Главная      Учебники - Разные     Лекции (разные) - часть 19

 

Поиск            

 

Генеральный план г. Мензелинска Охрана окружающей среды Текстовые материалы

 

             

Генеральный план г. Мензелинска Охрана окружающей среды Текстовые материалы

Государственное унитарное предприятие Республики Татарстан

Головная территориальная проектно-изыскательская,

научно-производственная фирма

ТАТИНВЕСТГРАЖДАНПРОЕКТ

Генеральный план г. Мензелинска

Охрана окружающей среды

Текстовые материалы

Казань 2011

Содержание

Список принятых сокращений 4

Введение 5

1. Современное использование и архитектурно-планировочная 6

организация территории 6

2. Природные условия и ресурсы 7

2.1. Рельеф и геоморфология 7

2.2. Геологическое строение 8

2.3. Физико-механические свойства грунтов 10

2.4. Сейсмичность 12

2.5. Современные физико-геологические явления и процессы 13

2.6. Гидрогеологические условия 15

2.7. Гидрологическая характеристика 23

2.8. Климатическая характеристика 25

2.9. Инженерно-геологическая оценка территории 31

2.10. Полезные ископаемые 33

2.9. Ландшафты, почвенный покров, растительность, животный мир 36

3. Экологические ограничения, использованные при 39

выполнении раздела «Охрана окружающей среды» 39

4. Оценка состояния окружающей среды 41

4.1. Состояние атмосферного воздуха 41

4.2. Состояние водных ресурсов 48

4.3. Подтопление территории г. Мензелинска 55

4.4. Земельные ресурсы, их состояние, охрана и использование 58

4.5. Отходы производства и потребления, биологические отходы 59

4.6. Радиационно-гигиеническое состояние 63

4.7. Электромагнитные факторы 63

4.8. Акустические факторы 64

4.9. Состояние и охрана озелененных территорий 68

4.10. Особо охраняемые природные территории 70

4.11. Зоны с особыми условиями использования территории 70

4.12. Комплексная оценка территории г.Мензелинска по природно-антропогенным и техногенным показателям 80

4.13.1. Методика комплексной оценки 80

4.13.2. Анализ полученных результатов 86

5. Санитарно-эпидемиологическое благополучие 90

территории и здоровье населения 90

5.1. Гигиена атмосферного воздуха 90

5.2. Гигиена источников водоснабжения 91

5.3. Гигиена почвы 93

5.4. Гигиена источников физических факторов 93

5.6. Медико-демографические показатели здоровья населения 94

6. Прогноз ожидаемого изменения характеристик окружающей среды в результате реализации положений Генерального плана 99

6.1. Характеристика проектных предложений 99

6.2. Выявление и анализ возможных экологических воздействий на компоненты ОС в период реализации мероприятий Генерального плана 99

7. Мероприятия по оптимизации экологической ситуации 103

7.1. Архитектурно-планировочные мероприятия 103

7.2. Мероприятия по перефункционированию и оптимизации производства и размещения объектов 104

7.3. Мероприятия по охране атмосферного воздуха 113

7.4. Мероприятия по охране поверхностных и подземных вод 114

7.5. Мероприятия по защите рельефа 115

7.6. Мероприятия по защите территории от загрязнения 116

отходами 116

7.7. Шумозащитные мероприятия 117

7.8. Мероприятия по защите населения от 119

электромагнитного излучения 119

8. Формирование природно-экологического каркаса 119

территории 119

Нормативная документация 122

Фондовые материалы 123


Список принятых сокращений

АЗС

автозаправочная станция

АТП

автотранспортное предприятие

БОС

биологические очистные сооружения

БПК

биологическое потребление кислорода

ВЛ

высоковольтные линии

г.

год

ГОСТ

государственный стандарт

ГУП

государственное унитарное предприятие

ЖКХ

жилищно-коммунальное хозяйство

ЗСО

зона санитарной охраны

ИГЭ

инженерно-геологический элемент

КНС

канализационная насосная станция

ЛВЗ

ликеро-водочный завод

ЛОС

локальные очистные сооружения

ЛЭП

линии электропередач

МЭПР

Министерство экологии и природных ресурсов

НРБ

нормы радиационной безопасности

ОАО

открытое акционерное общество

ОВОС

оценка воздействия на окружающую среду

ООС

охрана окружающей среды

ООПТ

особо охраняемые природные территории

ПДУ

предельно допустимый уровень

ПДК

предельно допустимая концентрация

ПЗА

потенциал загрязнения атмосферы

ПС

подстанция

РТ

Республика Татарстан

РУЭС

районный узел электрической связи

СанПиН

санитарные правила и нормы

СЗЗ

санитарно-защитная зона

СИАК

специализированная инспекция аналитического контроля

СНиП

строительные нормы и правила

ТБО

твердые бытовые отходы

ФЗ

Федеральный закон

ЦРБ

центральная республиканская больница

ЭМИ

электромагнитное излучение

Введение

В соответствии с Федеральным законом «Об охране окружающей среды» от 10.01.2002 г. №7-ФЗ под оценкой воздействия на окружающую среду понимается вид деятельности по выявлению, анализу и учету прямых, косвенных и иных последствий воздействия на окружающую среду планируемой хозяйственной и иной деятельности в целях принятия решения о возможности или невозможности ее осуществления.

Анализ экологических последствий и обоснование необходимых природоохранных мероприятий дается в разделе «Охрана окружающей среды».

Разработка раздела «Охрана окружающей среды» осуществляется в соответствии с требованиями экологического законодательства, в частности Федерального закона «Об охране окружающей среды» от 10.01.2002 г., «Положения об оценке воздействия намечаемой хозяйственной и иной деятельности на окружающую среду в Российской Федерации» от 16.05.2000 г., «Инструкции по экологическому обоснованию хозяйственной и иной деятельности», утвержденной приказом Минприроды России 29.12.1995 г.

Основная цель Генерального плана – обеспечить формирование устойчивого развития г. Мензелинска, создать комфортную среду жизнедеятельности с полным набором обслуживающих и деловых функций, представляющую возможность для полноценного отдыха с социальным и комфортным жильем, местами приложения труда, инженерно-техническим и транспортным оснащением.

Учитывая сложившуюся планировочную и функциональную организацию г. Мензелинска - концентрацию на единой территории значительной части производственных, коммунально-складских объектов и селитебной застройки, Генеральным планом предлагается осуществить ряд безусловно необходимых мероприятий, позволяющих преобразовать стихийно застроенный населенный пункт в современную систему, с максимально возможным сохранением сложившейся архитектурно-планировочной и объемно-пространственной структуры города.

Целью разработки раздела «Охрана окружающей среды» является выявление наиболее значимых экологических последствий и проведение оценки воздействия на основные компоненты окружающей среды и здоровье населения при реализации мероприятий Генерального плана.

В ходе работы решались следующие задачи :

1. оценка состояния основных компонентов окружающей среды на территории реализации проектных предложений Генерального плана;

2. характеристика проектных предложений с учетом существующей экологической ситуации на рассматриваемой территории;

3. выявление и анализ наиболее значимых возможных экологических воздействий на компоненты окружающей среды после реализации мероприятий Генерального плана.

Раздел выполнялся с учетом требований Федеральных законов «Об охране окружающей среды» (2002 г.), «Об охране атмосферного воздуха» (1999 г.), «Об отходах производства и потребления» (1998 г.), «Об особо охраняемых природных территориях» (1995 г.) и других нормативно-правовых актов.

1. Современное использование и архитектурно-планировочная

организация территории

Город Мензелинск является административным центром Мензелинского муниципального района, расположенного в северо-восточной части Республики Татарстан. Мензелинск находится в 292 км от г. Казани, в 65 км – от железнодорожной станции Круглое Поле в г. Набережные Челны.

Автомобильная связь с Набережными Челнами и Казанью осуществляется по федеральной дороге М-7 «Волга», проходящей в юго-западном направлении от города.

По состоянию на 01.01.2010 г. площадь г. Мензелинска составляет 974 га, численность населения – 16508 чел.

Жилищный фонд г. Мензелинска включает, в основном, усадебную застройку, сформированную в небольшие кварталы. Секционная застройка размещена в северо-восточной части города по ул.Изыскателей, а также фрагментарно в центральной части и прилегающей к ней территории.

Объекты инфраструктуры представлены предприятиями и учреждениями управления, образования, здравоохранения, жилищно-коммунального хозяйства, торговли, культуры и спорта.

Промышленный сектор экономики города представляют следующие предприятия: Филиал ГУП РТ «Мензелинский ЛВЗ», Филиал ОАО «Татарстан сэтэ» «Мензелинский МСК», ОАО «Мензелинский хлебозавод», ОАО ТПФ «Изыскатель», ОАО «Мензелинская сельхозтехника» и др. Территории с объектами производственного назначения расположены в северной и юго-западной частях города. С развитием промышленности город стал развиваться стихийно, тяготея к местам приложения труда. Промышленные площадки развивались в юго-западном, северном и восточном направлениях без учета санитарных и экологических требований. Жилая застройка вплотную приблизилась к производственным территориям.

В настоящее время в городе функционирует несколько парков и скверов с частичным благоустройством и озеленением.

Зонами с особыми условиями использования территории г. Мензелинска являются: санитарно-защитные зоны производственных и иных объектов; санитарные разрывы автомобильных дорог, инженерных коммуникаций; водоохранные зоны поверхностных водных объектов; зоны санитарной охраны источников питьевого водоснабжения. Природные экологические ограничения представлены эрозионными процессами, подтоплением и заболачиванием территории.

2. Природные условия и ресурсы

2.1. Рельеф и геоморфология

При подготовке разделов 2.1-2.5 была использована информация проекта «Водохранилище Нижнекамской ГЭС. Оценка гидрогеологической обстановки и степени влияния водохранилища Нижнекамской ГЭС на подтопление территории г. Мензелинска», выполненного ОАО «Волгаэнергопроект-Самара» в 2004 г.

Мензелинский муниципальный район находится в составе Нижне-Восточного Закамья, в его северной части, имеет слабоволнистую поверхность, являясь продолжением Восточно-Европейской равнины, на которой проходят отроги Бугульминско-Белебеевской возвышенности.

В геоморфологическом отношении территория г. Мензелинска приурочена к левобережным четвертичным долинам р. Мензели (пойменной, второй надпойменной и третьей надпойменной), врезанным в коренные породы белебеевской свиты казанского яруса пермской системы.

В пределах исследуемой территории выделяются эрозионно-денудационный, речной эрозионный и аккумулятивный типы рельефа.

Эрозионно-денудационный тип рельефа развит изолированными участками на водоразделе и коренном склоне долины р. Мензели. В его образовании участвуют верхнепермские и среднечетвертичные породы. Рельеф поверхности слабоволнистый, сглаженный, с небольшим (до 5°) уклоном в сторону реки, абсолютные отметки поверхности составляют 110-150 м.

Речной эрозионный и аккумулятивный типы рельефа распространены в долине р. Мензели. Южная часть городской территории расположена на поверхности второй надпойменной террасы, сложенной верхнечетвертичными аллювиальными образованиями. Рельеф поверхности слабоволнистый с небольшим (до 3-5°) уклоном в сторону реки. Абсолютные отметки поверхности составляют 75-85 м. Внешняя граница террасы нечеткая и отбивается по отметкам 80-85 м. Пойма р. Мензели характеризуется сглаженным рельефом с абсолютными отметками 60-65 м и отделена от второй надпойменной террасы довольно крутым уступом высотой 3-5 м (Водохранилище Нижнекамской ГЭС…, 2004).

Территория г. Мензелинска изрезана сетью многочисленных оврагов и промоин на склоне водораздельного плато долины р. Мензели. Овраги, как правило, растущие, с постоянными водотоками и многочисленными выходами подземных вод, способствующими росту оврагов и обрушению склонов. Средняя густота оврагов в городе составляет 1,22 км/км2 .

Старые овраги-балки достигают длины 2700-3000 м, имеют задернованные борта крутизной до 20-30°, довольно разработанные корытообразные долины шириной до 200 м, с конусом выноса в устьевой части. Встречаются также молодые узкие и короткие овраги (длиной 200 м и шириной по верху 30-60 м) с четкими бровками, крутыми до 50° склонами, а иногда и отвесными уступами, на которых идут обвальные и оползневые процессы. Кроме того, в верховьях оврагов и непосредственно на склонах плато имеются молодые борозды-промоины и ложбины стока временных водотоков.

2.2. Геологическое строение

В геологическом строении исследуемой территории принимают участие глинистые отложения казанского и татарского ярусов верхней перми неогеновой системы. Широким развитием пользуются также четвертичные перигляциальные отложения.

Пермская система

Верхний отдел

Казанский ярус. Верхний подъярус. Белебеевская свита.

Отложения данного возраста развиты повсеместно под чехлом неогеновых и четвертичных отложений, но обнажаются только в северо-восточной части рассматриваемой территории на абсолютных отметках 95-120 м.

В верхней части разреза этих отложений преобладают глины в переслаивании с алевролитами и редкими прослоями известняков, а в нижней части разреза – песчаники с прослоями глин, алевролитов и известняков.

Глины красновато-коричневые, средние и легкие, полутвердые и твердые с мергелисто-известковистыми включениями размером от 0,5 до 2-3 см. Песчаники мелко- и среднезернистые, коричневато-серые, полимикто-слабые, средней крепости.

Алевролиты встречаются в виде прослоев мощностью 0,5-0,7 м и характеризуются зеленовато- или голубовато-серым цветом, как правило, слабой или средней крепости.

По фондовым материалам полная мощность отложений верхнеказанского подъяруса достигает 120 м. В коренных выходах эти отложения сильно выветрелые, покрыты густой сеткой трещин и часто образуют осыпи из мелкого щебня, дресвы и песка.

Татарский ярус . Отложения татарского яруса выходят на дневную поверхность в юго-восточной части описываемой территории, на южном берегу Нижнекамского водохранилища, где залегают на отложениях верхнеказанского подъяруса.

Отложения татарского яруса в нижней части разреза представлены переслаиванием красновато-коричневых глин и алевролитов с редкими прослоями зеленовато-серых песчаников, мергелей и серых известняков. Верхняя часть разреза представлена зеленовато-серыми и коричневыми песчаниками, к кровле опять сменяющимися переслаиванием глин, алевролитов и известняков. Общая мощность отложений татарского яруса достигает 84 м (Водохранилище Нижнекамской ГЭС…, 2004).

Неогеновая система

Плиоцен

Наиболее полный разрез отложений неогеновой системы представлен пределами изучаемой территории на водоразделе рр. Камы и Мензели. По Г.И. Горецкому в составе неогеновых осадков здесь выделяются отложения балаханского, акчагыльского и апшеронского ярусов, представленных, главным образом, глинами с горизонтами и прослоями песков и галечников. Общая мощность неогеновых отложений составляет 130-135 м, но по имеющимся фондовым материалам может достигать 300 м.

Отложения неогеновой системы имеют ограниченное распространение на небольшом участке в юго-западной части Мензелинска, где они выполняют речной Палео-врез и перекрыты чехлом четвертичных отложений.

На данном участке неогеновые отложения представлены обычно темно-серыми, иногда темно-бурыми глинами, тугопластичными и полутвердыми, известковистыми, с вкраплениями вивианита, в кровле с гнездами и присыпкой песка и редкими включениями гальки кристаллического известняка. Эти отложения приурочены к чистопольскому горизонту балаханского яруса.

Кроме того, в эрозионных углублениях отдельными скважинами вскрываются зеленовато-желтые и зеленовато-серые пески с линзами гравийно-галечниковых грунтов, которые, вероятно, относятся к слоям апшеронского яруса. Вскрытая мощность неогеновых отложений на территории г. Мензелинска достигает 20 м.

Четвертичные отложения

Четвертичные отложения на исследуемой территории представлены нижне-среднечетвертичными, верхнечетвертичными и современными осадками аллювиального генезиса, а также отложениями среднечетвертичного возраста перигляциального происхождения.

Нижне-среднечетвертичные аллювиальные отложения, выстилающие древнюю долину р. Мензели, с поверхности перекрыты толщей аллювия второй надпойменной террасы мощностью 10-25 м. Подошва нижне-среднечетвертичных отложений прослеживается на абсолютных отметках 47-50 м, мощность изменяется от 7 до 12-15 м. Представлены они песками с гравием и галькой от 5 до 50% и суглинками иловатыми, мягкопластичными, нередко с растительными остатками (Водохранилище Нижнекамской ГЭС…, 2004).

Среднечетвертичные перигляциальные отложения распространены на склонах водоразделов, где они перекрывают пермские и неогеновые осадки. Мощность перигляциальных отложений изменяется от 10 до 20 м. Представлены они глинами, суглинками и супесями желтовато-коричневыми, лессовидными, макропористыми, известковистыми.

Верхнечетвертичные аллювиальные отложения слагают вторую надпойменную террасу р. Мензели и прослеживаются в юго-восточной части города. Здесь подошва их находится на глубине 10-17 м (абс.отм. 54-57 м). С поверхности терраса местами прикрыта грунтами и строительным мусором мощностью 2-3 м. В разрезе верхнечетвертичных отложений выделяются три разновидности грунтов. Вверху, до глубины 6-8 м, распространены пойменные суглинки и супеси, желтовато-коричневые, известковистые, пылеватые, местами макропористые, находящиеся в тугопластичном и мягкопластичном состоянии. Их максимальная мощность составляет 12 м, минимальная – 5-6 м. Ниже, под пойменными суглинками, залегают старичные суглинки и супеси темно-иловатые, с прослоями мелкозернистых глинистых песков. Консистенция старичных суглинков мягко- и текучепластичная, средняя мощность составляет 3-4 м.

Нижняя часть отложений второй надпойменной террасы сложена гравийно-песчаным материалом фации размыва, реже - разнозернистым песком. Гравий, галька и песок местами с содержанием глинистых частиц. Мощность нижней части отложений второй надпойменной террасы изменяется от 2 до 3 м. Общая мощность верхнечетвертичных аллювиальных отложений составляет 15-25 м.

Следует отметить, что характерной особенностью покровных связных грунтов второй и третьей надпойменной террас, где расположена жилая застройка, является их лессовидный облик с характерной вертикальной трещиноватостью и макропористостью, обуславливающими фильтрационную анизотропию указанных грунтов в вертикальном и горизонтальном направлениях. Это, в свою очередь, способствует формированию в пределах территорий, сложенных лессовидными суглинками, горизонтов грунтовых вод и развитию процессов подтопления вследствие недостаточно высокой скорости инфильтрации влаги по вертикали и ее перетока по горизонтали.

Современные аллювиальные отложения, слагающие пойму р. Мензели, распространены в зоне затопления Нижнекамского водохранилища, в южной части рассматриваемой территории. Подошва их расположена на абсолютных отметках 48-50 м. Отложения поймы представлены суглинками и супесями от буровато-коричневых до темно-серых, иловатых с растительными остатками и глинистыми песками с гравием до 5%. Мощность их составляет 7-13 м (Водохранилище Нижнекамской ГЭС…, 2004).

Сводный геолого-литологический разрез территории г. Мензелинска представлен в таблице 1 (Защита территории г. Мензелинска …, 1994).

Таблица 1

Геолого-литологическое строение территории г. Мензелинска

Геологический возраст

№ ИГЭ

Описание грунтов

Мощность, м

от

до

НС

Насыпь из суглинистого и глинистого грунта темно-бурая, до черной, со щебнем и обломками кирпича до 10-35%, слежавшаяся

0,4

3,5

1

Почвенно-растительный слой суглинистый, с корнями растений

0,7

1,5

2

Суглинок коричневый, известковистый, с пятнами ожелезнения, полутвердый

1,3

2,1

-«-

3

Суглинок коричневый, слабоизвестковистый, с пятнами ожелезнения, с маломощными (сантиметровыми) прослоями песка, тугопластичный

0,4

11,6

-«-

4

Суглинок коричневый, мягкопластичный, с маломощными линзами и прослоями песка мелкого

1,2

10,8

-«-

5

Глина коричневая, коричневато-бурая, с пятнами ожелезнения, полутвердая, твердая, с тонкими прослоями и линзами песка мелкого

1,5

4,5

-«-

6

Глина коричневая, слабоожелезненная, с единичным включением дресвы, тугопластичная

4,0

7

Глина серовато-бурая, коричневая, красновато- коричневая твердая, с дресвой и щебнем карбонатовых пород до 10-30%, с прослоями песчаника мелкозернистого и алевролита светло-серого

2,0

9,2

2.3. Физико-механические свойства грунтов

Физико-механические свойства грунтов территории г. Мензелинска описаны по фондовым материалам различных проектных организаций.

На исследуемой территории были изучены отложения белебеевской свиты верхнеказанского подъяруса пермской системы, неогеновые отложения, четвертичные аллювиальные и перигляциальные отложения.

Отложения белебеевской свиты верхней перми представлены глинами, песчаниками с маломощными прослоями аргиллитов и алевролитов. Глины до глубины 20-25 м выветрелые, разуплотненные, имеют однородную влажность W =0,29, высокую пористость е =0,93 и низкую плотность сухого грунта p =1,44 г/см3 . Консистенция глин, как правило, полутвердая (J =0,14). Нормативные значения прочностных показателей по разуплотненной зоне казанских глин составляют tg j =0,32 и с =0,23 кгс/см2 . Эти же и ниже зоны разуплотнения имеют плотность сухого грунта 1,67 г/см3 , водонасыщение 1,00 и полутвердую консистенцию (J =0,19).

Песчаники казанского яруса полностью водонасыщенны (S =1,00), имеют природную влажность W =0,24, плотность сухого грунта p =1,64 г/см3 . Сопротивление одноосному сжатию составляет 200 кгс/см2 . Аргиллиты и алевролиты из-за мощности прослоев опробованы не были.

Неогеновые отложения имеют широкий разброс свойств, что обусловлено неоднородностью состава данных отложений, сложенных глинами с прослоями песков. Природная влажность (W ) неогеновых глин достигает 0,43 при плотности сухого грунта 1,17-1,69 г/см3 . Глины, как правило, имеют полное водонасыщение (S =1,00). Все глинистые разности неогеновых отложений по показателю текучести (J =0,14) относятся к полутвердым. Прочностные показатели изменяются в широких пределах при средних значениях коэффициента внутреннего трения tg j =0,25 и удельного сцепления с =0,53 кгс/см2 .

Современные четвертичные аллювиальные отложения поймы р. Мензели представлены в верхней части мягко- и текучепластичными глинами и суглинками с естественной влажностью W =0,32-0,34 и плотностью грунта p =1,35-1,40 г/см3 . Коэффициент пористости этих отложений составляет более 0,9. Нормативные прочностные показатели глин и суглинков современного аллювия составляют tg j =0,25 и с =0,25 кгс/см2 .

Отложения второй надпойменной террасы в зоне городской застройки представлены глинами, суглинками и супесями. Глины от полутвердых до мягкопластичных (J =0,15-0,52) с природной влажностью (W ), достигающей 0,47, и коэффициентом пористости е =1,231. Пределы значений удельного сцепления изменяются от 0,23 до 0,35 кгс/см2 , а коэффициента внутреннего трения – от 0,18 до 0,25 при средних значениях tg j =0,22 и с =0,29 кгс/см2 .

Суглинки характеризуются значительными разбросами значений физических свойств и, как следствие, нормативных прочностных показателей: tg j =0,15-0,49 и с =0,05-0,58 кгс/см2 при средних значениях tg j =0,32 и с =0,32 кгс/см2 .

Супеси твердые, с природной влажностью W = 0,11-0,27 и плотностью сухого грунта р =1,55-1,64 г/см3 . По немногочисленным опытам на срез значение нормативных прочностных показателей составляет tg j =0,05 и с =0,075 кгс/см2 .

Среднечетвертичные перигляциальные отложения представлены макропористыми лессовидными глинами, суглинками и супесями с широким диапазоном изменения свойств грунтов. Глины имеют естественную влажность W =0,16-0,42 и плотность сухого грунта р=1,25-1,62 г/см3 , коэффициент пористости изменяется от 0,694 до 1,213. Глины от твердых до тугопластичных. Значение коэффициента внутреннего трения варьирует в пределах от 0,13 до 0,55, а удельного сцепления – от 0,10 до 0,57 кгс/см2 при средних значениях tg j = 0,38 и с =0,22 кгс/см2 .

Природная влажность (W ) суглинков изменяется от 0,12 до 0,32, плотность сухого грунта (р ) составляет 1,39-1,75 г/см3 , коэффициент пористости – 0,534-0,950. Суглинки от твердых до мягкопластичных. Нормативные прочностные показатели составляют tg j =0,23-0,50 и с =0,20-0,34 кгс/см2 (средние tg j =0,34 и с =0,23 кгс/см2 ). Супеси от твердых до пластичных, с природной влажностью 0,07-0,29.

Перигляциальные отложения в силу своего генезиса, низких значений плотности и высокой пористости представляют собой просадочные, неуплотненные и засоленные грунты.

В составе нижне-среднечетвертичных аллювиальных отложений были исследованы глины, суглинки, пески и гравийно-галечные грунты. Глины полутвердые (J =0,23), с природной влажностью W =0,31 и плотностью сухого грунта р=1,49 г/см3 , полностью водонасыщенны. Суглинки отличаются более высоким показателем текучести J =0,29 (тугопластичная консистенция). Для суглинков значения нормативных показателей сопротивления срезу составили tg j =0,20 и с =0,43 кгс/см2 . Пески по гранулометрическому составу относятся к пылеватым (Водохранилище Нижнекамской ГЭС…, 2004).

2.4. Сейсмичность

В основе природы подземных толчков, проявляющихся на территории Республики Татарстан, лежат современные тектонические процессы, происходящие в земной коре и верхней мантии. Однако, по мнению большинства специалистов, “спусковым крючком” в процессе их активизации, бесспорно, является техногенный фактор (закачка вод для поддержания пластового давления нефте-газодобывающими управлениями, создание Нижнекамского водохранилища и т.д.).

В региональном тектоническом плане территория г. Мензелинска относится к Татарскому своду, который расположен на восточной окраине Русской платформы и непосредственно приурочен к Икско-Мензелинскому выступу.

Икско-Мензелинский выступ является довольно крупным структурно-тектоническим элементом, который охватывает обширное пространство в бассейне рр. Мензели, Ика и Суньи. С востока он ограничен Сармановским, а с северо-запада и севера Сарайлинскими прогибами, с северо-востока – Верхнекамской впадиной. Для него характерна преимущественно северо-западная ориентировка положительных и отрицательных структур, а также общий ступенчатый характер строения.

Тектоническая жизнь Русской платформы как регионального структурного элемента продолжается и ныне, не затухает она и на Икско-Мензелинском выступе, представляющем собой гетерогенную положительную тектоническую структуру Татарского свода. В пределах исследуемой территории в настоящее время происходит постоянный подъем земной коры со скоростью 6-8 мм/год.

Специальных геофизических исследований (сейсмическое микрорайонирование) для определения расчетной сейсмичности территории г. Мензелинска не проводилось. Тем не менее, в соответствии со СНиП II-7-81 «Строительство в сейсмических районах» и приложенной к нему картой общего сейсмического районирования территории Российской Федерации ОСР-97-С (особо ответственные объекты) рассматриваемый участок относится к району с сейсмичностью 7 баллов по шкале MSK–64 (Водохранилище Нижнекамской ГЭС…, 2004).

2.5. Современные физико-геологические явления и процессы

Из современных физико-геологических процессов в Мензелинске получили развитие выветривание, эрозия, плоскостной смыв, подтопление, заболачивание и, в незначительной степени, переработка берегов водохранилища.

Коренные верхнепермские образования на участках выхода их на дневную поверхность интенсивно выветриваются , покрываясь сетью трещин и образуя осыпи из дресвы и щебня. Мощность коры выветривания здесь может достигать 2-3 и более метров.

Четвертичные отложения выветриваются очень незначительно. Мощность зоны выветривания не превышает 1-1,5 м. На поверхности в этом случае формируются вертикальные открытые трещины шириной 3-5 см и протяженностью 0,1-0,3 м. Суглинки имеют столбчатую отдельность. Глины плиоценовых отложений еще менее подвержены выветриванию.

Процессы эрозии формируют современный рельеф. В Мензелинске отмечаются следующие виды эрозионных процессов: подмыв береговых склонов, смыв и образование промоин и оврагов. На скорость процесса оказывают влияние литологический состав пород, экспозиция склонов, мощность зоны выветривания. Скорость роста оврагов в суглинистых грунтах достигает 8 м/год. На пологих склонах происходит медленное смещение водонасыщенных грунтов, а на крутых склонах расчленение более интенсивное и сопровождается обрушением и оползанием (Защита территории г. Мензелинска…, 1994).

Имеет место и плоскостной смыв, в результате чего на плато в значительной степени смывается горизонт почв.

В настоящее время большая часть береговой линии г. Мензелинска укреплена, и поэтому абразии берега не наблюдается. Незакрепленный юго-восточный участок берега имеет относительно пологие склоны и практически не подвержен переработке. Так, за десятилетний период эксплуатации водохранилища ширина зоны переработки берега на этом участке превысила 10 м (Водохранилище Нижнекамской ГЭС…, 2004).

Заболачивание и подтопление развиты в тальвегах оврагов. Кроме того, подтопление отмечается в пределах отдельных высоких участков городской территории, где затруднен сток атмосферных осадков и имеет место интенсивное дополнительное техногенное инфильтрационное питание грунтовых вод, обусловленное сосредоточенной фильтрацией из поверхностных водоемов (прудов), утечками из подземных водонесущих коммуникаций, перетоком подземных вод из водоносных горизонтов коренных пород.

Приступая к анализу гидрогеологической обстановки и оценке степени подтопления территории г. Мензелинска, необходимо отметить следующее: согласно требований СНиП 2.06.15-85 «Инженерная защита территорий от затопления и подтопления» норма осушения для г. Мензелинска составляет 2 м (т.е. территории, где грунтовые воды залегают на глубине менее 2 м от поверхности земли, считаются подтопленными). Исходя из этой нормы в бытовых условиях 3,7 км2 городской территории уже были подтоплены, в том числе 2,4 км2 были подтоплены в пределах незатапливаемой водохранилищем части города (30% от ее площади) и 1,3 км2 – в пределах прилегающей к р. Мензеле и затапливаемой водохранилищем части города. При этом 1,9 км2 городской застройки или 24% от общей площади рассматриваемой территории находилось в подтопленном состоянии в центральной части города. В соответствии со СНиП 22-01-95 «Геофизика опасных природных воздействий» категория опасности развития процесса подтопления в пределах Мензелинска в бытовых условиях оценивается как умеренно-опасная.

Как показал проведенный анализ геоморфологических и гидрогеологических условий участка, а также техногенных факторов, негативно влияющих на природную обстановку, с учетом требований «Пособия по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)» территория г. Мензелинска относится к потенциально подтопляемым, в пределах которых при определенном сочетании естественных и техногенных факторов происходит стабильное повышение уровней подземных вод вследствие самоподтопления.

О причинах развития процесса самоподтопления г. Мензелинска в бытовых условиях, то есть до наполнения водохранилища Нижнекамской ГЭС, можно сказать то, что само расположение города на левобережье р. Мензели, сложенном большей частью слабоводопроницаемыми связными четвертичными грунтами, подстилаемыми относительно водоупорными породами белебеевской свиты, определило благоприятные условия для подтопления территории.

Кроме того, недостаточная инженерная подготовка территории и создание прудов с отметками 83,5-102,4 м практически во всех оврагах, пересекающих город и игравших в бытовых условиях роль естественных дренажных, водосборных и отводящих канав, привели к нарушению естественного стока (как поверхностного, так и подземного) и созданию дополнительных источников инфильтрации.

К безусловному ухудшению гидрогеологической обстановки на участке р. Мензели также привели такие активные техногенные факторы, вызывающие увеличение дополнительного инфильтрационного питания и подтопления, как густота застройки и уменьшение атмосферного испарения под зданиями, утечки водонесущих коммуникаций, бессистемный полив приусадебных участков. Например, по данным ВНИИ ВОДГЕО только за счет изменений условий влагообмена (уменьшения испарения) вследствие застройки величина дополнительного инфильтрационного питания может составлять 0,5*10-4 м/сутки, что сопоставимо с величиной бытовой инфильтрации.

О масштабах дополнительного (техногенного) инфильтрационного питания и его роли в формировании режима грунтовых вод на территории Мензелинска можно судить из сопоставления его величины с инфильтрацией атмосферных осадков, также участвующей в формировании естественных подземных вод. Так, по данным литературных источников, величина дополнительного инфильтрационного питания (w ), вызванного техногенными факторами, в зонах индивидуальной застройки с аналогичными Мензелинску природными условиями может достигать 3,4*10-3 м/сутки, что в 30 раз превышает величину бытовой инфильтрации (1,3*10-4 м/сутки). Однако следует отметить, что приведенная величина дополнительной инфильтрации относится к территории всей исследуемой части застройки. На самом деле зеркало грунтовых вод на застроенных территориях носит куполообразный характер, поэтому в реальных условиях интенсивность инфильтрации может быть и выше, но площадь ее поступления будет локализована.

Интенсивность дополнительного (техногенного) инфильтрационного питания в сочетании с геолого-литологическими и гидрогеологическими условиями участка уже в бытовых условиях обеспечила подъем и высокое положение уровней подземных вод в пределах значительной части индивидуальной жилой застройки Мензелинска, которая, исходя из нормы осушения 2 м, принимаемой в соответствии со СНиП 2.06.15-85 «Инженерная защита территорий от затопления и подтопления», находилась практически в подтопленном состоянии, особенно в период весеннего снеготаяния, что подтверждается опросом местных жителей, произведенном при обследовании территории города.

Оценивая отмеченную интенсивность дополнительного инфильтрационного давления, обеспечивающего постоянно высокое положение уровней грунтовых вод в пределах жилой застройки г. Мензелинска, уже сейчас без дренажных мероприятий следует предполагать дальнейшее стабильное повышение уровней подземных вод и увеличение подтопленных площадей.

2.6. Гидрогеологические условия

Описание гидрогеологических условий и водохозяйственной обстановки г.Мензелинска приведено по результатам работ, выполненных ГУП «Татарстангеология» по теме: «Поисково-оценочные работы на Набережно-Челнинской площади», Казань, 2004.

В соответствии с региональным гидрогеологическим районированием исследуемая территория расположена в пределах Камско-Вятского артезианского бассейна. Наиболее характерной чертой этого бассейна является региональное распространение гипсово-ангидритовой толщи нижнепермского возраста, разделяющей всю обводненную толщу осадочных пород на две резко различные гидродинамические зоны. По степени гидродинамической активности в разрезе сверху вниз выделяются зоны активного и затрудненного водообмена. Зона распространения пресных и слабоминерализованных подземных вод, занимающих верхнюю часть гидрогеологического разреза, ограничивается глубиной залегания кровли соликамского горизонта уфимского яруса. Она охватывает карбонатно-терригенные верхнепермские и аллювиальные глинисто-песчаные неоген-четвертичные отложения.

Гидрогеологическое расчленение разреза проведено с учетом геологических и структурных особенностей строения района и в соответствии со сводной легендой Средне-Волжской серии листов Государственной гидрогеологической карты России масштаба 1:200000. На рассматриваемой территории выделены (сверху-вниз) следующие гидростратиграфические подразделения (рис.1):

- водоносный локально-слабоводоносный нижнечетвертично-современный аллювиальный комплекс aQI - IV ,

- слабоводоносный эоплейстоценовый аллювиальный комплекс aQE ,

- слабоводоносный локально водоносный плиоценовый терригенный комплекс N2 ,

- слабоводоносный локально водоносный уржумский терригенный комплекс P2 ur,

- слабоводоносный локально водоносный верхнеказанский терригенный комплекс P2 kz2 ;

- водоносный локально слабоводоносный нижнеказанский карбонатно-терригенный комплекс P2 kz1 2-3 ;

- слабоводоносный локально водоносный нижнеказанский карбонатно-терригенный комплекс P2 kz1 1 ;

- слабоводоносный локально водоносный шешминский терригенный комплекс P1 ss;

- водоносная стерлитамакско-соликамская сульфатно-карбонатная серия P1 st-P2 sk.

Водоносный локально-слабоводоносный нижнечетвертично-современный

аллювиальный комплекс aQI - IV

Комплекс широко распространен в долинах рек Камы, Мензели и их притоков, представлен отложениями современной поймы и пяти надпойменных террас. Ввиду незначительной мощности на гидрогеологической карте не показан. Ширина площадного распространения водоносного комплекса в зависимости от порядка рек, тектонических условий, весьма различна, в долине р. Камы достигает 10 км, в долинах мелких рек сокращается до десятков метров. Общая мощность водоносного комплекса составляет 6-27 м и зависит от рельефа кровли дочетвертичных отложений, определяющего характер и морфологию долин рек.

Водоносный комплекс залегает первым от поверхности. Питание осуществляется за счет инфильтрации атмосферных осадков, поверхностных вод (при высоких уровнях), а также за счет восходящей разгрузки подземных вод из нижележащих водоносных подразделений. Область питания водоносного комплекса совпадает с областью распространения. Разгрузка комплекса происходит в Каму и ее притоки, а также в виде мочажин и родников в пониженных участках поймы.

Дебиты скважин составляют 0,8-1,3 л/с при понижении уровня 3-5 м, дебиты родников – 0,05-2,0 л/с. По химическому составу воды преимущественно гидрокарбонатные, сульфатно-гидрокарбонатные, кальциево-магниевые, кальциево-натриевые с минерализацией 0,3-0,8 г/дм3 , которая иногда увеличивается до 1,1- 1,18 г/дм3 , жесткостью 3,9-6,9 ммоль/дм3 .

Эксплуатируется комплекс колодцами и одиночными скважинами для местного водоснабжения.



Слабоводоносный эоплейстоценовый

аллювиальный комплекс ( aQE )

Комплекс распространен отдельными изолированными участками в пределах палеодолины р.Кама и в меньшей степени в пределах палеодолины р.Мензеля. Водоносными являются пески кварцевые, в различной степени глинистые, в отдельных разрезах фациально замещенные алевритами.

Водоносный комплекс на всей площади своего распространения залегает первым от поверхности. Участками он перекрыт элювиально-делювиальными слабопроницаемыми суглинками мощностью до 2,5 м. Подстилающими отложениями служат относительно водопроницаемые глинисто-алевролитовые породы верхнепермских отложений или глины акчагыльского комплекса. Водоупорные породы не всегда выдержаны по простиранию и мощности, что предопределяет наличие взаимосвязи вод эоплейстоценового комплекса с водами подстилающих отложений.

По химическому составу воды гидрокарбонатные кальциевые с минерализацией 0,22-0,75 г/дм3 , жесткостью 4,5 - 10,0 ммоль/дм3 . Величина рН изменяется от 7,2 до 8,3, окисляемости – от 0,96 до 8,8 мгО2 /дм3 .

Повышенные значения жесткости и окисляемости свидетельствуют о попадании в подземные воды загрязняющих компонентов природного и техногенного происхождения.

Питание водоносного комплекса происходит за счет инфильтрации атмосферных осадков. Дренаж осуществляется речной и овражно-балочной сетью.

Для централизованного водоснабжения крупных населенных пунктов эоплейстоценовый комплекс не может быть использован вследствие ограниченного распространения и слабой водообильности.

Слабоводоносный локально водоносный плиоценовый

терригенный комплекс N 2

Приурочен комплекс к плиоценовым отложениям акчагыльского яруса и выполняет палеоврезы древних долин рек, а также водораздельную поверхность левобережья р. Ка­мы. Спорадически обводненная толща врезана в породы от верхнеказанских до кровли ассельских отложений. Комплекс имеет гидравлическую взаимосвязь с водами смежных водоносных горизонтов и комплексов.

Дебиты скважин не превышают 1,8 л/с при величине понижения уровня от 1,5 до 34,0 м, удельный дебит 0,15 л/с. Гидрохимические особенности формирования подземных вод плиоценовых отложений обусловлены их залеганием в зоне активного водообмена. По всей площади распространения воды характеризуются устойчивым гидрокарбонатным кальциевым или кальциево-магниевым составом с минерализацией 0,66 - 2,2 г/дм3 , в отдельных случаях с повышенной жесткостью до 10,7 ммоль/дм3 , по концентрации рН (7,0-8,75) – нейтральные до слабощелочных, окисляемость изменяется от 0,4 до 4,8 мгО2 /дм3 . Содержание железа превышает ПДК и достигает 0,96 мг/л.

Питание подземных вод осуществляется за счет инфильтрации атмосферных осадков и речных вод, а также из смежных водоносных комплексов. Дренаж осуществляется речной и овражно-балочной сетью.

Для централизованного водоснабжения крупных населенных пунктов и промышленных предприятий подземные воды комплекса не используется ввиду неравномерной, слабой водообильности и слабой защищенности от загрязнения с поверхности. При благоприятной гидрогеохимической и экологической ситуации воды комплекса могут быть использованы для местного водоснабжения.

Слабоводоносный локально водоносный уржумский терригенный

комплекс P 2 ur

Водоносный комплекс приурочен к уржумскому горизонту нижнего подъяруса татарского яруса верхней перми, слагает высокие водоразделы выше абсолютных отметок 100-140 м.

Среди водовмещающих пород преобладают песчаники слабосцементированные, полимиктовые, мелко-, тонкозернистые с прослоями алевролитов, а также маломощные прослои известняков, мергелей неравномерно трещиноватых. Суммарная мощность водовмещающих пород колеблется от 20 до 39 м.

Водоупорными породами служат глины и алевролиты, слагающие кровлю верхнеказанского водоносного комплекса.

Водоносность комплекса незначительная. Дебиты родников составляют 0,02-2 л/с, дебиты скважин – 0,5-0,7 л/с при понижении уровня 2,0-15 м. По химическому составу воды гидрокарбонатные кальциевые или магниево-кальциевые с минерализацией 0,4-0,6 г/дм3 , жесткостью 6,0–8,9 ммоль/дм3 , окисляемость - 0,5-3,0 мгО2 /дм3 .

Питание осуществляется за счет инфильтрации атмосферных осадков. Область питания водоносного комплекса совпадает с площадью его распространения.

Уржумский водоносный комплекс широко используется для мелкого индивидуального водоснабжения посредством каптажа родникового стока. Для централизованного водоснабжения подземные воды не используются ввиду слабой водообильности, ограниченного распространения и подверженности загрязнению с поверхности.

Слабоводоносный локально водоносный верхнеказанский

терригенный комплекс P 2 kz 2

На исследуемой территории водоносный комплекс распространен практически повсеместно, отсутствуя лишь в современных четвертичных врезах и палеодолинах, залегает первым от поверхности или перекрывается уржумскими и четвертичными отложениями. Водоносными являются песчаники разнозернистые, развитые в основании толщ верхнеказанского подъяруса. В составе комплекса выделяется от 4 до 8 прослоев водовмещающих пород суммарной мощностью от 28 до 46 м, разделенных относительно водоупорными глинистыми прослоями.

Особенности литологического состава, фациальная изменчивость пород обусловили своеобразие гидрогеологических условий верхнеказанских отложений. Подземные воды, приуроченные к различным частям разреза, находясь в сложной взаимосвязи между собой, образуют единую систему.

Рассматриваемый водоносный комплекс практически повсеместно отделен от нижележащих отложений глинами и плотными разностями алевролитов. Мощность разделяющего водоупорного слоя обычно не превышает 13,0 м, но на отдельных участках в результате эрозионного размыва, мощность водоупорного слоя резко уменьшается до 1,0-2,4 м. В кровле водоносного комплекса залегают глины, отделяющие его от вышележащего уржумского водоносного комплекса. Питание осуществляется за счет атмосферных осадков, иногда за счет инфильтрации речных вод, а также в результате перетоков из смежных водоносных горизонтов и комплексов. Выходы водовмещающих пород на дневную поверхность сопровождаются разгрузкой подземных вод в виде мочажин и родников, преимущественно с нисходящим режимом. Абсолютные отметки статических уровней в зависимости от условий залегания и характера обводненности изменяются от 59,2 до 205,5 м с тенденцией снижения от водоразделов к местным водотокам.

Дебиты скважин изменяются в больших пределах - от 0,23 до 8,1 л/с при понижениях уровня от 9,0 до 12,0 м. По химическому составу воды гидрокарбонатно-сульфатные, кальциевые, магниевые, кальциево-магниевые с минерализацией 0,34-0,74 г/дм3 , которая иногда увеличивается до 1,28 г/дм3 , общей жесткостью 6,38–9,61 ммоль/дм3 .

Воды верхнеказанского комплекса используются для водоснабжения населения и сельскохозяйственных объектов. Эксплуатация осуществляется одиночными водозаборными скважинами, а также путем каптажа родникового стока.

Водоносный локально слабоводоносный нижнеказанский

карбонатно-терригенный комплекс P 2 kz 1 2-3

Отложения нижнеказанского водоносного комплекса распространены почти повсеместно, за исключением незначительных участков в подошве палеодолин рек Камы и Мензели, где отложения полностью размыты.

Условия залегания нижнеказанских отложений и их значительная литолого-фациальная изменчивость определяют своеобразие гидродинамического режима приуроченных к ним вод. Воды нижнеказанского комплекса порово-пластовые, реже трещинно-пластовые.

Глубина залегания уровня воды в пределах рассматриваемой территории изменяется от 0,1 до первых десятков метров, абсолютные отметки установившегося уровня - от 55,1 м до 123,5 м. Воды напорные, напор изменяется от 25 до 87 м. Особенностью описываемого комплекса является его неравномерная водопроводимость. Значения коэффициента водопроводимости изменяются без определенной закономерности от 2 до 1280 м2 /сут и более.

Водовмещающими породами являются песчаники слабосцементированные, алевритистые, «среднеспириферовые» известняки кавернозные и трещиноватые, залегающие непосредственно на кровле водоупора «лингуловых» глин. Участками встречаются сильно трещиноватые зоны дробления.

Вскрыт данный комплекс многочисленными скважинами, в которых гидрогеологическое и гидрогеохимическое опробование проводилось поинтервально, дебиты скважин изменяются в больших пределах и составляют 0,58–12,18 л/с, удельные дебиты – 0,16-8,9 л/с. Минерализация воды составляет 0,4-0,83 г/дм3 и повышается с глубиной до 1,1-1,29 г/дм3 . Химический состав также изменяется с изменением глубины залегания водовмещающей толщи. Так, в скважинах, где водоносный комплекс залегает в интервале от 20 до 50,0 м, воды сульфатно-гидрокарбонатные кальциево-магниевые, а в скважинах, где водоносный комплекс залегает в интервале 40,0-95,0 м, воды сульфатные, гидрокарбонатно- сульфатные, кальциево-натриевые. Кроме того, отмечается повышенное содержание бора.

Питание комплекса осуществляется за счет инфильтрации атмосферных осадков и поверхностных вод в местах выхода на дневную поверхность, а также за счет перетекания из вышележащих водоносных подразделений. Разгрузка осуществляется в виде родников по бортам долины р. Камы и ее притоков.

Нижнеказанский водоносный комплекс активно эксплуатируется в населенных пунктах скважинами. В перспективе данный водоносный комплекс представляет наибольший интерес для организации крупного централизованного водоснабжения.

Слабоводоносный локально-водоносный нижнеказанский

карбонатно-терригенный комплекс P 2 kz 1 1

Комплекс является нижним водоупором водоносного нижнеказанского карбонатно-терригенного комплекса и верхним водоупором для нижележащего шешминского водоносного комплекса.

Представлен комплекс «лингуловыми» глинами, аргиллитоподобными темно-серыми, которые расклиниваются в западном направлении прослоями известняков, в основном, глинистых, а на востоке района в разрезе появляются прослои и линзы (до 2-3 м) песчаников и алевролитов. В основном горизонт распространен повсеместно на исследуемой территории. Мощность «лингуловых» глин достигает 15 м. Уменьшение мощности до 2-3 м отмечается в пределах локальных участков в долине р. Мензели (в приустьевой части р. Игани). Восточнее р.Мензели комплекс местами полностью выклинивается.

«Лингуловые» глины являются относительно надежным водоупором, отделяющим воды нижележащих шешминских отложений от вод нижнеказанского комплекса.

Слабоводоносный локально-водоносный шешминский терригенный

комплекс ( P 1 ss )

Водоносный комплекс распространен почти повсеместно, выходит на поверхность узкой полосой на левом борту современной долины р. Кама. Представлен глинами аргиллитоподобными, песчаниками с прослоями мергеля, известняка, доломита и вкраплениями гипса.

Питание подземных вод комплекса осуществляется за счет перетока вод из выше- и нижележащих отложений, а в местах выхода шешминских отложений на дневную поверхность – за счет инфильтрации атмосферных осадков. В целом, условия питания и разгрузки подземных вод существенно затруднены вследствие наличия перекрывающего водоупора «лингуловых глин».

Водовмещающими породами являются трещиноватые известняки, алевролиты и мергели. Воды комплекса напорные, порово-пластовые, трещинные. Величина напора составляет 29,0-38,0 м, абсолютная отметка установившегося уровня - 61,59-62,3 м. Дебиты скважин составляют 0,67-3,2 л/с, при понижениях 6–30 м, удельные дебиты– 0,1-0,17 л/с.

Воды комплекса гидрокарбонатно-сульфатные, сульфатные кальциевые, с минерализацией 1,1- 2,8 г/дм3 и более, общей жесткостью до 16,2 ммоль/дм3 . Характерно повышенное содержание бора.

Водоносная стерлитамакско-соликамская сульфатно-карбонатная

серия ( P 1 st - P 2 sk )

Распространена повсеместно, представлена доломитами, известняками, мергелями с прослоями трещиноватых гипсов и ангидритов, а также прослоями пестроцветных глин и песчаников. Водообильность однородная, удельные дебиты скважин составляют от 1,4 до 2,8 л/с, воды напорные. Статические уровни устанавливаются на глубине 11-12 м, иногда выше поверхности на +2,0-2,8 м. По химическому составу подземные воды изменяются от гидрокарбонатно-сульфатных кальциево-магниевых до сульфатных кальциево-магниевых с минерализацией от 1,6 до 8,4 г/дм3 . Использование вод для хозяйственно-питьевого водоснабжения ограничено ввиду высокой минерализации.

2.7. Гидрологическая характеристика

Мензелинск расположен на левом берегу Нижнекамского водохранилища, созданного в т.ч. на р. Мензеле.

Нижнекамское водохранилище находится в долине нижнего течения р. Камы на участке от г. Набережные Челны до Воткинского гидроузла и является замыкающей, третьей ступенью Камского каскада водохранилищ.

Проектная отметка нормального подпорного уровня (НПУ) водохранилища составляет 68,0 м, горизонт низшей сработки – 66,0 м. Длина по р.Каме - 283 км, по р.Белой – 272 км.

При создании Нижнекамское водохранилище было заполнено до отметки НПУ 62,0 м, в настоящее время оно функционирует на отметках 62,5-63,0 м, рассматривается вопрос перспективы повышения его до проектной отметки 68,0 м.

В таблице 2 представлены основные гидрологические и водохозяйственные показатели Нижнекамского водохранилища при НПУ 62,0 м; 66,0 м и 68,0 м.

При временной отметке 62,0 м полный объем водохранилища составлял 2,857 км3 на площади 1084 км2 , площадь водосбора - 26000 км2 . При НПУ полезная емкость водохранилища составит 4,61 км3 , общая площадь зеркала – 2602,5 км2 , при уровне наинизшей сработки – 9,2 км3 (Обоснование инвестиций…, 2000).


Таблица 2

Гидрологические и водохозяйственные показатели Нижнекамского

водохранилища при различных отметках НПУ

Наименование показателя

Ед.изм.

Количество при НПУ

62,0 м

66,0 м

68,0 м

Водосборная площадь

км2

370000

370000

370000

Среднемноголетний годовой сток

км3

92,0

92,0

92,0

Максимальный расход через сооружения вероятностью превышения:

1. 0,1% (0,01% для НПУ 68,0 м)

2. 1% (макс.судоходный)

м3

33200

33200

40400

25500

25500

34700

Характерные уровни:

1. НПУ

2. Мертвого объема (УМО)

3. Верхнего бьефа при:

p=0.1% (0,01 для НПУ 68,0 м)

p=1 % (макс.судоходный)

4. нижнего бьефа при пропуске максимального расхода

5. минимальный нижнего бьефа в период судоходства

6. нижнего бьефа при пропуске минимального расхода

м

62,0

66,0

68,0

62,0

66,0

68,0

67,8

68,2

69,8

66,0

66,6

68,0

61,9

61,9

62,8

49,2

49,2

49,2

49,2

49,2

49,2

Площадь зеркала водохранилища при НПУ

км2

1084,0

2174,8

2602,5

Полный объем водохранилища

(то же, с учетом русловой части)

км3

2,857

8,732

13,343

3,604

9,855

14,558

Полезный объем водохранилища

км3

0

0

4,61

Естественный средний многолетний годовой сток в створе Нижнекамского гидроузла составляет 92,0 км3 (Q=2920 м3 /с). Около 60% годового стока проходит в период весеннего половодья, сток летне-осенней межени составляет 30%, зимней – 10%. Средний многолетний объем стока весеннего половодья достигает 56,2 км3 , летне-осенней межени – 24,5 км3 (Обоснование инвестиций…, 2000). Испарение с водной поверхности в средний по водности год составляет 800 млн. м3 /год (Оценка санитарно-биологического состояния…, 1990).

Образование ледостава на водохранилище отмечается с 9 ноября по 7 декабря, толщина льда колеблется от 70 до 100 см.

При затоплении устьевых участков долин притоков Нижнекамское водохранилище образует заливы, которые осложняют его конфигурацию в плане и увеличивают площадь зеркала. Этим обусловлено значительное изменение морфометрических характеристик на отдельных участках.

Ширина водохранилища при среднем значении 5,6 км колеблется от 1,5 до 20-25 км. Средняя глубина при промежуточном наполнении равна 3,4 м, при НПУ глубина водохранилища увеличится до 5,4 м, а максимальная в приплотинном плесе достигнет 30,0 м (Уточненный проект Нижнекамской ГЭС).

В районе Мензелинска (отсек «Икский залив») средняя ширина Нижнекамского водохранилища составляет 4,38 км, средняя глубина – 2,8 м. При наполнении водохранилища до 66,0 м средняя ширина составит 2,920 км, до 68,0 м – 3,010 км, средняя глубина достигнет 3,40 м (Нижнекамская ГЭС, 2005).

В соответствии с данными, представленными в таблице 3, в современных условиях практически половина площади водохранилища представляет собой мелководные зоны, при НПУ 66,0 м их доля составит более третьей части, при НПУ 68,0 м – 16,4%. Последнее соотношение соответствует требованиям нормативных документов (СанПиН 3907-85), которые рекомендуют при проектировании водохранилищ соблюдать соотношение площади мелководий к общей площади водохранилища в размере 15-20%, при этом обоснование допустимых площадей мелководий определяется в каждом конкретном случае.

Таблица 3

Площади Нижнекамского водохранилища и мелководий (с глубиной до 2-х м) при трех вариантах НПУ с учетом построенных и строящихся дамб

Площадь водохранилища в современных условиях, км2

Площадь мелководий в современных условиях, км2

Площадь водохранилища при варианте НПУ 66,0м, км2

Площадь мелководий при варианте НПУ 66,0м, км2

Площадь водохранилища при варианте НПУ 68,0м, км2

Площадь мелководий при варианте НПУ 68,0м, км2

в среднем по Нижнекамскому водохранилищу

Всего

1263,45

381,9

2174,835

744,5

2602,514

427,6

% мелководий

30,2

34,2

16,4

Отсек «Икский залив» (район г.Мензелинска)

Всего

280,0

107

502,329

162,8

608,425

106,096

% мелководий

38,2

32,4

17,4

При НПУ 66,0 м площади двухметровых мелководий в районе Мензелинска сохранятся довольно обширными. В результате наполнения водохранилища до НПУ 68,0 м их площадь не превысит рекомендуемых СанПиН 3907-85 значений (табл.3).

Достижение уровня водохранилища отметки 68,0 м вызовет дальнейшее изменение скоростного режима, выражающееся в уменьшении скорости течения как в верхней части (до 0,2-0,3 м/с), так и в самом ложе водохранилища (до 0,01-0,02 м/с). Такие низкие значения скорости будут определять низкий водообмен водных масс в районе г. Мензелинска, что в сочетании со сложной морфологической обстановкой будет способствовать образованию застойных зон и наличию обратных течений (Нижнекамская ГЭС, 2005).

2.8. Климатическая характеристика

Климатическая характеристика составлена с использованием данных метеостанции г. Мензелинска, предоставленных ФГБУ «Управление по гидрометеорологии и мониторингу окружающей среды Республики Татарстан».

Рассматриваемая территория характеризуется умеренно континентальным климатом, формирующимся под влиянием континентальных воздушных масс умеренных широт.

В таблице 4 приведены основные климатические характеристики г. Мензелинска.

Таблица 4

Основные климатические характеристики г. Мензелинска

месяцы/

характеристики

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

год

средняя температура воздуха /о С/

-12,1

-11,8

-5,6

4,4

12,8

17,6

19,4

16,6

11,0

3,5

-4,6

-10,2

3,4

абс. минимум температуры воздуха /о С/

-48

-39

-34

-22

8

3

0

-1

-9

-26

-31

-41

-48

абс. максимум температуры воздуха /о С/

4

3

10

30

33

36

37

36

31

22

14

3

37

среднее число осадков в мм

29,1

22,8

16,4

26,2

39,3

62,2

53,4

58,1

59,1

46,5

34,1

29,6

476,8

число дней с осадками >1,0 мм

9

6

5

6

7

9

8

8

9

10

9

9

95

Среднегодовая температура воздуха в г. Мензелинске составляет +3,40 С. Величина суммарной солнечной радиации за год близка к 3900 мДж/м2 .

Зима продолжительная и холодная, со средней температурой января –12,1о С, абсолютный минимум достигает –48о С (табл.4). С декабря по февраль характерны сильные морозы, в основном, при ясной и относительно тихой погоде. Температура холодного периода (средняя температура наиболее холодной части отопительного сезона) равна –17,7 о С.

Средняя продолжительность залегания устойчивого снежного покрова составляет 159 дней. Средняя многолетняя дата появления устойчивого снежного покрова - 15 ноября; самый ранний покров устойчиво ложится 29 сентября, самый поздний относится к 16 декабря. Ранний сход снежного покрова наблюдается 27 марта, самый поздний – 30 апреля. Максимальная высота снежного покрова достигает 41 см.

Безморозный период в среднем длится 118 дней.

Весна продолжается до середины июня, теплые периоды с дождями перемежаются с холодными.

Лето жаркое. Средняя температура июля составляет +19,4о С. Максимум температуры за июль достигает +37о С (табл.4).

Осень характеризуется неустойчивой погодой. Осенние заморозки начинаются в сентябре. Многолетняя средняя дата первого заморозка в Мензелинске относится к 19 сентября.

Весенние заморозки бывают в мае, самые поздние могут быть в июле. Многолетняя средняя дата последнего заморозка - 23 мая.

Глубина промерзания грунта составляет 1,7–1,8 м.

Расчетная температура для проектирования –34о С.

Коэффициент А, зависящий от температурной стратификации атмосферы, составляет 160.

Годовое количество осадков составляет 476,8 мм. В зимнее время выпадают осадки малой интенсивности, а в летние месяцы часты сильные ливни в течение короткого времени. Зимой выпадение осадков интенсивностью 10-30 мм/сутки не превышает 0,5 суток/месяц. Осадки интенсивностью свыше 30 мм/сутки в зимнее время отсутствуют, а летом по продолжительности не превышают 0,1 суток/месяц.

В таблице 5 представлены данные по относительной влажности воздуха в г. Мензелинске.

Таблица 5

Средняя декадная относительная влажность воздуха в 13 ч (%)

Декады

Месяцы

IV

V

VI

VII

VIII

IX

X

1

68

46

44

58

56

62

68

2

63

42

50

57

57

64

70

3

55

40

56

56

58

66

73

Вследствие высокой относительной влажности воздуха и низких температур минимальный недостаток насыщения воздуха водяным паром оказывается в ноябре-январе. Максимальные величины недостатка насыщения наблюдаются в июне (табл. 6).

Таблица 6

Средний декадный дефицит влажности воздуха (мб)

Декады

Месяцы

III

IV

V

VI

VII

VIII

IX

X

1

0,6

1,5

5,3

8,6

8,4

6,6

6,0

1,9

2

0,8

2,7

6,4

9,2

7,3

6,8

4,0

1,6

3

1,0

3,9

7,6

9,2

6,7

7,0

2,6

1,2

В Мензелинске преобладают юго-западные и южные ветры, на долю которых приходится 45% направлений (табл. 7, рис.2). Северные ветры чаще бывают поздней весной.

Таблица 7

Повторяемость направлений ветра и штилей (%)

месяц

С

СВ

В

ЮВ

Ю

ЮЗ

З

СЗ

Штиль

I

4

5

5

4

25

34

15

8

18

II

6

5

8

4

20

34

13

10

19

III

8

4

5

5

22

34

13

9

26

IV

8

8

10

5

14

29

13

13

22

V

15

7

8

5

10

21

15

19

22

VI

10

6

12

7

11

20

17

17

31

VII

16

6

13

6

9

15

13

22

34

VIII

16

4

8

4

9

20

17

22

32

IX

11

4

8

6

13

25

17

16

28

X

10

4

3

4

18

30

18

13

16

XI

6

6

5

5

22

30

18

8

15

XII

4

4

5

5

25

35

14

8

18

год

9

5

7

5

17

28

15

14

23

В таблице 8 приведены данные по среднемесячной и годовой скорости ветра, в таблице 9 – по повторяемости различных градаций скорости ветра за год.

Таблица 8

Среднемесячная и годовая скорость ветра, м/с

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

год

4,4

4,2

3,8

3,8

4,0

3,1

2,6

2,9

3,3

4,2

4,3

4,4

3,8

Рис.2. Повторяемость ветров по направлениям

Таблица 9

Повторяемость различных градаций скорости ветра за год (%)

0-1

2-3

4-5

6-7

8-9

10-11

12-13

14-15

16-17

18-20

21-24

26,3

20,8

27,7

14,4

6,3

2,7

1,2

0,5

0,1

0,1

0,0