопоставление фактических и нормативных показателей позволяет выявить неполадки в работе конденсационной установки и нарушения воздушной плотности вакуумной системы турбоагрегата.

2.2.2. В качестве показателя работы конденсатора используется также конечный температурный напор, или разность температуры отработавшего пара t 2 (°C) и температуры охлаждающей воды на выходе из конденсатора t (°C):

dt = t 2 - t .

При данных значениях D 2 , W и t температурный напор dt практически однозначно определяет для нормальных режимов работы турбины, при которых отработавший пар является насыщенным, давление р 2 , которое может быть найдено с помощью таблиц теплофизических свойств водяного пара по температуре

t 2 = t + Dt в + dt , (2.1)

В формуле (2.1):

Dt в = t t = , (2.2)

где Dt в - нагрев воды в конденсаторе;

D 2 - расход поступающего в конденсатор пара, кг/с;

Dh - удельная теплота конденсации отработавшего пара, мало изменяющаяся для данного турбоагрегата при разных режимах его работы, кДж/(кг×°C);

W - расход охлаждающей воды, кг/с;

с в - удельная теплоемкость воды, кДж/(кг×°C);

dt = Dt в /(en - 1),

где n = KF/ c в W (2.3)

(здесь K - средний коэффициент теплопередачи конденсатора, Вт/м2 ×°C);

F - поверхность охлаждения конденсатора, м2 ).

Из выражений (2.1)-(2.3) видно, что при заданных значениях F , Dh и определенных режимных параметрах D 2 , W и t показатели эффективности работы конденсатора р 2 и dt определяются значением коэффициента теплопередачи K.

Из тех же формул следует, что при прочих равных условиях уменьшение паровой нагрузки D 2 приводит к понижению р 2 и dt ; уменьшение температуры охлаждающей воды t - к увеличению dt , но поскольку сумма t + dt становится при этом меньше, то t 2 , а соответственно, и р 2 уменьшаются; уменьшение расхода охлаждающей воды W вследствие понижения при этом K слабо влияет на dt, но преобладающее влияние при этом увеличения Dt в приводит к росту р 2 .

Нормативные тепловые характеристики конденсаторов dt = f (D 2 , W , t ) и р 2 = f (D 2 , W , t ) и способ пользования ими приведены в разд. 5.3. При отсутствии нормативных характеристик можно также пользоваться для контроля за работой конденсационной установки характеристиками, рассчитанными по методике, приведенной в [1].

2.2.3. При испытаниях конденсатора определяются непосредственно опытные значения среднего коэффициента теплопередачи по формуле

K оп = D 2 Dh/ (F dt cp ), (2.4)

где dt cp - средняя логарифмическая разность температур пара и охлаждающей воды:

dt cp = Dt в /[2,3lg(1 + Dt в /dt )].

Отношение фактического коэффициента теплопередача K оп к расчетному K р по [1], полученному при коэффициенте чистоты, равном 1, характеризует состояние конденсационной установки. Малые значения K оп / K р , достигающие иногда из-за загрязнения поверхности охлаждения конденсатора, повышенного присоса воздуха, неисправности воздушного насоса или других причин значений 0,4-0,6, говорят о неудовлетворительной работе конденсационной установки и необходимости отыскания и устранения причин этого.

2.2.4. Важной характеристикой работы конденсатора является зависимость его гидравлического сопротивления H от расхода охлаждающей воды. Измерениями значения H осуществляется контроль за загрязнением трубных досок и трубок конденсатора. Гидравлическое сопротивление (падение давления охлаждающей воды, вызванное трением и местными сопротивлениями) складывается из сопротивления трубок Н тр и сопротивления водяных камер Н к (включая сопротивление при входе воды из камер в трубки и выходе из них). Значение Н тр зависит от внутреннего диаметра и длины трубок, их состояния (степени чистоты), числа ходов воды в конденсаторе, ее температуры и скорости. Значение Н к , составляющее обычно относительно небольшую долю общего сопротивления, зависит от числа ходов воды, конфигурации и размеров водяных камер, температуры и скорости течения воды. Формулы, рекомендуемые для расчета гидравлического сопротивления, приведены в [1].

3. ОСНОВНЫЕ ТИПЫ ОТЕЧЕСТВЕННЫХ КОНДЕНСАТОРОВ

3.1. Технические данные по конденсаторам паровых турбин мощностью от 50 МВт и более ПОТ ЛМЗ, ПОАТ ХТЗ и ПО ТМЗ приведены в приложении 1 (табл. П1.1-П1.3). Конструкции некоторых конденсаторов представлены на рис. 3.1-3.5.

3.2. Конденсаторы на ТЭС и ТЭЦ, работающих на органическом топливе, устанавливаются непосредственно под ЦНД турбины. В зависимости от мощности турбины, числа выхлопов из нее пара и компоновки турбоагрегата применяются одно- или многокорпусные конденсаторы. Однокорпусные конденсаторы имеют турбины К-160-130 ПОАТ ХТЗ (два выхлопа) и К-300-240 ПОТ ЛМЗ и ПОАТ ХТЗ (три выхлопа). Турбины К-100-90 и К-200-130 ПОТ ЛМЗ имеют по два корпуса - по одному на каждый выхлоп, а турбина К-500-240 ПОАТ ХТЗ - также два корпуса - каждый из них обслуживает двухпоточный ЦНД. Все эти конденсаторы имеют два хода охлаждающей воды и поперечное расположение корпусов относительно оси турбины. Конденсаторы турбины К-300-240 и K-160-130 по охлаждающей воде двухпоточные. Они имеют в водяных камерах вертикальные перегородки, позволяющие отключать по воде одну из половин конденсатора при работе турбины с соответственно пониженной нагрузкой для отыскания и отглушения поврежденных трубок или очистки отключенной половины. Возможно также не останавливать, а лишь разгружать турбину в пределах, определяющихся допустимой температурой отработавшего пара, при аварийном выходе из строя одного из блочных циркуляционных насосов. Остальные указанные выше конденсаторы имеют по два параллельно включенных по охлаждающей воде корпуса, паровые пространства которых соединены между собой перепускными патрубками, что позволяет отключать по воде один из корпусов при работе турбины.

Турбины 500, 800 и 1200 МВт ПОТ ЛМЗ имеют при четырех выхлопах одноходовые конденсаторы с аксиальным расположением корпусов (вдоль оси турбины). Аксиальные одноходовые конденсаторы имеют или два последовательно включенных по воде (через общую промежуточную водяную камеру) двухпоточных корпуса (турбины К-500-240 и К-800-240) или две параллельные группы по два последовательно включенных однопоточных корпуса (К-1200-240). Применение аксиальных конденсаторов упрощает схему и облегчает размещение циркуляционных водоводов.

Последовательное включение корпусов аксиальных конденсаторов позволило ограничить длину примененных трубок и просто осуществить их секционирование. В этих конденсаторах предусмотрена двухступенчатая конденсация отработавшего пара, при которой давление его в первой секции (первом корпусе) по ходу охлаждающей воды ниже, чем во второй секции (втором корпусе), в которую поступает вода, подогретая в первой секции. Ступенчатая конденсация пара термодинамически эффективнее одноступенчатой.

Рис. 3.1. Конденсатор K-15240 турбины K-300-340 ПОАТ ХТЗ

Рис. 3.2. Конденсатор турбины Т-100-130 ПО ТМЗ

При разделении конденсатора на секции, последовательно включенные по охлаждающей воде, но не сообщающиеся между собой со стороны пара, в секциях, расположенных со стороны входа воды, температура конденсации t 2 и давление пара р 2 понижаются по сравнению с односекционным конденсатором тех же размеров значительнее, чем увеличиваются в секциях, находящихся на стороне выхода воды (рис. 3.6). Это приводит к некоторому углублению среднего вакуума. Так, например, в двухсекционном конденсаторе турбины К-1000-60/3000 ПОТ ЛМЗ при t = 20 °C давление пара в первой секции = 4,6 кПа и во второй = 5,9 кПа. Среднее давление составляет р 2ср = 5,25 при р 2 = 5,5 кПа при односекционном выполнении конденсатора, т.е. меньше на Dр 2 = 0,25 кПа. При повышении температуры охлаждающей воды t понижение р 2 при секционировании конденсатора и соответствующий выигрыш в экономичности турбоагрегата возрастают.

Рис. 3.3. Конденсатор турбины К-500-60/1500 ПОАТ ХТЗ:

1 - вход пара; 2 - вход охлаждающей воды в нижние поток; 3 - выход охлаждающей воды из нижнего потока; 4 - вход охлаждающей воды в верхний поток; 5 - выход охлаждающей воды из верхнего потока; 6 - основной трубный пучок; 7 - воздухоохладитель; 8 - паровые щиты; 9 - деаэрационное устройство; 10 - конденсатосборник; 11 - переходный патрубок; 12 - боковая опора; 13 - отсос паровоздушной смеси

Рис. 3.4. Продольное расположение конденсатора турбины К-800-240-3 ПОТ ЛМЗ

Рис. 3.5. Поперечный разрез конденсатора 800-КЦС-3 ПОТ ЛМЗ

Рис. 3.6. Температуры в давление в односекционных (а ) и двухсекционных (б ) конденсаторах:

F - поверхность охлаждения конденсатора; t , t - начальная и конечная температуры охлаждающей воды; Dt в - перепад температур воды; t 2 - температура конденсирующегося пара; р 2 - давление пара; Dр 2 - понижение среднего давления пара при секционировании;

индексы: I - первая секция; II - вторая секция

Конденсаторы теплофикационных турбин Т-100-130 и Т-250-240 ПО ТМЗ отличаются от применяющихся для конденсационных турбин наличием наряду с основным встроенного трубного пучка со своими водяными камерами и независимым подводом и отводом охлаждающей воды. Это позволяет для турбины T-100-130 при работе ее в течение отопительного периода со значительным отбором пара на сетевые подогреватели и пропуском через ЦНД лишь вентиляционного расхода пара прекратить подачу охлаждающей воды в основной трубный пучок и конденсировать вентиляционный пар на встроенном пучке, охлаждаемом сетевой водой или подпиточной водой теплосети. При этом полезно используется теплота конденсации вентиляционного пара. Использование встроенного пучка в конденсаторе турбины Т-250-240, разрешается заводом для подогрева подпиточной воды теплосети при сохранении охлаждения основного трубного пучка циркуляционной водой. Разрешена также работа на встроенном пучке с пропуском через него циркуляционной воды при закрытых задвижках на перепускных трубах от ЦСД-II к ЦНД.

3.3. В турбинах влажного пара расход отработавшего пара при той же мощности в 1,6-1,8 раза больше, чем в турбинах перегретого паря, что приводит и к соответственно большей тепловой нагрузке конденсаторов.

Конденсаторы быстроходных турбин (3000 об/мин) К-220-44, К-500-65 и К-750-65 подвальные, по воде двухходовые с поперечным расположением однопоточных корпусов. Турбина К-220-44 имеет по корпусу конденсатора на каждый из двух двухпоточных ЦНД, остальные две турбины - на каждая из четырех двухпоточных ЦНД. Боковые конденсаторы имеют у турбины К-500-60 по одному и у турбины К-1000-60 по три последовательно соединенных по воде корпуса с каждой стороны турбины, отработавший пар поступает в них как из нижней, так и из верхней половины корпуса ЦНД. В отличие от подвальных конденсаторов перегородки в водяных камерах, разделяющие два потока воды, у них горизонтальные. Для нижнего потока применяются циркуляционные насосы с меньшим давлением воды, чем для верхнего.

Применение боковых конденсаторов позволяет упростить конструкцию ЦНД и фундамента турбины и облегчает размещение крупных конденсаторов. В то же время оно приводит к необходимости применения разъемных фланцевых соединений выхлопных патрубков турбины обеих половин ЦНД с конденсатором, разборки и сборки этих соединений при вскрытиях ЦНД. Кроме того, при гидравлической опрессовке конденсатора должна заливаться водой и турбина, уплотнения которой требуют при этом герметизации. Из-за недостаточной длины поставляемых трубок боковые конденсаторы турбины К-1000-60 выполнены, как указано выше, в виде двух групп с тремя последовательно включенными по воде корпусами, что связано с трудностями эксплуатационного контроля состояния и замены трубок в среднем корпусе.

4. ВЛИЯНИЕ ВАКУУМА НА ЭКОНОМИЧНОСТЬ ПАРОТУРБИННЫХ УСТАНОВОК

4.1. Из всех параметров, определяющих в условиях эксплуатации экономичность паротурбинных установок, наибольшее влияние оказывает давление отработавшего пара. При повышении давления в конденсаторе из-за увеличения температуры охлаждающей воды или неудовлетворительной работы конденсационного устройства уменьшается располагаемый тепловой перепад в турбине, что приводит к снижению термического КПД цикла. Однако снижение КПД цикла становится несколько меньшим вследствие того, что при повышении давления за рабочими лопатками последней ступени уменьшается при заданном массовом расходе отработавшего пара его выходная скорость за последней ступенью, что ведет к некоторому увеличению внутреннего относительного КПД турбины. Противоположно направленное влияние двух указанных факторов учитывается в полной мере при определении экспериментальным путем кривой поправок к мощности турбины на противодавление в конденсаторе. В результате испытаний эта зависимость получается в виде универсальной кривой, которая может быть развернута в обычно используемую в эксплуатации сетку поправок, показывающую изменение электрической мощности турбоустановки в зависимости от противодавления или давления в конденсаторе р 2 при различных расходах отработавшего пара (рис. 4.1).

4.2. В определенном диапазоне изменения давления отработавшего пара зависимость мощности турбины от р 2 при заданном расходе пара D 2 имеет прямолинейный характер; изменение мощности при изменении давления в конденсаторе в указанном диапазоне изменения давления оказывается для данного типа турбины величиной практически постоянной.

Например, изменение р 2 на 1 кПа (0,01 кгс/см2 ) (~1% вакуума) приводит к изменению мощности турбины ТЭС с начальным давлением пара 13-24 MПa (130-240 кгс/см2 ) и перегревом пара примерно на 0,8-0,9% номинальной мощности.

Для турбин, работающих на насыщенном паре с начальным давлением 4,4-6,5 МПа (44-65 кгс/см2 ), располагаемый теплоперепад (работа обратимого расширения 1 кг пара) значительно (почти вдвое) меньше, чем для турбин перегретого пара. Поэтому изменение давления в конденсаторе турбин, работающих на насыщенном паре, сильнее сказывается на термическом КПД цикла, а соответственно и на изменении мощности турбины. Так, для турбин, работающих на насыщенном паре, с частотой вращения 3000 об/мин, на прямолинейном участке зависимости мощности от давления в конденсаторе при изменении последнего на ±1 кПа (~0,01 кгс/см2 ) развиваемая турбоагрегатом мощность изменяется примерно на 1,8% номинальной мощности турбоагрегата. Но для турбин с частотой вращения 1500 об/мин в силу особенностей аэродинамической характеристики рабочей лопатки последней ступени (большая длина, значительная веерность) соответствующее изменение мощности значительно меньше и приблизительно уравнивается с его значением для турбин ТЭС на органическом топливе.

Рис. 4.1. Поправки к мощности турбины К-300-240 ПОАТ ХТЗ на изменение давления в конденсаторе

Примечание. Средняя поправка к мощности при изменении р 2 на ±1 кПа (~0,01 кгс/см2 ) ±3340 кВт в пределах, ограниченных линиями I-I и II-II.

4.3. Кривые поправок к мощности турбины на изменение противодавления имеют изгиб в нижней части; удельное изменение мощности по мере снижения давления отработавшего пара постепенно уменьшается и становится равным нулю, когда расширение пара в последней ступени происходит уже за пределами выходного сечения рабочей лопатки. При очень высоком противодавлении зависимость также имеет изгиб, объясняющийся снижением влияния режима последней ступени, на которой при высоких противодавлениях срабатывается очень малый тепловой перепад.

Следует отметить, что относительное изменение мощности за счет изменения давления в конденсаторе при заданном расходе пара и теплоты на турбину характеризует изменение экономичности энергоблока в целом, т.е. изменение удельного расхода теплоты для ТЭС.

4.4. В табл. 4.1 приведены данные по изменению мощности турбоагрегата при изменении давления в конденсаторе на ±1 кПа (0,01 кгс/см2 ) в пределах прямолинейных участков поправочных кривых на давление в конденсаторе, а также изменение удельного расхода теплоты при номинальной нагрузке турбоагрегата.

Таблица 4.1

Турбина

Изменение мощности, кВт

(±)

Изменение удельного расхода теплоты, %

(±)

Тип электростанции

К-50-90 ПОТ ЛМЗ

450

0,90

K-100-90 ПОТ ЛМЗ

900

0,90

КЭС

K-100-90 ПОАТ ХТЗ

1000

1,00

K-160-130 ПОАТ ХТЗ

1170

0,73

K-200-130 ПОТ ЛМЗ

1900

0,95

К-300-240 ПОАТ ХТЗ

3340

1,11

К-300-240 ПОТ ЛМЗ

2760

0,92

КЭС

К-500-240 ПОАТ ХТЗ

3880

0,78

К-500-240 ПОТ ЛМЗ

3680

0,74

К-800-240 ПОТ ЛМЗ

4940

0,62

T-50-130 ПО ТМЗ

400

0,80*

ПТ-60-130 ПОТ ЛМЗ

450

0,90*

ПТ-80/100-130/13 ПОТ ЛМЗ

450

0,56*

ТЭЦ

T-100-130 ПО ТМЗ

725

0,73*

Т-250-240 ПО ТМЗ

1830

0,70*

К-220-44 ПОАТ ХТЗ (3000 об/мин)

3980

1,81

К-500-65/3000 ПОАТ ХТЗ

7960

1,59

К-750-65/3000 ПОАТ ХТЗ

8900

1,19

К-600-60/1500 ПОАТ ХТЗ

4250

0,85

С влажно-паровыми турбинами

К-1000-60/1500-1

ПОАТ ХТЗ (3 ЦНД)

10350

1,04

K-1000-60/1500-2

К-1000-60/1500-3 ПОАТ ХТЗ (2 ЦНД)

8300**

0,83

* При конденсационном режиме.

** По расчету завода

5. КОНТРОЛЬ ЗА РАБОТОЙ КОНДЕНСАЦИОННЫХ УСТАНОВОК

5.1. Оценка показателей работы конденсационной установки

5.1.1. Показатели работы конденсационной установки и взаимосвязь их между собой рассмотрены в разд. 2.2.

Основным интегральным показателем, отражающим влияние всех режимных факторов и состояния всех элементов конденсационной установки на ее работу, является давление отработавшего пара р 2 . Сравнение измеренного значения р 2 с его нормативным значением при соответствующих режимных условиях по типовой характеристике конденсатора данного типа (см. разд. 5.3) может, однако, служить только для общей оценки качества работы конденсационной установки, "но не позволяет выявить причины ухудшения ее работы при значениях давления р 2 , превосходящих нормативные. Для определения причин повышения значения р 2 по сравнению с нормативным должны использоваться другие показатели, доступные для определения в условиях эксплуатации, в том числе характеризующие кроме работы и состояния собственно конденсатора воздушную плотность вакуумной системы турбоагрегата, работу воздушных насосов и системы циркуляционного водоснабжения.

Оценку эффективности работы конденсационной установки по данным эксплуатационного контроля рекомендуется производить при номинальной или близкой к ней паровой нагрузке конденсатора D 2 . Отвечающие номинальному расходу отработавшего пара данные типовой характеристики наиболее точны, а показатели, используемые для оценки работы конденсационной установки, имеют при этом наибольшие значения, что также повышает точность контроля за ее работой.

5.1.2. При определенных расходах отработавшего пара и охлаждающей воды (способ контроля за расходом воды см. п. 5.2.5) и нормальном состоянии других элементов конденсационной установки эффективность работы и состояние собственно конденсатора характеризуются значением общего (среднего для всей поверхности охлаждения) коэффициента теплопередачи K , определяющегося формулой (2.4). Но поскольку коэффициент теплопередачи не может быть определен путем непосредственного измерения, в условиях эксплуатации значительно удобнее пользоваться для контроля за интенсивностью теплопередачи значением температурного напора на выходе из конденсатора.

Температура насыщения отработавшего пара t 2 определяется по таблицам теплофизических свойств водяного пара по точно измеренному давлению в конденсаторе (см. п. 5.2.1); t измеряется на выходе охлаждающей воды из конденсатора (см. п. 5.2.2).

При загрязнении трубок температурный напор возрастает и сравнение его со значением нормативного напора, взятого по типовой характеристике при тех же значениях основных режимных параметров - паровой нагрузки конденсатора, температуры и расхода охлаждающей воды, позволяет оценить меру ухудшения состояния внутренней поверхности конденсаторных трубок, вызываемого образующимися на ней отложениями. Как правило, загрязнение трубок со стороны пара не наблюдается.

Температурный напор должен систематически контролироваться эксплуатационным персоналом электростанции. Контроль за ним должен производиться тем чаще, чем интенсивнее происходит загрязнение трубок, но не реже чем через каждые 10 дн. Если при контроле за температурным напором обнаруживается быстрое загрязнение трубок, то при применении на электростанции профилактической обработки охлаждающей воды режим обработки должен быть соответствующим образом скорректирован (см. разд. 14). Если профилактическая обработка охлаждающей воды на электростанции по каким-либо причинам не производится или недостаточно эффективна, то согласно § 18.15 ПТЭ, при ухудшении вакуума на 0,5% по сравнению с нормативным необходимо произвести очистку трубок принятым на электростанции способом (см. разд. 14.3).

5.1.3. Нагрев охлаждающей воды в конденсаторе Dt в = t t характеризует при заданной паровой нагрузке конденсатора D 2 расход охлаждающей воды. Нагрев охлаждающей воды зависит от ее расхода, расхода отработавшего пара и от разности энтальпии отработавшего пара и уходящего из конденсатора конденсата Dh ; последняя, как отмечалось в п. 2.2.2, мало изменяется с изменением расхода пара D 2 (в пределах 2-3%). Для паровых нагрузок, близких к номинальной, значение Dh указывается в типовой характеристике.

При известном D 2 расход охлаждающей воды может быть определен из теплового баланса конденсатора по значению нагрева воды Dt в (см. п. 5.2.5). Поскольку контроль за нагревом охлаждающей воды не вызывает трудности, он используется, в частности, для анализа влияния на расход охлаждающей воды режима и качества работы циркуляционных насосов (если отсутствуют данные непосредственного измерения расхода охлаждающей воды). Повышенный нагрев охлаждающей воды может свидетельствовать о недостаточной подаче воды циркуляционными насосами.

5.1.4. Значение гидравлического сопротивления конденсатора Н , меньшее нормативного, также может служить признаком недостаточной подачи воды насосами. По значению гидравлического сопротивления конденсатора осуществляется контроль за загрязнением посторонними предметами трубных досок конденсатора, а также живого сечения конденсаторных трубок. Измерение гидравлического сопротивления конденсатора не может, однако, достаточно отчетливо обнаружить загрязнение внутренней поверхности трубок, в особенности образования небольшого слоя накипи, незначительно уменьшающего сечения трубок. В таких случаях более чувствителен контроль по температурному напору (см. п. 5.1.2). Значительные же загрязнения трубок илистыми отложениями, застрявшей рыбой, взвешенными крупными частицами могут заметно отражаться на значении гидравлического сопротивления. Резко увеличивается гидравлическое сопротивление при загрязнении трубных досок (водорослями, листьями, ракушками или другими крупным наносами). Обнаруженное измерениями (см. п. 5.2.6) значительное увеличение значения Н может служить основанием для отключения половины конденсатора по охлаждающей воде и очистки трубных досок.

Зависимость гидравлического сопротивления конденсатора от расхода охлаждающей воды представляется графически в форме кривой, близкой к проходящей через начало координат параболе, постоянный множитель которой растет с увеличением степени загрязнения конденсатора.

5.1.5. Присосы воздуха в вакуумную систему турбоустановки слабо влияют на эффективность работы конденсационной установки, если количество воздуха, удаляемого из конденсатора воздухоудаляющими устройствами, находится в пределах значений, допускаемых согласно § 18.15 ПТЭ, и запас в рабочей подаче воздухоудаляющих устройств (пароструйных, водоструйных эжекторов), комплектующих данную турбоустановку, удовлетворяет рекомендациям [1].

Это не исключает, однако, необходимости периодического контроля за воздушной плотностью вакуумной системы турбоустановки для своевременного принятия мер, необходимых для поддержания присосов воздуха в допустимых пределах (см. разд. 12).

Согласно ПТЭ, контроль за воздушной плотностью вакуумной системы должен производиться по значению, непосредственно измеренного тем или иным способом расхода отсасываемого из конденсатора воздуха (см. п. 5.2.7). Проверка воздушной плотности вакуумной системы по скорости падения вакуума при отключенных воздухоудаляющих устройствах не должна применяться.

5.1.6. Переохлаждение конденсата (понижение температуры конденсата на выходе из конденсатора по сравнению с температурой насыщения, соответствующей давлению в конденсаторе может вызываться в регенеративном конденсаторе либо неисправностью автоматического электронного регулятора уровня конденсата в конденсатосборнике и заливом конденсатом нижних рядов трубок, либо чрезмерными присосами воздуха в вакуумную систему, особенно при низкой температуре и большом расходе охлаждающей воды. Для его предотвращения необходимо следить за исправным действием регулятора уровня при всех режимах и поддерживать требуемую плотность вакуумной системы (см. разд. 12).

Переохлаждение конденсата вызывает дополнительный расход пара в ПНД № 1 для компенсации излишне отведенной в конденсатор теплоты основного конденсата и, следовательно, недовыработку электроэнергии на участке проточной части турбины от последнего по ходу пара отбора до конденсатора. Понижение экономичности турбоагрегата при переохлаждении конденсата на 5 °C составляет 0,1-0,2%.

5.1.7. Совершенство конденсационной установки характеризуется также ее деаэрирующей способностью, обеспечивающей в современных конденсаторах минимальное содержание кислорода в конденсате, поступающем из конденсатора в питательную систему котла. Нарушение нормальной деаэрации в конденсаторе, а также попадание в конденсат воздуха через неплотности на участке "конденсатосборник - конденсатный насос" обнаруживается по результатам химических анализов проб конденсата, периодически отбираемых за конденсатным насосом, в которых определяется концентрация кислорода.

Согласно § 22.15 ПТЭ, содержание кислорода в конденсате после конденсатных насосов должно быть не более 20 мкг/кг.

5.1.8. Водяная плотность вальцовочных соединений конденсаторных трубок с трубными досками, отсутствие коррозионных и эрозионных повреждений трубок, вызывающих попадание охлаждающей воды в паровое пространство конденсатора и далее вместе с конденсатом в контур питательной воды, должны предотвращать повышение общей жесткости конденсата на выходе из конденсатора сверх допускаемой ПТЭ. Согласно § 22.15 ПТЭ, общая жесткость конденсата, контролируемая путем химических анализов проб конденсата, не должна превышать для прямоточных котлов и энергоблоков с влажнопаровыми турбинами (до конденсатоочистки) 0,5 мкг-экв/кг и для котлов с естественной циркуляцией значений указанных в табл. 5.1.

Таблица 5.1

Давление пара

Наибольшая допустимая жесткость (мкг-экв/кг) для котлов

на жидком топливе

на топливе других видов

4,0 МПа (40 кгс/см2 )

5

10

от 4,0 до 10 МПа (от 40 до 100 кгс/см2 )

3

5

10 МПа (100 кгс/см2 ) и выше

1

1

При непрерывной очистке 100% конденсата, поступающего из конденсатора в контур питательной воды, допускается временное повышение его общей жесткости сверх указанных норм на 0,5 мкг-экв/кг в течение не более 4 сут при условии соблюдения норм качества питательной воды (контроль за качеством конденсата и обеспечение гидравлической плотности конденсатора см. разд. 11).

5.2. Методы измерения режимных параметров, при контроле за работой конденсационной установки

5.2.1. Давление отработавшего пара, поступающего в конденсатор из выхлопного патрубка современной мощной турбины, распределено в выходном сечении патрубка весьма неоднородно, что объясняется закруткой потока пара и изменением направления его движения после выхода из последней ступени турбины, а также наличием в патрубке элементов жесткости (иногда и ПНД № 1). Абсолютные давления в различных точках переходного патрубка конденсатора могут различаться на 0,3-0,5 кПа (0,003-0,005 кгс/см2 ). Такие отклонения от среднего давления могут вызвать ошибку при определении температурного напора в 1-2 °C, что повлечет за собой неправильную оценку состояния поверхности охлаждения. Поэтому значение р 2 должно определяться путем осреднения значений давления, измеренных в ряде точек.

В [2, 4-7] даются рекомендации по размещению первичных преобразователей давления отработавшего пара в конденсаторах для повседневного контроля. Отбор сигнала должен производиться на расстоянии 1 м выше верхнего ряда трубок конденсатора и примерно 0,5 м от боковых стенок переходного патрубка. Чтобы исключить влияние на значение сигнала динамического воздействия потока пара и обеспечить измерение его статического давления, на концах соединительных (импульсных) трубок в паровом пространстве конденсатора устанавливаются плоскопараллельные пластины размером 230´280 мм (см. рис. П2.1 приложения 2). В центре пластины приваривается штуцер с отверстием диаметром 10 мм и резьбой под накидную гайку М 20´1,5 мм. Могут применяться и сетчатые зонды (см. рис. П2.1), представляющие собой перфорированный стакан толщиной стенки 2 мм с четырьмя рядами отверстий диаметром 3 мм (по восемь отверстий в ряду); внутрь стакана вставляется скрученная спирально латунная сетка № 028 размером 75/300 мм. Сетчатые зонды, в частности, удобны при организации отбора сигналов давлений с одновременным их усреднением путем присоединения соединительных трубок из разных точек к общему центральному стакану, от которого ведется соединительная трубка к вторичному прибору (рис. 5.1). Для очень крупных турбин с количеством точек отбора сигналов более четырех возможно применение нескольких таких устройств. Такой прием позволяет обойтись значительно меньшим количеством вторичных, приборов, что упрощает обслуживание приборов и проведение эксплуатационного контроля. Зонды обычно укрепляются (хомутами или проволокой) на первом от трубного пучка ряду анкерных связей переходного патрубка. При этом плоскопараллельные пластины устанавливаются узким торцом (230 мм) навстречу потоку отработавшего пара, а сетчатые зонды - параллельно анкерным связям. Материал для изготовления зондов - сталь Ст.3. Приборы, измеряющие абсолютное давление (вакуум), должны располагаться выше точки отбора сигнала, чтобы исключить возможность скопления воды в соединительных трубках.

Pиc. 5.1. Измерение давления (вакуума) в нескольких точках с использованием одного вторичного прибора:

1 - стенка переходного патрубка конденсатора; 2 - сетчатый зонд; 3 - сигнальная (импульсная) трубка диаметром 16´2 мм; 4 - центральный стакан; 5 - к вторичному прибору

Прокладку соединительных линий от места забора сигнала до вторичного прибора необходимо производить с соблюдением правил монтажа приборов, работающих под вакуумом, а именно:

- внутренний диаметр соединительных трубок должен быть не менее 10-12 мм;

- соединительные линии должны быть проложены по кратчайшей трассе, без изломов и сплющивания на поворотах с непрерывным уклоном не менее 1:10 в сторону отбора сигнала;

- должна быть проведена герметичность соединительных линий;

- запорные устройства на линиях вывода сигнала, имеющие сальники и резьбовые соединения, не должны применяться; предпочтительны зажимы на участках, резиновой толстостенной трубки;

- вторичные приборы должны присоединяться с помощью толстостенной вакуумной резиновой трубки.

Для эксплуатационного контроля удобнее производить измерение непосредственно абсолютного давления отработавшего пара. В качестве первичных преобразователей рекомендуется применять средства измерения, указанные в приложении 3 и [8].

Удобным для использования в эксплуатации и для точного контроля за правильностью показаний штатных приборов непрямого действия, измеряющих абсолютное давление в конденсаторе, является баровакуумметр (запаянная с одного конца трубка, заполненная ртутью). Прибор такого типа обеспечивает высокую точность измерения абсолютного давления, при этом исключен прямой контакт находящегося в трубке небольшого количества ртути с окружающей средой.

Применение для разовой проверки основного прибора ртутного чашечного вакуумметра может быть допущено лишь кратковременно в исключительных случаях, при этом должно также измеряться барометрическое давление с помощью инспекторского ртутного барометра или барометра-анероида типа БАММ-1. К показаниям этих приборов должны вноситься все необходимые поправки (на капиллярность, температуру столба ртути и др. ). Должна быть предусмотрена возможность продувки соединительной линии непосредственно перед прибором, измеряющим абсолютное давление (вакуум). Перед проведением эксплуатационного контроля следует произвести продувку линия.

В связи с невозможностью обеспечить в сжатые сроки установку на всех турбоагрегатах для измерения абсолютного давления высокоточных приборов типа "Сапфир" и качестве временной меры может быть рекомендован способ определения давления в конденсаторе по температуре насыщения измеренной термопреобразователями сопротивления медными или платиновыми ТСП-8053, ТСП-8054; вторичный прибор - автоматический мост КСМ-4 со шкалой 0-100 °C. Термометры сопротивления помещаются в изготовленных из тонкостенной трубки соответствующего диаметра длинных гильзах, которые располагаются в переходном патрубке в тех же точках, что и зонды давления, согласно указаниям [2, 5-7].

Для того чтобы избежать оттока теплоты от первичных преобразователей, циркуляция воздуха в гильзе должна быть исключена закупоркой входного отверстия гильзы. До установки термометров сопротивления в гильзы целесообразно произвести их градуировку. С этой целью термометры, подлежащие установке в конденсаторе, помещаются в аналогичные гильзы, погруженные в сосуд с водой, температура которой измеряется точным лабораторным ртутным термометром. Следует производить проверку всего комплекса, включающего в себя термометры сопротивления, соединительные провода и автоматический мост. При проведении измерений температуры в переходном патрубке конденсатора к отсчитанным по шкале значениям температуры желательно вводить зафиксированные при проверке поправки.

Независимо от временной схемы измерений для определения абсолютного давления в конденсаторе с помощью термометров сопротивления должна быть также подготовлена схема для непосредственного измерения давления, к которой впоследствии будет подключен прибор "Сапфир" или другой высокоточный прибор, измеряющий абсолютное давление. Используя эту схему, следует проверить с помощью ртутного прибора правильность определения давления в конденсаторе по среднему арифметическому значению температуры, измеренной в нескольких точках переходного патрубка.

При определении давления отработавшего пара по показаниям термометров, установленных в гильзах, возможны погрешности в результате, например, образования пленки конденсата на поверхности обтекаемых влажным паром гильз, лучистого теплообмена гильз с другими поверхностями в конденсаторе или других причин, которые не представляется возможным учесть. Погрешность в определении температуры пара, например, на 0,2 °C приводит к ошибке в определении вакуума до 0,1%. Именно поэтому способ определения давления по температуре пара рекомендуется лишь как временный с переходом в дальнейшем к непосредственному измерению абсолютного давления в конденсаторе.

Когда поступавший в конденсатор пар перегрет, например, в режимах пуска турбоагрегата, давление в конденсаторе должно контролироваться с помощью пружинного мановакуумметра или другого прибора, измеряющего непосредственно давление (разрежение).

5.2.2. Измерение температуры охлаждающей воды на входе в конденсатор, где поток ее однороден по температуре, может производиться одним термометром на каждом водоводе к конденсатору. При дублировании же измерения температуры охлаждающей воды перед конденсатором термометрические гильзы должны располагаться на сдвинутых одна относительно другой по периметру образующих водовода.

На выходе из конденсатора распределение температур по сечению потока охлаждающей воды существенно неоднородно, поэтому температуру воды в каждом из сливных водоводов следует измерять в нескольких точках по его сечению. При этом сечения сливных водоводов, в которых производятся измерения температур воды, должны располагаться на расстоянии не менее пяти диаметров сливного водовода от водяных камер конденсатора, т.е. за участком, на котором в основном завершается перемешивание потока.

Длина устанавливаемых гильз должна составлять около 300 мм. Термометрические гильзы могут изготавливаться из трубки внутренним диаметром не менее 12 мм и толщиной стенки 2-2,5 мм. Измерение следует производить с помощью термометров сопротивления типа ТСП с пределами измерения 0-50 °C. Расположение шести гильз в сливных водоводах показано на рис. 5.2. В гильзы следует залить воду. При совпадении показаний всех шести термометров в дальнейшем можно использовать только один из них. Однако надо иметь в виду, что однородность поля температур в сливном водоводе сильно зависит от режима работы конденсатора. Для определения средней температуры охлаждающей воды после конденсатора при неравномерном поле ее температур в сечении водовода можно использовать так называемую проточную гильзу (рис. 5.3). Применение проточной гильзы сокращает требуемое для эксплуатационного контроля количество термометров и упрощает проведение контроля.

5.2.3. Измерение температуры конденсата отработавшего пара производится термометрами сопротивления типа ТСП, установленными в термометрической гильзе на участке трубопровода между конденсатосборником и задвижкой на входе в конденсатный насос. Длина погруженной части гильзы принимается l = 0,5D + 5 мм, где D - диаметр трубопровода (мм), но не короче 300 мм. В гильзу заливается вода.

Рис. 5.2. Расположение гильз для измерения температуры охлаждающей воды в сливном водоводе диаметром 1600 мм:

а - на вертикальном участке; б - на горизонтальном участке

Рис. 5.3. Проточная гильза для измерения средней температуры охлаждающей воды после конденсатора:

1 - сливной водовод; 2 - перфорированная трубка диаметром 40-50 мм, отверстия диаметром 8-10 мм, шаг отверстий 60-80 мм; 3 - вентиль; 4 - ртутный термометр или термометр сопротивления

5.2.4. Паровая нагрузка конденсатора (расход отработавшего пара в конденсатор) определяется при проведении эксплуатационного контроля за работой конденсационной установки по давлению пара в камере одного из регенеративных отборов низкого давления -давлению пара в контрольной ступени. Отборы, которые рекомендуется использовать для определения расхода отработавшего пара, указаны в [2, 5-7] для каждого типа конденсатора. Там же указан способ расчета расхода отработавшего пара по измеренному в контрольной ступени давлению.

Давление, принимаемое за контрольное, обычно составляет 50-300 кПа (0,5-3,0 кгс/см2 ) при номинальной паровой нагрузке конденсатора. Вследствие изменений давления в контрольной ступени при колеблющейся паровой нагрузке ЦНД возможно при обычном присоединении манометра скопление воды на отдельных участках соединительных линий, приводящее к ошибкам измерений. Для предотвращения этого должна применяться измерительная схема, обеспечивающая при всех условиях полное заполнение водой соединительных линий. Последнее достигается при использовании конденсационного сосуда, устанавливаемого в точке отбора давления, как это показано на рис. П2.2 для горизонтального участка паропровода вблизи камеры отбора; для вертикального участка паропровода присоединение выполняется аналогично. На рис. П2.3 приведен эскиз конденсационного сосуда, изготавливаемого из отрезка трубы D y 150 мм. Поправка на высоту присоединения, которую следует вводить к измеренному вторичным прибором значению давления, определяется как разность отметки верхнего обреза внутренней трубы 3 и присоединительной чашки манометра. Поправка имеет знак "минус", поскольку конденсационный сосуд всегда располагается выше точки размещения прибора. Вторичный прибор - пружинный манометр (мановакуумметр) класса 0,6. Манометр желательно периодически проверять в измерительной лаборатории с записью полученных значений поправок. К измеренному при проведении эксплуатационного контроля значению давления вводится также и эта поправка. К конечному результату для получения абсолютного давления прибавляется барометрическое давление МПа ( кгс/см2 ), где В - барометрическое давление, мм рт.ст.

5.2.5. Измерение расхода охлаждающей воды производится с помощью сегментных сужающих устройств, устанавливаемых при блочной, схеме водоснабжения на прямолинейных участках напорных водоводов и при схеме водоснабжения с магистральными водоводами перед конденсаторами (см. разд. 8.3).

Рекомендации по расчету, изготовлению и установке сегментных сужающих устройств подробно изложены в [3] .В качестве вторичного прибора, измеряющего перепад давлений на сужающем устройстве при проведении эксплуатационного контроля, монет быть использован водяной П-образный двухстекольный дифманометр (см. рис. П2.4). Для постоянного контроля за расходом охлаждающей воды к сегментной диафрагме следует подключить мембранный электрический дифманометр (ДМЭ) класса 1,0 с выходным сигналом 0-5 мА и пределами измерения в соответствии с выбранным перепадом на сегментной диафрагме.

Расход охлаждающей воды (м3 /ч) может быть определен и косвенным путем из теплового баланса конденсатора:

,

где rв - плотность воды, равная 1,0 т/м3 .

Непосредственное определение по тепловому балансу расходов охлаждающей воды для двух половин двухпоточного конденсатора невозможно вследствие того, что неизвестно точное распределение расхода конденсирующегося пара D 2 между двумя половинами конденсатора. В этом случае задача может быть решена путем последовательного приближения.

Для контроля за водопотреблением на электростанциях Минэнерго СССР рекомендованы к использованию электромагнитные расходомеры. При невозможности использования какого-либо из описанных выше способов определения W могут быть применены расходомеры этого типа, например, электромагнитный расходомер ИР-56 с преобразователем расхода ПРИЛI и счетной приставкой С-2А (допустимая погрешность ±1%), изготавливаемый Таллиннским приборостроительным заводом, а также электромагнитный расходомер "Индукция-51" (погрешность ±1,5%), изготавливаемый заводом "Ленводприбор".

5.2.6. Гидравлическое сопротивление конденсатора при избыточном давлении воды на входе в конденсатор и выходе из него может быть определено как разность давлений в подводящем напорном и сливном водоводах циркуляционной воды, измеренных в непосредственной близости к конденсатору. Точки отбора сигналов могут располагаться как ниже, так и выше пола машинного зала (рис. 5.4, а ). Измерение давлений производится проверенными пружинными манометрами для точных измерений (МТИ) класса 0,6; манометры устанавливаются на одной высоте, что исключает необходимость введения поправок на высоту их присоединения. Соединительные трубки должны быть заполнены водой.

В случае разрежения в сливной линии (использование сифона) точка отбора сигнала должна располагаться в верхней точке сливной трубы или в верхней точке водяной камеры, если вода из камеры отводится снизу. Выбор точки измерения на вертикальном участке сливной трубы может привести к ошибочным результатам из-за неопределенности состояния столба воды в опускной части сифона; присоединение же прибора к зоне сливной трубы, где давление выше атмосферного, неудобно, так как эта зона находится уже за пределами конденсатора - на горизонтальном участке сливной трубы.

Прибор, измеряющий разрежение, должен располагаться ниже точки присоединения соединительной трубки к верхней части сливной линии и на одном уровне с прибором, измеряющим давление воды перед конденсатором (см. рис. 5.4, б ); в этом случае к показаниям приборов также не надо вводить поправку на высоту их присоединения. Соединительные линии должны быть заполнены водой.

Гидравлическое сопротивление в этом случае определяется как сумма значений давления перед конденсатором и разрежения после конденсатора.

При рассмотренном выше способе измерения гидравлического сопротивления конденсатора не учитываются гидравлическое сопротивление сливной трубы, а также сливной камеры, если вода отводится из нее снизу. Для целей контроля за состоянием конденсатора это не существенно, поскольку задачей является в этом случае определение не абсолютного значения гидравлического сопротивления конденсатора, а изменение этого сопротивления, вызванное засорением трубных досок, трубок ила другими причинами, нарушающими нормальную эксплуатацию конденсатора. К тому же сопротивление вертикального участка сливной трубы незначительно.

Рис. 5.4. Измерение гидравлического сопротивления конденсатора

Гидравлическое сопротивление конденсатора может быть измерено и непосредственно с помощью манометра, присоединенного к соединительным трубкам вместо двух отдельных приборов.

5.2.7. Измерение расхода воздуха, отсасываемого из конденсатора пароструйным эжектором, практически равного сумме всех присосов в вакуумную систему, производится с помощью штатного дроссельного воздухомера, представляющего собой набор дроссельных сужающих устройств различного диаметра на поворотном диске и снабженного устройством для измерения перепада давления на сужающем устройстве. В случае отсутствия штатного расходомера используется изготавливаемое на электростанции дроссельное устройство (см. рис. П2.5) или дроссельный воздухомер ВТИ.

Если выхлоп эжектора закрытый (присоединен к атмосферной трубе), устройство для измерения расхода воздуха выполняется по рис. П2.5, а и перепад давлений на сужающем устройстве измеряется с помощью присоединенной до и после него U -образной трубки, заполняемой водой. Приоткрытом (в машинный зал) выхлопе устройство выполняется по рис. П2.5, б ; перепад давлений измеряется U -образной трубкой, заполненной водой, одно колено которой сообщается с атмосферой.

Расход сухого воздуха (кг/ч) подсчитывается по формуле

G в = к ×0,0065d 2 ;

где d - диаметр расточки сужающего устройства, мм;

h - перепад давлений на сужающем устройстве, мм вод. ст.;

к - поправочный коэффициент, зависящий от температуры паровоздушной смеси перед сужающим устройством:

t см °C

40

60

80

к

1,11

1,00

0,74

Температура смеси t см измеряется ртутным термометром или ТСП в наклонной гильзе, установленной навстречу потоку смеси перед сужающим устройством на расстоянии 200-300 мм от нее. Диаметр расточки сужающего устройства принимается исходя из значения допустимого присоса воздуха (согласно § 18.15 ПТЭ) и возможности измерения перепада давлений водяным столбом высотой не более 300-400 мм, чтобы избежать чрезмерного повышения давления на выхлопе эжектора.

5.2.8. При использовании в качестве воздушных насосов водоструйных эжекторов воздухомеры дроссельного типа не могут быть применены. В таких случаях для определения расхода воздуха DG в , отсасываемого из конденсатора воздушным насосом, может применяться способ контроля за воздушной плотностью вакуумной системы, разработанный ВТИ. Этот способ основывается на том, что при большом присосе воздуха давление в конденсаторе изменяется в соответствии с характеристикой водоструйного эжектора при отсасывании им сухого воздуха. Такую характеристику, построенную для различных температур рабочей воды, следует иметь для каждого эксплуатируемого эжектора (рис. 5.5).

При необходимости определить расход отсасываемого воздуха нужно путем последовательной установки на патрубке, присоединенном к камере смешения эжектора, сменных калиброванных сопл все большего диаметра добавлять воздух в приемную камеру эжектора, фиксируя значения давления в конденсаторе, соответствующие определенным значениям расхода добавляемого воздуха (точки 1 -3 на рис. 5.5). При некотором значении расхода добавляемого через сопло воздуха DG в давление в конденсаторе р 2 значительно увеличится по сравнению с измеренными раньше (точка 3 на рис. 5.5). Это показывает, что суммарный расход отсасываемого воздуха вышел за пределы, в которых конденсатор работает на горизонтальном участке зависимости p 2 = f (G в ), и перешел на участок, где характеристика p 2 = f (G в ) практически совпадает с характеристикой эжектора p н = f (G в ) на сухом воздухе (см. разд. 9.3). Измерив это давление в конденсаторе и отметив на оси ординат характеристики соответствующее значение р 2(3) , следует провести через эту точку горизонтальную прямую до пересечения с соответствующей данной температуре рабочей воды характеристикой эжекторов (точка 3 ). Полученной точке пересечения соответствует на оси абсцисс суммарный расход воздуха G вс = G в + DG в ,

где G в - расход воздуха, поступающего через неплотности в системе;

DG в - расход воздуха, дополнительно подводимого через сопло.

Вычитая из G вс значение DG в , можно определить присос воздуха в вакуумную систему G в .

Рис. 5.5. Определение присосов воздуха при работе водоструйного эжектора:

I - характеристики эжектора на сухом воздухе при различной температуре рабочей воды p н = f (G в ); II - зависимость давления в конденсаторе от расхода отсасываемого воздуха p 2 = f (G в ), DG в - расход добавляемого воздуха; G в - естественный присос воздуха в вакуумную систему; G вс - расход воздуха при давлении в конденсаторе р 2(3)

Устройство для впуска воздуха приведено на рис. 5.6. Вследствие сверхкритического перепада давлений на соплах расход воздуха через каждое сопло определяется только диаметром отверстия и составляет:

Диаметр сопла, мм

2,7

3,9

5,5

6,7

7,7

8,7

Расход воздуха, кг/с (кг/ч)

0,0013

(5)

0,0027

(10)

0,0055

(20)

0,0083

(30)

0,0111

(40)

0,0139

(50)

Диаметр сопла, мм

9,5

10,9

12,2

15,0

17,3

19,3

Расход воздуха, кг/с (кг/ч)

0,0167

(60)

0,0222

(80)

0,028

(100)

0,0417

(150)

0,0583

(210)

0,0694

(250)

Сопла изготавливаются из нержавеющей стали или бронзы (см. рис. П2.6). Для удобства пользования на каждом сопле следует выбить цифрами диаметр отверстий и расход воздуха.

Рекомендации по проведению измерений и обработке их результатов приведены также в [4].

Рис. 5.6. Устройство для установки калиброванного сопла для добавочного впуска воздуха при определении расхода воздуха, отсасываемого водоструйным эжектором:

а - с накидной гайкой; б - с прижатием сопла атмосферным давлением; 1 - всасывающий патрубок эжектора; 2 – труба; 3 - вентиль; 4 - сопло; 5 - накидная гайка; 6 - прокладка; 7 - башмак с наружной резьбой; 8 - штуцер для отбора давления; 9 - фланец

5.3. Нормативные характеристики конденсационных установок

5.3.1. В [2, 5-7] приведены нормативные характеристики конденсационных установок большинства эксплуатирующихся на электростанциях турбин, предназначенные для нормирования, планирования и контроля за состоянием конденсационных установок в процессе эксплуатации. Они составлены на основании обобщения результатов двух-трех тепловых испытаний однотипных конденсационных установок турбин во всем диапазоне сезонного изменения температуры охлаждающей воды и при изменении в рабочем диапазоне всех остальных определяющих режим конденсационных установок величин (паровой нагрузки, расхода охлаждающей воды и др.). Испытания проводились на отлаженных конденсационных установках, проработавших после монтажа пуска турбоагрегатов более 4000-5000 ч, при практически чистых поверхностях охлаждения конденсаторов. Воздушная плотность вакуумной системы перед проведением испытания обеспечивала нормальную работу турбоустановки с одним воздухоудаляющим устройством.

При отсутствии результатов испытаний конденсационных установок данного типа для построения нормативных характеристик использовались составленные ВТИ им. Ф.Э. Дзержинского Руководящие указания [1]. Сопоставление опытных характеристик конденсаторов с расчетными, определенными по методике ВТИ, показали хорошую их сходимость.

Для конденсационных установок теплофикационных турбин более ранних выпусков, в которых применялись конденсаторы 50 КЦС-3 ПОТ ЛМЗ, 50 КЦС-6 ПОТ ЛМЗ, 100 КЦС-2 ПОТ ЛМЗ, 100 КЦС-4 ПОТ ЛМЗ, следует пользоваться характеристиками, приведенными в [2].

5.3.2. Нормативные характеристики конденсационных установок содержат графики зависимости температурного напора dt и давления отработавшего пара р 2 от паровой нагрузки конденсатора D 2 и температуры охлаждающей воды t (рис. 5.7 и 5.8). Эти зависимости даются для двух значений расхода охлаждающей воды - номинального и около 0,7 номинального. В характеристиках конденсаторов теплофикационных турбин дополнительно включены также графики для расхода охлаждающей воды около 0,5 номинального значения, учитывая малую паровую нагрузку конденсатора в отопительный период и, соответственно, больший диапазон уменьшения расхода охлаждающей воды для оптимизации режима турбоустановки. В зоне малых паровых нагрузок (50% и ниже) и низких температур охлаждающей воды, в основном при режимах, характерных для турбин типа П, Т и ПТ, в течение отопительного сезона характер зависимости температурного напора от паровой нагрузки меняется: температурный напор сохраняется практически постоянным с понижением нагрузки (рис. 5.9) или даже возрастает при значительном ее понижении вследствие увеличения размеров вакуумной зоны турбоагрегата, а также, соответственно, присосов воздуха и влияния характеристики воздухоудаляющего устройства.

Рис. 5.7. Температурный напор конденсатора K-15240 ПОАТ ХТЗ в зависимости от расхода пара D 2 и температуры охлаждающей воды t

(при номинальном расходе охлаждающей воды W = 34800 м3 /ч)

Рис. 5.8. Давление в конденсаторе К-15240 ПОАТ ХТЗ в зависимости от расхода пара D 2 и температуры, охлаждающей воды t

(при номинальном расходе охлаждающей воды W = 34800 м3 /ч)

Нормативные характеристики включают в себя также зависимость гидравлического сопротивления конденсатора от расхода охлаждающей воды (рис. 5.10) и сетку поправок к мощности турбины в зависимости от давления в конденсаторе (см. рис. 4.1).

Рис.5.9. Температурный напор в конденсаторе К2-3000-2 ПО ТМЗ в зависимости от расхода пара D 2 и температуры охлаждающей воды t

(при номинальном расходе охлаждающей воды W = 7000 м3 /ч)

Рис. 5.10. Гидравлическое сопротивление конденсатора К-15240 ПОАТ ХТЗ в зависимости от расхода охлаждающей воды

Для турбин типа Т непосредственное определение паровой нагрузки конденсатора по значению давления в контрольной ступени невозможно. Поэтому в характеристики [6] включены вспомогательные графики для определения расхода отработавшего пара турбины.

5.3.3. По измеренным или определенным рекомендованными выше способами основным параметрам (паровой нагрузке, температуре входящей охлаждающей воды и расходу охлаждающей воды) по зависимости dt = f (D 2 , t ) определяется нормативный температурный напор. С ним и сравнивается температурный напор, определенный по данным эксплуатационных измерений. Поскольку нормативные графики даны для двух значений расхода охлаждающей вода, значения температурного напора для расхода охлаждающей воды, отличающегося от расходов, для которых построены нормативные графики, определяются линейной интерполяцией.

При высоких температурах охлаждающей воды (20-25 °C) температурный напор слабо зависит от ее расхода, при низких температурах охлаждающей воды влияние ее расхода более существенно.

Нормативное значение гидравлического сопротивления конденсатора находится по соответствующему графику для фактически измеренного (или определенного расчетом по балансу конденсатора) расхода охлаждающей воды.

Сетка поправок на вакуум позволяет оценить снижение мощности турбоустановки при заданном расходе пара, вызванное повышением давления отработавшего пара в эксплуатации (по сравнению с нормативным). Изменение мощности определяется по кривой для расхода отработавшего пара, к которому относятся рассматриваемые данные эксплуатационного контроля. Для турбин типа К изменение мощности, отнесенное к мощности на зажимах генератора, измеренной при проведении эксплуатационного испытания, по абсолютному значению равно относительному изменению удельного расхода тепла турбоустановкой (удельного расхода топлива энергоблоком), но имеет обратный знак (см. табл. 4.1).

6. НЕПОЛАДКИ И НАРУШЕНИЯ В РАБОТЕ КОНДЕНСАЦИОННОЙ УСТАНОВКИ

Любое нарушение нормальной работы конденсационной установки, вызванное теми или иными причинами, проявляется прежде всего в повышении давления отработавшего пара по сравнению с его значением по нормативной характеристике для данных эксплуатационных условий. Причинами ухудшения работы конденсационной установки могут быть различные факторы, анализ и сопоставление которых позволяет определить истинную причину ухудшения показателей конденсационной установки, определить и принять меры к восстановлению нормальной работы, возможные неполадки в работе конденсационной установки, их внешние признаки и необходимые мероприятия для приведения показателей конденсационной установки в норму приведены в табл. 6.1.

Таблица 6.1

Признаки неполадки

Основные причины

Способы устранения

1. Увеличенный по сравнению с нормативным температурный напор

1.1. Загрязнение конденсаторных трубок (проверяется визуально осмотром трубок в отключенной по воде половине конденсатора)

При осуществлении на электростанции профилактических мероприятий (обработка охлаждающей воды) проверить и наладить режим обработки воды (см. разд. 14.1-14.3), при запущенном состоянии трубок произвести их чистку.

При борьбе с отложениями путем периодических чисток произвести чистку трубок принятым на электростанции способом (см. разд. 14.4)

1.2. Повышенные присосы воздуха в вакуумную систему. Пароструйные эжекторы работают на перегрузочной (крутой) ветви своей характеристики

Найти места присосов в вакуумной части установки, устранить неплотности (см. разд. 12)

1.3. Ухудшение работы эжектора из-за недостаточного давления рабочей среды (дара, воды) перед ним, недостаточного поступления воды в охладители пароструйного эжектора или неполадок в воздухоудаляющем устройстве

Восстановить давление пара или воды. Произвести наладку, технический осмотр воздухоудаляющего устройства и устранить неисправность (см. разд. 9)

2. Увеличение нагрева охлаждающей воды в конденсаторе по сравнению с нормативным значением

2.1. С увеличением гидравлического сопротивления конденсатора

2.1. Сокращение расхода охлаждающей воды вследствие загрязнения трубных досок, неисправности водоочистительных устройств на водозаборе или значительного загрязнения трубок

Очистить трубные доски с отключением поочередно половин конденсатора; проверить состояние вращающихся сеток, устранить неисправности и наладить работу сеток (см. разд. 8.1); очистить трубки

2.2. С уменьшением гидравлического сопротивления конденсатора, уменьшением разрежения в верхней точке сливной камеры и соответствующим увеличением давления воды перед конденсатором

2.2. Ухудшение работы сифона из-за неполного открытия сливной задвижки (затвора) или скопления воздуха в верхней части сливных камер

Проверить открытие задвижки (затвора) на сливной линии, открыть ее полностью; включить в работу эжектора циркуляционной системы; восстановить нормальное разрежение (см. разд. 8)

2.3. С уменьшением давления охлаждающей воды перед конденсатором

2.3. Нарушение нормальной работы циркуляционных насосов

Проверить и наладить работу циркуляционных насосов (см. разд. 8)

2.4. С повышением давления перед конденсатором

2.4. Засорение сопл градирни или брызгального устройства (при оборотной системе водоснабжения)

Промыть сопла

3. Увеличение содержания кислорода в конденсате после, конденсатных насосов сверх нормируемых ПТЭ

3.1. См. п. 1.2. табл. 6.1

3.2. Появление присосов воздуха на участке трубопровода от конденсатора до конденсатного насоса

Найти места присосов, устранить неплотности (см. разд. 12)

4. Переохлаждение конденсата

4.1. См. п. 1.2 табл. 6.1

4.2. Повышение уровня конденсата в конденсаторе, приводящее к заливу нижних рядов трубок из-за неисправности регулятора уровня конденсата

Исправить регулятор уровня конденсата в конденсаторе и наладить его работу

5. Повышенная жесткость конденсата

5.1. Присосы охлаждающей воды в основном конденсаторе

Проверить водяную плотность конденсатора, обнаружить и устранить места присоса охлаждающей воды

5.2. Присосы охлаждающей воды в конденсаторе

Проверить водяную плотность конденсатора ТПН, обнаружить и устранить неплотности в конденсаторе

7. ПУСК И ОСТАНОВ КОНДЕНСАЦИОННОЙ УСТАНОВКИ

7.1. Последовательность пусковых операций конденсационной установки тесно связана с технологией пуска турбоустановки или энергоблока в целом, поэтому операции по пуску конденсационной установки не следуют непосредственно одна за другой, а бывают разделены известным промежутком времени, в течение которого производятся операции по пуску собственно турбины и другого вспомогательного оборудования.

7.2. Перед пуском конденсационной установки проверяется, заполнены ли конденсатор и деаэратор водой (конденсатом); если конденсатор опорожнен, то нижнюю его часть со стороны парового пространства следует заполнить из бака запаса конденсата (БЗК) до верхней отметки водоуказательного стекла.

7.3. Далее следует:

- проверить соответствие положения задвижек на тракте циркуляционной воды указаниям инструкции по эксплуатации;

- при наличии сифона и пароструйных эжекторов циркуляционной системы включить последние в работу;

- включить циркуляционные насосы (при насосах поворотно-лопастного типа установить до их пуска рабочие лопатки под необходимым углом);

- установить необходимый расход воды через конденсатор (при центробежных насосах);

- проверить разрежение в сливных циркуляционных водоводах и при недостаточном разрежении включить в работу эжекторы циркуляционной системы;

- включить в работу один из конденсатных насосов с подачей конденсата через линию рециркуляции в конденсатор, а при наличии в схеме БОУ включить один КЭН I подъема и один КЭН II подъема со сбросом конденсата через линию рециркуляции после КЭН II подъема (за сальниковым подогревателем) в конденсатор;

- включить регулятор уровня в конденсаторе и, подавая в конденсатор обессоленную воду из БЗК, заполнить деаэратор, бустерные и главные питательные насосы;

- подать пар на концевые уплотнения и включить в работу эжектор уплотнений последовательность этих операций может быть различной при пусках турбоустановки из разных тепловых состояний и уточняется в местной инструкции);

- включить в работу пусковой и основной эжекторы и начать набор вакуума; пусковой эжектор отключить после достижения вакуума в конденсаторе 66,5 кПа (500 мм рт.ст.).

7.4. При останове турбоустановки (энергоблока) конденсационная установка выключается из работы на завершающей стадии; операции по останову следуют в порядке, обратном указанному в п. 7.3.

После прекращения поступления пара в турбину (закрытия стопорных клапанов) и закрытия задвижек на паропроводах к ПСБУ следует:

- выключить после полного останова ротора турбины основной эжектор и эжектор уплотнения;

- остановить конденсатные насосы I и II подъема;

- остановить циркуляционные насосы (после понижения температуры выхлопного патрубка турбины до 55 °C).

Детально выполнение операций по останову конденсационной установки указывается в инструкции по эксплуатации данной конкретной турбоустановки или энергоблока.

7.5. Последовательность операций по пуску и останову циркуляционных и конденсатных насосов, а также эжекторов рассмотрена в разд. 8-10.

8. СИСТЕМА ЦИРКУЛЯЦИОННОГО ВОДОСНАБЖЕНИЯ КОНДЕНСАТОРОВ

8.1. Решетки, водоочистные сетки и фильтры

8.1.1. Качество естественных и оборотных вод, используемых для технического водоснабжения, характеризующееся составом и количеством содержащихся в них примесей, весьма разнообразно. Поступающая в заборные устройства вода содержит, как правило, большое количество механических примесей, состав которых зависит от источника и системы водоснабжения, качества укрепления берега водоема или водотока в зоне водозабора, наличия и качества сбрасываемых в этой зоне промышленных, сельскохозяйственных и коммунальных стоков и др. Наиболее часто в воде содержатся следующие примеси: береговая растительность и прибрежный мусор (листва, сучья и др.), водные растительные и животные организмы (водоросли, рыба, моллюски и др.), промышленные и бытовые отходы (щепа, строительный мусор и др.).

Для очистки поступающей воды от крупного мусора и шуги в подводящем канале на водозаборе служат грубые решетки, изготовляющиеся из вертикальных стальных полос толщиной 14-16 мм и шириной 50-100 мм и устанавливаемые через каждые 40-100 мм. Размер ячеек от 40´300 до 100´600 мм, большая сторона ячейки располагается вертикально.

Для более тонкой очистки охлаждающей воды, подаваемой в конденсаторы, масло- и газоохладители турбоагрегатов, от механических примесей, могущих вызвать забивание трубных досок и трубок конденсаторов, уменьшение и даже прекращение протока воды через некоторые охлаждаемые аппараты, за грубыми решетками устанавливаются вращающиеся сетки с ячейками размером от 4´4 до 10´10 мм. Вращающиеся сетки разных типов отличаются одна от другой подводом в них и отводом после очистки циркуляционной воды. Наиболее широко применяются сетки следующих типов: Т-2000 и Т-3000 с внутренним подводом воды (рис. 8.1, а ), Т-2000 и Т-3000 с наружным подводом воды см. рис. 8.1, б ) и Л-3100 с лобовым подводом воды (см. рис. 8.1, в ). В системах водоснабжения с напорными бассейнами применяются вращающиеся сетки конусного типа.

В сетках такого типа практически устранена возможность попадания мусора и взвешенных частиц в чистый отсек циркуляционной воды перед конденсаторами через зазоры между подвижными и неподвижными частями сетки.

8.1.2. Установленные в водоприемнике решетки и вращающиеся сетки не исключают возможности заноса в конденсаторы и другие аппараты крупных твердых примесей, которые могут попадать в охлаждающую воду в пределах самой системы водоснабжения, в том числе остатков моллюсков (ракушек), проникших через сетки в виде мелких личинок, а затем развившихся внутри системы и отмерших (см. п. 14.2.3). В таких случаях может возникнуть необходимость, особенно при очистке трубок конденсаторов резиновыми шариками, в установке непосредственно перед водяными камерами конденсаторов дополнительных фильтров с отверстиями диаметром 6-10 мм. Фильтры выполняются цилиндрическими или коническими с поступлением воды в них снаружи и из внутренней их полости в конденсатор. Задержанные фильтром твердые предметы удаляются с его наружной поверхности закрученным (вихревым) потоком воды и отводятся в сливной водовод. Закручивание водяного потока перед фильтром осуществляется по мере надобности на короткое время с помощью поворотной заслонки или направляющих лопастей или же постоянно путем выполнения корпуса фильтра спиральным.

8.1.3. Из-за износа и деформаций деталей вращающихся сеток, в частности сочленений транспортной цепи, дефектов монтажа, а также конструктивных недостатков вращающихся сеток в них остаются или появляются в процессе работы зазоры в местах сопряжения отдельных деталей подвижных и неподвижных элементов, что приводит к попаданию в конденсатор мусора и других взвесей, содержащихся в воде.

Особенно большое количество мусора может проникать при внутреннем и наружном подводе воды через зазор между отдельными звеньями (секциями) сетки по всей ее ширине. На вертикальных участках этот зазор может составлять 10-15 мм, а снизу на повороте сетки - достигать 20-35 мм. Для обеспечения плотности стыков секций их следует уплотнять полосами из резины или прорезиненной ткани толщиной 4 мм, прикрепленной с помощью болтов и стальных планок к смежной секции (рис. 8.2).

Прямой проход воды помимо лобовых сеток в нижней их части должен быть надежно перекрыт; уплотнение выполняется с помощью полосы из прорезиненной ткани толщиной 10 мм (рис. 8.3). Полоса с одной стороны крепится к порогу окна для входа воды в сетку с помощью стальных болтов и планки. Противоположная сторона полосы упирается в полотна сит.

Рис. 8.1. Схема подвода охлаждающей воды к вращающейся сетке:

а - внутренний подвод; б - наружный подвод; в - лобовой подвод;

1 - вход воды; 2 - выход воды

Рис. 8.2. Уплотнение зазора между секциями сеток с наружным и внутренним подводами воды:

1 - полоса из прорезиненной ткани; 2 - стальные планки; 3 - болтовые крепления планок

Рис. 8.3. Уплотнение нижней части лобовых сеток:

1 - полоса из прорезиненной ткани (толщина 10 мм); 2 - болтовое крепление; 3 - стальная планка

Зазор в боковых уплотнениях не должен превосходить 2-3 мм. Для поддержания нормального зазора между нижней направляющей и щеками боковых уплотнений необходимо по мере износа шарнирных соединений подтягивать транспортерные цепи с помощью натяжных устройств. Натяжение цепей необходимо проверять не реже чем один раз в месяц.

Зазоры между направляющими уголками каркаса сетки и строительными конструкциями, являющиеся следствием неудовлетворительного монтажа сеток, должны быть тщательно забетонированы.

Как показал опыт эксплуатации, наиболее долговечными являются проволочные полотна сеток, изготовленные из нержавеющей стали. Поскольку на лобовых сетках не устанавливаются защитные сита, прочность фильтрующих полотен сит должна быть повышена путем применения проволоки диаметром до 1 мм.

Частота включений промывочного устройства сеток зависит от скорости загрязнения сетки. Включение промывочного устройства производится либо эксплуатационным персоналом согласно местной инструкции (если вода чистая), либо автоматически по сигналу от перепада гидростатического давления на сетке по достижении его значения около 2 кПа (200 мм вод. ст.). Автоматизация включения промывочного устройства является весьма эффективным средством поддержания на должном уровне чистоты охлаждающей воды.

Для улучшения очистки полотен сит от мусора рекомендуется заменить промывочные трубы с истечением воды через щели трубами с истечением воды через круглые отверстия, расположенные в один ряд (рекомендуется 25 отверстий диаметром 6 мм на 1 м длины каждой промывочной трубы). Для полного удаления грязи со сточного желоба к торцам последнего необходимо подвести воду через 3-4 сопла, расположенные по всей ширине желоба и направленные выходными отверстиями в сторону сточного канала.

При эксплуатации вращающихся сеток следует использовать рекомендации, выдаваемые наладочными организациями или содержащиеся в соответствующих технических материалах.

8.2. Типы и характеристики циркуляционных насосов

8.2.1. На современных электростанциях широко применяются вертикальные осевые насосы с поворотными лопастями типа ОПВ с подачей в диапазоне 10000-120000 м3 /ч и давлением 50-200 кПа (5-20 м вод. ст.). Насосы типа ОПВ допускают регулирование подачи воды от максимальной до 70-80% максимальной путем изменения угла установки рабочих лопастей и до 60% максимальной при использовании электродвигателей с двумя частотами вращения.

Центробежные насосы вертикального исполнения типа В с подачей до 10000 м3 /ч и давлением до 300 кПа (30 м вод. ст.) используются преимущественно в оборотных системах водоснабжения с охлаждением воды в градирнях. Горизонтальные центробежные насосы с двухсторонним всасыванием типа Д с подачей до 12000 м3 /ч и давлением около 250 кПа (25 м вод. ст.) применяются на электростанциях небольшой мощности.

В последнее время на электростанциях применяются также вертикальные (центробежно-осевые) диагональные насосы типа ДПВ с подачей до 40000 м3 /ч и давлением свыше 200 кПа (20 м вод. ст.). Они применяются при оборотных системах водоснабжения с градирнями, а также при турбоагрегатах с боковым расположением конденсаторов. Основные технические характеристики циркуляционных насосов приведены в приложении 4.

8.2.2. Напорная характеристика центробежного насоса представляет собой плавно ниспадающую кривую - давление Н уменьшается по мере увеличения подачи Q (рис. 8.4); мощность, потребляемая насосным агрегатом N на , растет с увеличением подачи и имеет тенденцию к уменьшению в зоне крутого спада характеристики, практически за пределами ее рабочей зоны; КПД насоса hн или насосного агрегата hна достигает максимума при номинальной подаче, после чего происходит уменьшение КПД. Насос может забирать воду из-под уровня, расположенного ниже или выше его оси. Допускаемый подпор обычно указывается в виде абсолютного значения давления, т.е. с прибавлением 100 кПа (10 м вод. ст.). Таким образом, допускаемый кавитационный запас Dh доп > 100 кПа (10 м вод. ст.) обозначает подпор, а Dh доп < 100 кПа (10 м вод. ст.) - всасывание, причем допустимая высота всасывания равна = Dh доп - 100 кПа.

Центробежные насосы работают при постоянной частоте вращения, и регулирование их подачи осуществляется дросселированием задвижкой, т.е. без существенного снижения потребляемой мощности при уменьшении подачи.

Циркуляционный насос подбирается для заданной характеристики тракта таким образом, чтобы точка пересечения характеристик тракта и насоса соответствовала бы номинальной подаче насоса (на рис. 8.4 точка 1 ), при которой КПД насосного агрегата имеет максимальное значение и допускается минимальное значение подпора.

Рис. 8.4. Характеристика центробежного насоса:

Н - давление насоса; N на - мощность на зажимах электродвигателя; hна - КПД насосного агрегата; Dh доп - допустимый подпор; Q - подача насоса; Q н - номинальная подача насоса; H геод - геодезическая высота подъема; - - - - - характеристика сети

Пуск центробежного насоса производится при закрытой напорной задвижке; после достижения насосным агрегатом номинальной частоты вращения напорная задвижка открывается и насос включается в параллельную работу с другими насосами или работает на самостоятельную сеть. Циркуляционные насосы центробежного типа не вызывают трудностей при включении в параллельную работу и успешно эксплуатируются при параллельной работе на общий водовод (два, три и более насосов). Надежность работы насосов обеспечивается тем, что изменение (снижение) характеристики вследствие износа практически несущественно и не может сколь-либо заметно влиять на подачу насоса. Основной причиной уменьшения подачи центробежного насоса в процессе эксплуатации может быть увеличение гидравлического сопротивления сети или геодезического подъема, связанное с изменениями в тракте циркуляционной воды. При повышении в этом случае давления рабочая точка смещается по характеристике влево с соответствующим уменьшением подачи.

8.2.3. Поворотно-лопастные насосы типа ОПВ и ДПВ имеют механизм для разворачивания от руки или с помощью серводвигателя (электрического или гидравлического) лопастей рабочего колеса от минимального угла dмин до максимального dмакс , что приводит к почти эквидистантному смещению напорной характеристики насосов вверх. На рис. 8.5 показаны характеристики насоса типа ОПВ при неизменной частоте вращения и разных значениях угла d (аналогичные характеристики у насосов типа ДПВ).

Характеристики насосов указанных типов имеют при данном d два основных участка: плавно ниспадающий рабочий участок (правая ветвь) и более круто падающий нерабочий участок (левая ветвь, прилегающая к оси ординат). Между ними расположен переходной восходящий участок. Если характеристика сети пересекает характеристику насоса в пределах ее рабочего участка, насос работает устойчиво. Если же сопротивление сети возрастает таким образом, что точка пересечения характеристик переходит на верхнюю точку рабочего участка характеристики насоса (точка 5 ), система становится неустойчивой и насос практически скачкообразно переходит на нерабочий участок его характеристики при том же давлении (точка 6 ). Работа насоса сопровождается при этом кавитационными явлениями, гидравлическим ударами, вибрацией, стуками, что, как правило, приводит к его повреждению, вплоть до поломки лопастей.

Завод-изготовитель запрещает работу осевых и диагональных насосов на нерабочей ветви характеристики. Исходя из условий надежности и экономичности эксплуатация насосов, завод ограничивает рабочую зону режимов работы осевых и диагональных насосов. На рис. 8.5 границы этой зоны показаны жирной линией. На этом рисунке нанесены также линии допустимого кавитационного запаса Dh доп и линии постоянного КПД насоса hн .

Поворотом рабочих лопастей обычно достигается изменение подачи насоса от 100 до 70-80% максимального значения. Эти режимы лежат да характеристике тракта в диапазоне подач от точки 1 до точки 2 . Применение двухскоростных электродвигателей позволяет расширить диапазон регулирования.

Рис. 8.5. Характеристика осевого насоса типа ОПВ:

Н – давление; Q - подача; dмакс , dмин - максимальный и минимальный угол поворота лопастей насоса; hн - КПД насоса; Dh доп - допустимый кавитационный запас; h геод - геодезическая высота подъема воды; h сл.к - высота до верхней точки сливной камеры; H макс - линия максимально допустимого статического давления при пуске насоса на заполненный водовод;

- - - - - характеристика тракта системы водоснабжения (остальные обозначения см. рис. 8.4)

Циркуляционные насосы типа ОПВ и ДПВ могут работать параллельно на общую сеть при условии установки рабочих лопастей однотипных насосов на одинаковый угол. Следует, однако, учитывать, что насосы одного типа могут иметь из-за различного их состояния несовпадающие между собой точно напорные характеристики. Поэтому блочное включение насосов типа ОПВ и ДПВ с раздельной работой каждого насоса на свой участок сети является предпочтительным. В этом случае исключается взаимное воздействие насосов при несовпадении их характеристик, случайном различии углов установки лопастей или разной степени износа проточных частей насосов. При параллельной же работе осевых насосов увеличение гидравлического сопротивления сети может привести к тому, что один из параллельно включенных насосов, характеристика которого по указанным выше причинам отличается от напорных характеристик других насосов, перейдя на недопустимый режим работы, отвечающий нерабочей ветви характеристики.

Пуск насосов типа ОПВ к ДНВ более сложен, чем центробежных, а подключение их в параллельную работу сопряжено зачастую со значительными трудностями; в ряде случаев подключение в параллель к уже работающим следующего насоса оказывается невозможным без применения дополнительных устройств (см. разд. 8.4).

Вследствие особенностей формы напорной характеристики осевые и диагональные насосы более чувствительны к изменению характеристики сети из-за различных эксплуатационных неполадок.

8.3. Схемы циркуляционного водоснабжения

8.3.1. При блочной схеме (рис 8.6, а ) каждой насос работает на свой тракт (на отдельные половины или часть корпусов конденсатора), благодаря чему исключается параллельная работа циркуляционных насосов и схема имеет минимальное количество арматуры на тракте (только на сливном водоводе устанавливается задвижка или затвор, в некоторых случаях запорный орган на сливе вообще не устанавливается). При блочной схеме применяются, как правило, осевые и диагональные насосы.

На рис. 8.7, а показано, условное продольное сечение по тракту водоснабжения блочной схемы с подачей воды из реки (прямоточное водоснабжение) или с охлаждением воды в водохранилище-охладителе, а на рис. 8.7, б - сечение по тракту оборотной системы водоснабжения с охлаждением воды в градирне.

При прямоточном водоснабжении и оборотном с водохранилищем-охладителем используется, как правило, действие сифона в системе подачи воды и слива охлаждающей воды, что приводит к уменьшению геодезической высоты подачи воды.

Рис. 8.6. Схема циркуляционного водоснабжения:

а - блочная; б - с напорными коллекторами (магистральными водоводами); 1 - циркуляционные насосы; 2 - напорные водоводы; 3 - конденсатор; 4 - сливной водовод; 5 - задвижка (затвор); 6 – сливные каналы (закрытые или открытые)

Рис. 8.7. Блочная схема водоснабжения конденсатора:

а - прямоточная система или охлаждение в водохранилище-охладителе; б - с охлаждением в градирне; 1 - приемный ковш; 2 - грубые решетки и место для установки шандор, отключающих аванкамеру; 3 - вращающаяся сетка; 4 - аванкамера; 5 - циркуляционный насос; 6 - напорный водовод; 7 - конденсатор; 8 - сливной водовод; 9 - задвижка (затвор); 10 - сифонный колодец; 11 - закрытый сливной канал; 12 - водосливной порог; 13 - открытый канал; 14 - эжектор циркуляционной системы; 15 - из конденсатора; 16 - к циркуляционному насосу; 17 - стояк градирни; 18 - водораспределительное устройство; 19 - вытяжная башня градирни; 20 - водосборный бассейн градирни; 21 - оросительное устройство

Как следует из рис. 8.7, а, верхняя точка сливной водяной камеры конденсатора (отметка 1 ) располагается значительно выше уровня воды в сифонном колодце 10 . Закрытый слив под уровень воды в сифонном колодце обеспечивает неразрывность потока воды и позволяет использовать действие сифона. Геодезическая высота подъема воды, которую должен преодолеть циркуляционный насос, равна при этом разности уровней воды на водосливном пороге (отметка 2 ) а в аванкамере перед насосом (отметка 0 ). Поскольку плотность столба воды в сливной части сифона из-за нагрева воды в конденсаторе и выделения из воды при нагреве растворенного в ней воздуха несколько меньше плотности столба воды перед конденсатором, потенциальная энергия столба вода перед конденсатором используется не полностью. Эта потеря учитывается условным КПД сифона, равным отношения средней плотности воды в сливной трубе к плотности воды в напорной трубе перед конденсатором.

Верхняя часть сливной камеры конденсатора находится под разрежением, равным разности атмосферного давленая над уровнем воды в сифонном колодце и давления столба воды за вычетом гидравлических потерь на сливном участке до сифонного колодца.

Воздух, выделяющийся при нагреве воды в конденсаторе, может скапливаться в верхней части сливной камеры (при неблагоприятной ее форме), что влечет за собой ухудшение работы конденсатора, так как при этом уменьшается высота и, следовательно, эффективность действия сифона и могут оказаться незаполненными водой верхние трубки конденсатора, т.е. выключиться из работы часть поверхности охлаждения конденсатора. Нормальная работа сифона восстанавливается путем удаления воздуха эжектором циркуляционной системы 14 (см. рис. 8.7).

В тех случаях, когда наблюдается скапливание воздуха в верхней части сифона (это свойственно, например, конденсаторам турбин К-300-240 ПОТ ЛМЗ), целесообразно устанавливать водоуказательные стекла на верхней части сливных камер для контроля за работой сифона.

Теоретически высота сифона равна 10 м (атмосферное давление). Но с учетом гидравлического сопротивления сливного участка и некоторого запаса для предотвращения разрыва столба жидкости (срыва сифона) высота его обычно принимается не более 7-8 м.

В отличие от системы водоснабжения, в которой используется сифон, в системе с градирнями (см. рис. 8.7, б ) насос должен преодолеть значительно большую высоту геодезического подъема (с отметки 0 в водосборном бассейне градирни на отметку 3 ее водораспределительного устройства) и, кроме того, обеспечить достаточное давление перед соплами. Поэтому при оборотной системе водоснабжения с градирнями применяется одноступенчатая схема подачи воды на конденсаторы с центробежными вертикальными насосами, обеспечивающими большее давление, чем осевые и диагональные насосы, или двухступенчатая схема с подачей воды отдельными насосами на конденсаторы и из них на градирни.

8.3.2. Схема с напорными коллекторами (магистральными водоводами, см. рис. 8.6, б ) предусматривает установку на береговой насосной станции группы однотипных насосов, подающих воду по магистральным водоводам большого диаметра (не менее двух) к конденсаторам турбин.

Отвод воды из конденсаторов по сливным водоводам производится через сифонные колодцы соответственно в два сливных закрытых или открытых канала. Водосливной порог выполняется обычно в конце каждого из двух сливных каналов.

К каждому из магистральных напорных водоводов подключены, как правило, два-три осевых насоса, работающих параллельно. Если же к напорному водоводу подключается большее число осевых насосов (от нескольких береговых насосных станций), должны предусматриваться мероприятия, обеспечивающие надежность работы насосов на общий напорный водовод. При применении центробежных насосов одинакового типоразмера количество насосов, подключаемых к одному магистральному водоводу, обычно не ограничивается.

Надежность снабжения конденсаторов охлаждающей водой обеспечивается подключением к каждому магистральному водоводу одной из половин каждого конденсатора (или корпуса). Кроме задвижек на подводящем и отводящем водоводах конденсатора устанавливается обратный клапан на каждом насосе и запорная задвижка для отключения насоса от магистрального водовода. Иногда имеется также перемычка с задвижкой между подводящими водоводами каждой половины конденсатора.

Схема с магистральными водоводами применяется преимущественно на ТЭЦ, а также на электростанциях, находящихся в значительном удалении от источника водоснабжения.

8.3.3. Для обеспечения надежности эксплуатации электростанций применяется также схема водоснабжения, при которой циркуляционные насосы подают воду из водохранилища-охладителя в напорный бассейн (рис. 8.8). Из напорного бассейна вода самотеком поступает в конденсаторы турбин и сбрасывается из них в водохранилище. Вместимость напорного бассейна определяется необходимым временем охлаждения конденсаторов в режиме полного обесточивания приводов циркуляционных насосов.

8.3.4. При большой разнице отметок площадки электростанции и уровня воды в источнике водоснабжения, при которой для подачи воды требуется давление, превышающее максимально возможное для выпускаемых заводами насосов, применяется схема с двумя ступенями подъема воды, т.е. с двумя насосными станциями и промежуточным бассейном.

8.3.5. При прямоточном водоснабжении или использовании водохранилища комплексного назначения (служащего кроме охлаждения циркуляционной воды для хозяйственно-питьевого водоснабжения, культурно-бытовых нужд населения и разведения промысловых рыб) схема водоснабжения может включать в себя градирню или брызгальное устройство для понижения температуры сбрасываемой в источник водоснабжения подогретой циркуляционной воды в соответствии с требованиями санитарных и рыбохозяйственных органов.

8.4. Пуск насосов типа ОПВ и ДПВ

8.4.1. Вследствие особенностей напорных характеристик осевых и диагональных насосов пуск их в работу требует выполнения ряда специфических требований. В частности, пуск этих насосов при закрытой напорной задвижке категорически запрещается, так как в этом режиме происходит резкое увеличение давления, что может привести к разрыву напорного трубопровода до задвижки, поломке рабочих элементов насоса из-за перегрузки и выходу из строя электродвигателя.

8.4.2. Завод-изготовитель предписывает производить пуск насоса при заполненном водой тракте циркуляционной воды и значении давления, не превышающем максимально допустимое, указанное на характеристике (см. рис. 8.5, линия Н макс ).

Рис. 8.8. Схема водоснабжения АЭС с напорным бассейном:

1 - приемный ковш (водохранилище); 2 - насос; 3 - напорный водовод; 4 - клапан срыва сифона (для предотвращения обратного вращения насоса при останове электродвигателя); 5 - напорный бассейн; 6 - напорный водовод к конденсатору; 7 - затворы; 8 - конденсатор; 9 - сливная линия; 10 - водохранилище; Н геод - геодезическая высота подъема воды насосом; Н к - напор, срабатываемый в тракте "напорный бассейн – конденсатор - водохранилище"

Пуск осевого насоса, снабженного механизмом поворота лопастей на ходу, при заполненной водой системе производится при минимальном угле поворота лопастей. После достижения включенным электродвигателем номинальной частоты вращения насос выходит на рабочую точку 2 (см. рис. 8.5). Далее увеличением угла поворота лопастей насос выводится на необходимую по условиям эксплуатации подачу (максимальная подача - рабочая точка 1 - достигается при максимальном угле поворота лопастей).

Если же лопасти допускают разворот только при остановленном насосе, он пускается при необходимом по режимным условиям угле поворота лопастей и при достижении номинальной частоты вращения выходит на режим, соответствующий точке 1 .

8.4.3. При блочной схеме водоснабжения, предусматривающей использование сифона (см. рис.8.6, а ), требование пуска насоса при заполненной системе не всегда может быть выполнено, поскольку после останова насоса вся циркуляционная система опорожняется - вода сливается через насос в аванкамеру и из сливного водовода в сбросной тракт. Заполнение же системы большой вместимости с помощью эжектора циркуляционной оистемы (см. рис. 8.7) требует значительного времени. Поэтому пуск осевого насоса, если отсутствуют другие средства для предварительного заполнения всего тракта циркуляционной системы водой и ввода в действие сифона, часто производится при незаполненной водой системе. Если насос снабжен механизмом для перестановки лопастей на ходу, пуск его производится при минимальном угле поворота лопастей.

Последовательность пусковых операций и изменение режима работы при этом следующие. После включения электродвигателя и достижения насосом номинальной частоты вращения рабочая точка насоса оказывается в правой части рабочей ветви его характеристики, поскольку давление насоса я момент пуска минимальное (например, точка 3 на рис. 8.5). По мере заполнения напорного водовода и водяного объема конденсатора давление насоса увеличивается вследствие продолжающегося увеличения столба жидкости и рабочая точка насоса перемещается по характеристике при dмин на нерабочую ветвь (точка 4 ). В этом режиме работы насоса происходит заполнение водой конденсатора и сливной линии и вступает в работу сифон, после чего необходимое давление насоса уменьшается и он переходит на режим работы, соответствующий точке 2 (соответственно гидравлической характеристике тракта). Затем установкой лопастей под необходимым углом достигается требуемая подача насоса (например, точка 1 на рис. 8.5).

Для ускорения начала действия сифона обычно несколько прикрывается задвижка (затвор) на сливной линии. После включения в работу сифона, что легко обнаруживается по показанию мановакуумметра, присоединенного к верхней точке сливной камеры конденсатора, задвижка (затвор) на сливной линии должна быть немедленно полностью открыта.

При пуске насоса с минимальным углом поворота лопастей переход его с рабочей части характеристики на нерабочую происходит практически незаметно, поскольку провал характеристики при минимальном угле выражен не резко (см. рис. 8.5).

Если же при пуске насоса угол поворота лопастей максимальный, например в случае неподвижно закрепленных лопастей или при невозможности перестановки лопастей на ходу, процесс протекает с заметно выраженным изменением режима при переходе с рабочей ветви характеристики (точка 5 ) на нерабочую (точка 6 ). При режиме в точке 7 завершается заполнение системы водой, вступает в работу сифон и по мере снижения давления насоса последний переходит через точки 6 и 5 на рабочую ветвь в точку 1 .

Перед пуском насоса эжектор циркуляционной системы должен быть включен в работу и оставаться включенным в течение всего периода пуска насоса до выхода его на рабочую точку и создания нормального значения разрежения в верхней точке сливной камеры конденсатора.

8.4.4. При блочной схеме водоснабжения с охлаждением воды в градирне (см. рис.8.7, б ) после останова циркуляционного насоса сливная линия остается заполненной водой до уровня нижнего ряда трубок конденсатора, а из напорного водовода и водяного пространства конденсатора вода сливается через насос. Поскольку в этом случае расчетное давление насоса выбирается таким образом, чтобы обеспечить подачу воды на водораспределительное устройство градирни, перемещение рабочей точки насоса при заполнении системы водой в период пуска происходит только в пределах рабочей части его характеристики.

8.4.5. При включении осевого (или диагонального) насоса на параллельную работу с насосами, работающими на общую напорную магистраль (например, при схеме рис. 8.6 насоса III в параллель к уже работающим насосам IV и V), возможен помпажный режим работы пускаемого насоса, если он не выйдет на рабочую часть характеристики, а останется на ее нерабочей части. В момент пуска дополнительно включенного насоса обратный клапан на его напорной линии закрыт, для его открытия насос должен развить давление несколько большее, чем давление в магистрали (точка 1 на рис. 8.9, отвечающая режиму работы двух насосов до включения дополнительного насоса). Подача пускаемого насоса незначительна, поскольку закрыт обратный клапан, и рабочая точка этого насоса находится на нерабочей части характеристики А. После повышения давления пускаемого насоса до точки 2 открывается обратный клапан и в магистраль начинает поступать из этого насоса вода, а рабочая точка перемещается по нерабочей части характеристики А насоса от точки 2 до точки 4 с подачей Q '. Соответственно по характеристике системы Г перемещается и рабочая точка теперь уже трех работающих параллельно насосов (из точки 1 в точку 4 ), давление пускаемого насоса и уже работавших насосов сравнивается.

Поскольку нижняя точка провала характеристики А между нерабочей и рабочей частью характеристики (точка а ) лежит ниже точки установившегося режима (точка 4 ), пускаемый насос остается работать на нерабочей части характеристики, т.е. в помпажном режиме в точке 4 . При этом обратный клапан открывается не полностью и находится в неустойчивом положении из-за недостаточной скорости воды, поэтому возможно его закрытие. Эксплуатация осевого насоса в этом режиме может привести к повреждению деталей насоса, поэтому категорически запрещается.

Если же провал характеристики А насоса между нерабочей и рабочей частью характеристики относительно мал (см. пунктир на рис. 8.9), то возможно перемещение рабочей точки пускаемого насоса на рабочую часть характеристики в точку 3 c подачей Q ". Подача трех работающих насосов отвечает на характеристике Г и на суммарной характеристике В трех работающих параллельно насосов точке 3 '.

Рис. 8.9. Пуск осевого насоса типа ОПВ в параллельную работу к работающим насосам:

А - характеристика пускаемого насоса; Б - суммарная характеристика насосов, находящихся в работе; В - суммарная характеристика насосов после подключения дополнительного насоса;

Г - гидравлическая характеристика системы водоснабжения

8.4.6. Для предотвращения попадания осевого насоса при его включении в параллельную работу с другими насосами в помпажный режим должны применяться линии холостого сброса воды из напорного водовода до обратного клапана, обычно объединяемые в общий сбросной водовод (на рис. 8.6, б показано пунктиром для насосов III-V). Слив воды из линии холостого сброса должен производиться в водохранилище вне приемного ковша, так как слив воды в ковш приводит к сильному замутнению в нем воды и поступлению грязи в конденсатор.

Насос пускается при открытой задвижке на холостом сбросе, и вследствие малого при этом значения давления начальный режим отвечает рабочей части напорной характеристики насоса в правой ее части (например, точка 5 на рис. 8.9). Затем постепенно прикрывается задвижка на сбросной линии, давление насоса увеличивается до значения, соответствующего открытию обратного клапана (точка 2 ), и насос выходит на режим параллельной работы с другими насосами (например, точка 3 на рис. 8.5). Сечение линии холостого сброса определяется из расчета пропуска через нее 60-70% максимальной подачи насоса.

8.5. Неполадки в работе циркуляционной системы

8.5.1. Нарушение нормальной работы циркуляционного насоса и, как следствие этого, снижение подачи или отключение насоса из-за невозможности по условиям надежности дальнейшей его эксплуатации может вызываться либо неполадками и повреждениями собственно насоса, либо влиянием на подачу насоса и надежность эксплуатации отклонения по каким-либо причинам гидравлического сопротивления циркуляционного тракта от расчетного. Уменьшение расхода охлаждающей воды, например, только на 10% приводит к ухудшению вакуума в летнее время примерно на 0,4%, в зимнее время - на 0,2%. Такое ухудшение вакууме равносильно потере экономичности турбоустановки на перегретом паре и энергоблока соответственно примерно на 0,4 и 0,2%, а для турбин на влажном паре с частотой вращения 3000 об/мин соответственно на 0,7 и 0,4%.

В табл. 8.1 рассмотрены возможные нарушения в работе циркуляционной системы, связанные непосредственно с неполадками и повреждениями в осевых и диагональных насосах.

Циркуляционные насосы центробежного типа относятся к наиболее надежному оборудованию систем циркуляционного водоснабжения. Неисправности в их работе могут вызываться в основном неполадками в системе смазки подшипников, износом уплотнений, лишь незначительно влияющими на характеристику и КПД насоса, и некоторыми другими более мелкими дефектами, которые обнаруживаются эксплуатационным персоналом при осмотре насоса.

8.5.2. К изменению подачи циркуляционного насоса может привести изменение характеристики сети, в частности из-за понижения уровня воды в источнике и увеличения из-за этого геодезической высоты подъема воды Н геод . Как показано на рис. 8.10, при увеличении геодезической высоты подъема с Н геод до насос переходит с режима, определяющегося точкой а его характеристики, на режим, соответствующей точке б , и подача насоса уменьшается с Q до Q '.

Таблица 8.1

Неполадка

Основная причина

Способ устранения

1. Контроль по заводской или снятой при испытаниях [9] характеристике показывает, что давление при данном угле поворота лопастей по указателю не соответствует измеренной или определенной из теплового баланса конденсатора подаче; вибрация в допустимых пределах

Угол поворота лопастей по указателю не соответствует фактическому

Произвести корректировку указателя угла поворота лопастей

2. Механизм поворота лопастей не обеспечивает при крайних его положениях полный диапазон изменения подачи насоса

Неправильно установлены ограничители перемещения крестовины механизма поворота лопастей

Отрегулировать положение ограничителей, установив рабочие лопасти в соответствии с контрольными отметками на основании лопасти и ступице колеса [10, 11] или при ремонте насоса - с помощью специального угломера

3. Вибрация и биение вала насоса давление и подача насоса пульсируют и не соответствуют рабочему режиму

Кавитационный режим насоса из-за уменьшения подпора на стороне всасывания (увеличения высоты всасывания) или закрутки потока в аванкамере

Изменить режим насоса, устранить причины уменьшения подпора (см. п. 8.2.2)

4. Пульсация давления и увеличение его сверх допустимого; подача значительно меньше расчетной по характеристике; электродвигатель перегревается, агрегат сильно вибрирует

Насос работает на нерабочей части характеристики из-за повышенного гидравлического сопротивления сети

Немедленно уменьшить сопротивление сети (открыть не полностью открытую задвижку, включить эжектор циркуляционной системы для восстановления сифона и др.). При невозможности уменьшения сопротивления сети на ходу остановить насос и привести тракт циркуляционной воды в нормальное состояние

5. Насос не подает воду, электродвигатель перегружен при допустимом подпоре (высоте всасывания; и исправном состоянии циркуляционного тракта; усиленная вибрация

Ошибочно включен электродвигатель и вращается в неправильном направлении (возможна поломка лопастей, расцентровка ротора насоса)

Немедленно остановить насос; переменить направление вращения вала электродвигателя; проверить центровку вала, крепление лопастей

6. Колеблется мощность электродвигателя, шум и стуки в насосе, вибрация

Механические заедания лопастей насоса о поверхность камеры рабочего колеса

Остановить насос, произвести ремонт и центровку насоса

7. Давление ниже соответствующего характеристике насоса; вибрация

Значительный износ торцов лопастей рабочего колеса и камеры

Сменить или отремонтировать лопасти, камеру рабочего колеса

8. Повышенная потребляемая мощность при соответствии подачи и давления насоса характеристике; вибрация

Малы зазоры между валом и вкладышами подшипников. Сильная затяжка сальников

Остановить насос, проверить - зазоры в подшипниках и сальниках, заменить вкладыши подшипников и сальниковые набивки

Рис. 8.10. Гидравлические характеристики сети:

1 - при расчетных условиях; 2 - при повышенной геодезической высоте подъема; 3 - при повышенном гидравлическом сопротивлении сети

Увеличение геодезической высоты подъема за счет снижения уровня воды, вызываемого изменением гидрологического режима источника водоснабжения (реки, озера, водохранилища), регулированием стока воды или засушливым сезоном, учитывается при выборе насоса. Возможны, однако, случаи превышения проектной геодезической высоты подъема воды, в том числе вызванного условиями эксплуатации. Так, уровень воды в аванкамере 4 (см. рис. 8.7) заметно снижается при значительном загрязнении вращающихся сеток из-за несвоевременной их чистки, неисправности промывочного устройства (см. разд. 8.1) или заноса грубых решеток водной растительностью, мусором или шугой в осенне-зимнее время. Увеличение геодезической высоты подъема может вызываться также неудовлетворительной работой сифона на сливе воды, когда уровень ее в верхней части сливной камеры конденсатора снижается из-за скопления воздуха, выделившегося при нагреве воды, а такие воздуха, попадающего через неплотности в вакуумной части циркуляционной системы или захватываемого водой на водозаборе.

Контроль геодезической высоты подъема воды циркуляционными насосами производится по мерным рейкам, установленным в точках, определяющих гидростатику системы: в заборном ковше, в аванкамере, в сифонном колодце, на водосливном пороге при сливе воды в открытый канал.

Снижение уровня вода в аванкамере приводит кроме увеличения геодезической высоты подъема воды танке к уменьшению подпора на входе в насос (увеличению высоты всасывания), что может повлечь за собой переход насоса на недопустимый режим работы (см. п. 3 табл. 8.1).

8.5.3. К снижению подачи насоса приводит и увеличение гидравлического сопротивления циркуляционной системы при неизменной геодезической высоте подъема воды, так как характеристика сети становится при этом более крутой (ср. две характеристики при одинаковой высоте подъема Н геод на рис. 8.9).

Гидравлическое сопротивление тракта циркуляционной воды складывается из сопротивления отдельных его участков (см. рис. 8.7). В табл. 8.2 перечислены участки тракта, сопротивление которых по тем или другим причинам может увеличиваться в процессе эксплуатации, указаны причины увеличения сопротивления и способы устранения причин повышенного гидравлического сопротивления.

8.5.4. Контроль за гидравлическим сопротивлением всей системы в целом осуществляется по давлению, развиваемому циркуляционными насосами (с учетом геодезической высоты подъема воды, определяемой по водомерным рейкам). Гидравлические сопротивления отдельных участков определяются путем измерения давления в начале и конце участка проверенными пружинными манометрами. При этом вводятся поправки на разницу отметок точек присоединения приборов. Оценка состояния участка производится путем сравнения измеренного сопротивления с определенным ранее при испытании системы водоснабжения или полученным при предыдущих эксплуатационных проверках. Для контроля за заполнением сливной камеры конденсатора рекомендуется установка водоуказательных стекол.

Таблица 8.2

Участок тракта

Основная причина увеличения сопротивления

Способ устранения

1. Грубые решетки, воздающиеся сетки, участок подвода воды к рабочему колесу (камерный, коленчатый подвод)

1.1. Занос грубых решеток водной растительностью, мусором, шугой

Периодическая, очистка грубых решеток ручным или механическим способом; борьба с шугой путем рециркуляции подогретой воды после конденсаторов

1.2. Загрязнение вращающихся сеток из-за несвоевременной их очистки, неисправности промывочного устройства

Наладка работы промывочного устройства, периодическое ручное или автоматическое включение промывочного устройства

1.3. Низкое качество выполнения подвода к насосу (неровности стенок, уступы, оставленные при бетонировании; неубранный строительный мусор)

Устранение строительных дефектов и счистка участка подвода воды к насосу

2. Узел переключения систем водоснабжения с напорными коллекторами (магистральными водоводами)

2.1. Неполное открытие обратного клапана дискового типа вследствие заедания, неуравновешенности диска, малой скорости воды сравнительно с расчетной для клапана данного размера (при полном открытии обратного клапана дискового типа его гидравлическое сопротивление составляет 1,0 кПа, или 0,1 м вод. ст.); потери давления в не полностью открытом клапане могут достигать 10-20 кПа (1-2 м вод. ст.)

Устранение заеданий клапана в опорных цапфах и по краям диска; наладка работы клапана с привлечением завода-изготовителя

2.2. Неполное открытие напорной задвижки из-за заеданий или неправильной установки концевых выключателей электропривода

Устранение заеданий; настройка концевых выключателей электропривода задвижки

3. Напорный водовод

Занос илом и взвешенными веществами, особенно на изгибах водовода, крутых поворотах; недостаточно тщательная очистка водоводов после монтажа

Отключение и опорожнение водовода; тщательная его очистка

4. Напорные задвижки перед конденсаторами (для систем водоснабжения с напорными коллекторами, магистральными водоводами)

См. п. 2.2. настоящей таблицы

5. Конденсатор

5.1. Занос трубных досок водной растительностью, мусором (из-за неудовлетворительной работы вращающихся сеток), отмершими ракушками и др.

Отключение конденсатора по половинам и очистка трубных досок; наладка работы вращающихся сеток; очистка системы от моллюсков (ракушек) (см. разд. 8.1 и 14.3)

5.2. Сильное загрязнение и уменьшение проходного сечения конденсаторных трубок

Отключение конденсатора по половинам и чистка трубок принятым на электростанции методом; наладка профилактических мероприятий против отложений в трубках

6. Сливной водовод с задвижкой (затвором)

Уменьшение действия сифона (разрежения в верхней точке конденсатора при полностью заполненной водой сливной камере) из-за неполного открытия сливной задвижки, вызванного заеданием или неправильной установкой концевых выключателей электропривода

Устранение заедания; настройка концевых выключателей электропривода задвижки

7. Закрытый сливной канал

Занос мусором (неудовлетворительная очистка после сооружения или ремонта, попадание мусора из сифонного колодца при повышенном уровне в нем воды, что проявляется в повышении уровня воды в сифонном колодце при заданном расходе охлаждающей воды через конденсатор)

Отключение закрытого сливного канала, очистка канала и сифонного колодца

8. Водораспределительное устройство градирни оборотных систем водоснабжения (напорная система водораспределения)

Уменьшение проходного сечения разбрызгивающих сопл из-за отложения накипи, засорения взвешенными частицами; засорение водораспределительных труб

Очистка сопл и водораспределительных труб принятым на электростанции способом [11]

9. Задвижки на тракте "конденсатор-градирни"

Неполное открытие задвижек вследствие заедания, неправильной установки концевых выключателей электроприводов

Устранение заеданий; настройка концевых выключателей электроприводов задвижек

9. ВОЗДУШНЫЕ НАСОСЫ

9.1. Основные типы воздушных насосов

9.1.1. Для поддержания разрежения в конденсаторе необходимо постоянное удаление из него поступающих вместе с отработавшим паром неконденсирующихся газов, в основном воздуха, проникающего извне через неплотности в вакуумной системе турбоагрегата.

В предназначенные для этого воздушные насосы поступает из конденсатора наряду с неконденсирующимися газами также и некоторое количество несконденсировавшегося пара.

Отсасываемая из конденсатора парогазовая смесь, как правило, насыщена паром, содержание его в смеси определяется ее давлением и температурой. Чем ниже давление и температура смеси, тем меньше содержание в ней пара. Газы сжимаются в насосе и выбрасываются в атмосферу, а содержание пара в газах на выходе из насоса зависит от конструкции и режима работы последнего.

9.1.2. Из различных по принципу действия вакуумных насосов в конденсационных установках отечественных турбостроительных заводов в настоящее время применяются для удаления газов насосы струйного типа, в которых рабочей (эжектирующей) средой служит пар (пароструйные эжекторы) или вода (водоструйные эжекторы). В дальнейшем намечается также, применение водокольцевых вакуумных насосов, принадлежащих к числу ротационных насосов вытеснения.

9.1.3. В пароструйном эжекторе (рис. 9.1) пар, поступающий при начальном давлении р р в сопло 1 , расширяется в сопле до давления р н в приемной камере эжектора 2 . Поскольку отношение давлений р р н в эжекторах конденсационных установок выше критического, в них применяются сопла Лаваля. Истекающая из сопла с большой скоростью струя рабочего пара увлекает (эжектирует) воздух или паровоздушную смесь из приемной камеры 2 в камеру смешения 3 . Последняя состоит из последовательно расположенных конфузорного (3, а ) и цилиндрического (3, б ) участков. Применение в камерах смешения пароструйных эжекторов конфузорных участков позволяет увеличить расход отсасываемого воздуха, при котором наступает при прочих равных условиях перегрузка эжектора (см. п. 9.2.4).

По пути движения рабочего пара и отсасываемой среды в камере смешения происходят их перемешивание и выравнивание распределения скорости смеси по ее поперечному сечению. Уменьшение кинетической энергии смешанного потока при выравнивании профиля скоростей сопровождается повышением его давления. Дальнейший рост давления до противодавления р с происходит в диффузоре 4 . Значение р с определяется барометрическим давлением и падением давления в тракте выхлопа эжектора.

9.1.4. Водоструйные эжекторы выполняются двух типов, различающихся между собой нормой и длиной проточной части: с камерой смешения, состоящей, как и в пароструйном эжекторе, из конфузорного участка и относительно короткого цилиндрического участка, за которым расположен диффузор; с удлиненной камерой смешения, цилиндрической на всем ее протяжении и без диффузора за ней. В эжекторах обоих типов рабочая вода поступает в приемную камеру через суживающееся сопло, по истечении из которого водяная струя быстро распадается на капли.

При отсосе из конденсатора паровоздушной смеси содержащийся в ней пар конденсируется на поверхности водяной струи, что приводит лишь к незначительному повышению ее температуры. В камере смешения диспергированная водяная струя и эжектируемый воздух или паровоздушная смесь движутся сперва раздельно со скольжением газовой (парогазовой) среды относительно жидкой. Затем в некотором сечении камеры смешения (или диффузора), положение которого зависит от режимных условий, в частности от противодавления р с , происходит возмущение двухфазного водовоздушного потока, сопровождавшееся его перемешиванием и торможением, приводящим к повышению давления смешанной среды.

Рис. 9.1. Устройство пароструйного эжектора:

1 - рабочее сопло; 2 - приемная камера; 3 - камера смешения (а - конфузорный участок; б - цилиндрический участок); 4 - диффузор; 5 - рабочий пар; 6 - паровоздушная смесь из конденсатора

С увеличением противодавления р с зона повышения давления смещается навстречу потоку. По достижении ею входного сечения камеры сечения приемная камера эжектора затапливается водой и происходит срыв работы эжектора.

9.1.5. Водокольцевой ротационный насос (рис. 9.2) имеет цилиндрический корпус, в котором эксцентрично расположено рабочее колесо с лопатками. Внутрь корпуса подводится через гидравлические уплотнения вала некоторое количество воды. При вращении рабочего колеса приводным электродвигателем вода оттесняется под действием центробежной силы к стенкам корпуса, где в результате этого образуется вращающееся водяное кольцо, а между внутренней поверхностью последнего и ступицей колеса - серповидное рабочее пространство.

Рис. 9.2. Устройство водокольцевого насоса:

1 - вал; 2 - ступица рабочего колеса; 3 - лопатки; 4 - корпус; 5 - водяное кольцо; 6 - впускные отверстия; 7 - выпускные отверстия

Воздух или паровоздушная смесь поступает в водокольцевой насос и удаляется из него через отверстия в одной или двух торцевых крышках корпуса.

Каждая пара рабочих лопаток образует ограниченную ими, ступицей рабочего колеса и водяным кольцом полость с изменяющимся по мере ее перемещения объемом, в котором происходят обычные для поршневого насоса процессы расширения и сжатия.

При движении данной полости от ее верхнего крайнего положения вниз содержащаяся в ней среда расширяется, давление в ней понижается до значения, меньшего, чем давление в конденсаторе, и в нее поступает из конденсатора воздух или паровоздушная смесь. При движении полости вверх объем ее уменьшается, содержащаяся в ней среда сжимается до давления, большего, чем давление на выхлопе, и выбрасывается из нее.

Удаляемая паровоздушная смесь насыщена паром при температуре рабочей воды, которая и определяет возможное минимальное давление на входе в насос.

Поскольку в процессе работы насоса находящаяся в нем вода вследствие трения, повышения температуры газа при сжатии и конденсации содержащегося в смеси пара нагревается, часть ее должна постоянно отводиться и заменяться более холодной свежей водой или же охлаждаться в специальном теплообменнике и после этого возвращаться в насос. Взамен воды, безвозвратно выносимой из насоса в результате захвата ее уходящим воздухом, подводится подпиточная вода. Для улавливания большей части уносимой воздухом воды за насосом устанавливается сепаратор.

9.2. Пароструйные эжекторы

9.2.1. Одноступенчатые пароструйные эжекторы по схеме рис. 9.1 применяются лишь при степени повышения давления р с н , не превосходящей примерно 4-6. В паротурбинных установках они используются в качестве:

- пусковых эжекторов, создающих при пуске турбоагрегата разрежение в паровом пространстве конденсатора, понижающих в нем давление примерно до 20-30 кПа, после чего включаются основные эжекторы конденсаторов (см. п. 9.2.2);

- пусковых эжекторов циркуляционной системы, создающих разрежение в водяном пространстве конденсаторов для заполнения их и сливных циркуляционных трубопроводов водой и используемых также для удаления воздуха, который может скапливаться при работе турбоагрегата в верхней части системы при наличии в ней сифона;

- эжекторов концевых уплотнений турбины, отсасывающих из уплотнений паровоздушную смесь.

Поскольку, пусковые эжекторы предназначаются для кратковременной работы, они не снабжаются обычно теплообменниками для конденсации рабочего пара, но в некоторых турбоустановках имеют на стороне выхлопа охладитель, представляющий собой теплообменный аппарат поверхностного типа, трубки которого охлаждаются циркуляционной водой.

Перед эжекторами концевых уплотнений устанавливаются поверхностные охладители для конденсации пара, содержащегося в паровоздушной смеси, выходящей из лабиринтовых уплотнений, а на стороне выхлопа эжектора - охладители для конденсации рабочего пара.

На рис. 9.3 показана конструкция пускового пароструйного эжектора и эжектора системы концевых уплотнений. Производительность пусковых эжекторов конденсаторов характеризуется расходом отсасываемого воздуха при минимальном давлении р н которое должно быть обеспечено в системе при пуске турбоагрегата до включения основных эжекторов (см. п. 9.2.1).

9.2.2. Основные пароструйные эжекторы, предназначенные для удаления из конденсатора воздуха при нормальной работе турбины, должны обеспечивать степень повышения давления отсасываемого воздуха до 25-30 (от 3-6 кПа до барометрического давления) и поэтому выполняются, как правило, с двумя или тремя последовательно включенными ступенями.

За первой ступенью двухступенчатого эжектора и за первой и второй ступенями трехступенчатого эжектора устанавливаются охладители для конденсации уходящего из них пара и охлаждения паровоздушной смеси, поступающей в следующую ступень. Поэтому в следующие за ними ступени поступает для дальнейшего сжатия воздух с относительно небольшим остаточным содержанием пара, что создает условие для эффективного (с меньшей затратой энергии) сжатия смеси. Установка между ступенями промежуточных охладителей, а также концевого охладителя за последней ступенью эжектора позволяет использовать энтальпию рабочего пара для подогрева основного конденсата, поступающего в систему питания котла, и сохранить конденсат пара, расходуемого на эжектор.

Промежуточный и концевой охладители выполняются в современных пароструйных эжекторах поверхностными. Охлаждающая вода (основной конденсат) подается в охладители из напорного коллектора конденсатных насосов. Дренаж из охладителей отводится раздельно или каскадно в направлении от концевого охладителя к охладителю первой ступени эжектора и направляется в паровое пространство конденсатора.

Рис. 9.3. Пусковой пароструйный эжектор:

1 - диффузор; 2 - камера смешения; 3 - дистанционное кольцо; 4 - сопло; А - вход отсасываемого воздуха; Б - подвод рабочего пара; В - выход паровоздушной смеси

9.2.3. Технические данные основных пароструйных эжекторов приведены в табл. П5.1 (приложение 5).

Проточные части и охладители всех трех ступеней эжектора ПОАТ ХТЗ типа ЭП-3-75 расположены в общем стальном корпусе с двумя внутренними перегородками, отделяющими вторую ступень от первой и третью от второй. Сверху корпуса расположена крышка, также состоящая из трех отделенных одна от другой камер, в которых сверху крепятся рабочие сопла, а снизу соединенные между собой камеры смещения и диффузоры соответствующих ступеней эжектора. Вторая и третья камеры верхней крышки эжектора имеют в нижнем днище отверстия, через которые паровоздушная смесь поступает из первой ступени во вторую и из второй ступени в третью. Из охладителя последней воздух с небольшой примесью пара выбрасывается через воздухомер дроссельного типа в атмосферу.

Снизу корпуса эжектора расположена горизонтальная трубная доска, в которой крепятся U-образные трубки охладителей, и нижняя крышка с водяными камерами. По охлаждающей воде (основному конденсату) охладители трех ступеней эжектора включены последовательно в направлении от охладителя первой ступени к концевому.

Перепуск дренажа осуществляется каскадно через гидрозатворы за охладителем каждой ступени.

Модернизированные схемы питания рабочим пером эжекторов типов ПО-3-150 и ЭП-3-55/150 предусматривают подвод пара к первым двум ступеням эжектора из общего коллектора, перед которым расположен регулирующий орган, а к третьей - индивидуальный подвод пара со своим регулирующим органом. Это позволяет в случае необходимости регулировать расход пара на третью ступень, а также использовать третью ступень эжектора при отключенных по пару первых двух ступенях в качестве пускового эжектора.

9.2.4. Основные эжекторы при работе турбоустановки в нормальном режиме отсасывают из конденсатора насыщенную паровоздушную смесь, содержание пара в которой зависит от ее давления и температуры. Противодавление первой ступени в двухступенчатом эжекторе и первой и второй - в трехступенчатом определяется давлением всасывания следующей за ней ступени и сопротивлением расположенного перед ней промежуточного охладителя. Оно растет с увеличением расхода воздуха G в , содержащегося в отсасываемой из конденсатора паровоздушной смеси. Последняя ступень работает с практически постоянным противодавлением.

В зависимости от противодавления ступень пароструйного эжектора может работать в двух различных режимах, одному из которых отвечает при отсасывании паровоздушной смеси постоянный объемный расход U н3 /с), не зависящий от G в и p с , а другому (в области более высоких p с ) - понижающийся с увеличением G в объемный расход.

Давление (кПа) на входе в первую ступень эжектора при' отсасывании паровоздушной смеси, имеющей температуру t см , составляет

p н = + а G в ,

где - давление насыщенного пара при температуре t см , кПа;

множитель а = 287×10-3 (t см + 273)/U н , кПа с/кг;

287 - газовая постоянная воздуха, Дж/(кг×К) [Па×м3 /кг×К)].

Рабочим режимом для пароструйного эжектора конденсационной установки является так называемый предельный режим его первой ступени, при котором U н = const независимо от противодавления и температуры отсасываемой паровоздушной смеси t см . Соответственно рабочие участки его характеристик представляют собой семейство параллельных прямых линий, отвечающих каждая определенному значению t см или (рис. 9.4). Чем выше температура t см , тем больше р н при данном G в , т.е. выше расположен рабочий участок характеристики эжектора.

При некотором значении G в *, зависящем от конструктивных размеров и состояния проточных частей и охладителей всех ступеней эжектора, первая ступень переходит на перегрузочный режим, при котором U н понижается с увеличением G в , что приводит к резкому росту р н . Работа эжектора в этом режиме (см. круто поднимающиеся участки характеристик на рис. 9.4) не должна допускаться во избежание повышения давления в конденсаторе сверх допустимого его значения и срабатывания защиты турбины по вакууму.

Пусковые и вспомогательные эжекторы, выполняемые одноступенчатыми, работают при практически постоянном противодавлении, и их характеристики не имеют перегрузочного участка.

Рис. 9.4. Характеристики пароструйного эжектора ЭП-3-75:

при отсасывании паровоздушной смеси; - при отсасывании сухого воздуха

9.2.5. Конденсационная установка оснащается, как правило, не менее чем двумя пароструйными эжекторами, присоединенными по рабочему пару и отсасываемой смеси к общим коллекторам. При этом предусматривается, что поддержание заданного давления в конденсаторе при расчетном режиме его работы и расчетном расходе воздуха обеспечивается одним эжектором. Максимальный расход воздуха G в *, отвечающий переходу эжектора на перегрузочную ветвь его характеристики, принимается в 2-3 раза превосходящим нормально допускаемый по ПТЭ присос воздуха в вакуумную систему турбоагрегата. При повышении присосов воздуха, которые не могут быть устранены без останова турбоагрегата, сверх G в * = (2¸3)G вн бесперебойная работа турбоагрегата с номинальной нагрузкой должна обеспечиваться дополнительным включением еще одного или более эжекторов.

9.2.6. Нарушения нормальной работы пароструйных эжекторов - повышение давления всасывания р н сверх отвечающего характеристике эжектора, неустойчивая их работа (пульсация давления на стороне всасывания), появление стуков внутри корпуса, выбросы пара и воды из концевого охладителя - могут вызываться дефектами сборки эжектора при первоначальном его монтаже или ремонте, износом его проточной части и другими причинами, указанными ниже.

9.2.7. К дефектам изготовления и сборки эжекторов относятся:

- неправильное взаимное расположение сопл и камер смешения: их несоосность, расположение сопла под углом к камере смешения или на расстоянии от входа в камеру смешения, отклоняющемся от оптимального для данной ступени;

- установка после ремонта сопл не на своих местах (не в своих ступенях);

- неплотности в сварных и фланцевых соединениях в пределах эжектора;

Неполадки в работе пароструйных эжекторов, могущие возникать в условиях эксплуатации, их основные причины и способы устранения указаны в табл. 9.1.

9.2.8. Недостаточное давление пара, поступающего к эжектору, понижение его давления перед соплами вследствие засорения паровых сеток и самих сопл приводят к уменьшению расхода рабочего пара. В некотором диапазоне изменения расхода рабочего пара, тем более узком, чем больше расход воздуха G в , содержащегося в отсасываемой паровоздушной смеси, давление всасывания эжектора р н может оставаться на уровне, не препятствующем нормальной эксплуатации турбины. Но понижение расхода рабочего пара ниже определенного предела может привести к резкому уменьшению объемного расхода эжектора U н и недопустимому повышению давления всасывания р н (перегрузке эжектора).

При попадании в сопла твердых предметов могут оказаться засоренными сопла не всех ступеней эжектора. При этом раньше других приводит к перегрузке эжектора засорение сопла последней ступени. Перегрузка эжектора в результате снижения расхода рабочего пара может быть предотвращена при умеренном присосе воздуха путем включения дополнительного эжектора. Но в любом случае должна быть возможно быстрее обнаружена и устранена причина понижения давления пара, поступающего в эжекторы, или произведена очистка паровых сеток и сопл.

Недостаточный расход рабочего пара является одной из основных причин ухудшения работы пароструйного эжектора, вследствие чего необходимо следить за поддержанием номинальных параметров пара перед эжекторами, чистотой паровых сеток и сопл.

9.2.9. Ухудшение условий теплообмена в охладителях влечет за собой повышение температуры, а соответственно, и увеличение содержания пара в паровоздушной смеси, поступающей в расположенную за данным охладителем ступень эжектора. Это приводит в результате увеличения падения давления в охладителе и давления всасывания расположенной за ним ступени эжектора к росту противодавления находящейся перед охладителем ступени, которая может оказаться при этом перегруженной. Перегрузка же любой ступени эжектора приводит к переходу его на круто поднимающуюся перегрузочную ветвь его характеристики (см. рис. 9.4), т.е. к значительному повышению давления р н на входе отсасываемой из конденсатора паровоздушной смеси в первую ступень эжектора и давления в конденсаторе.

9.2.10. При пуске турбины, когда вся ее проточная часть и некоторые другие связанные с нею элементы системы оказываются под вакуумом, присос воздуха в систему является повышенным. Для создания и повышения разрежения в системе пусковой эжектор должен при этом отсасывать больше воздуха, чем проникает в нее извне через неплотности. При уравнивании же расходов воздуха, проникающего в систему и удаляемого из нее, дальнейшее понижение давления в системе прекращается.

Таблица 9.1

 

 

 

Признак неполадки

Основная причина

Способ устранения

1. Повышенное давление всасывания эжектора по сравнению с соответствующим режиму (G в , t см ) по его характеристике (при отсутствии перегрузки эжектора). Нагрев воды в охладителях выше нормы

Избыточный расход рабочего пара вследствие повышенного давления в паропроводе перед эжектором

Понизить давление рабочего пара в пределах, не вызывающих нарушений устойчивой работы и перегрузки эжектора