Главная      Учебники - Разные     Лекции (разные) - часть 17

 

Поиск            

 

Указания методические по выполнению задания 1 42 Приложение 2 45

 

             

Указания методические по выполнению задания 1 42 Приложение 2 45

Содержание

От редактора............................................................................................................................. 4

От автора................................................................................................................................... 6

1. Основные задачи, цели и последовательность проведения
эконометрического анализа.................................................................................................... 7

1.1. Что изучает эконометрика ?......................................................................................... 7

1.2. Краткая история развития эконометрики................................................................... 8

1.3. Классификация эконометрических моделей.............................................................. 8

1.3.1. Регрессионные модели......................................................................................... 8

1.3.2. Системы взаимозависимых моделей.................................................................. 9

1.3.3. Рекурсивные системы.......................................................................................... 9

1.3.4. Модели временных рядов.................................................................................... 9

1.4. Постановки некоторых эконометрических задач.................................................... 10

1.5. Последовательность разработки эконометрических моделей................................ 12

Резюме................................................................................................................................. 13

2. Эконометрический анализ на основе моделей линейной регрессии........................... 15

2.1. Однофакторная линейная регрессия......................................................................... 15

2.2. Многофакторная линейная регрессия....................................................................... 23

2.3. Некоторые особенности применения многофакторных
регрессионных моделей в эконометрическом анализе.................................................. 27

2.3.1. Мультиколлинеарность...................................................................................... 27

2.3.2. Использование фиктивных переменных......................................................... 28

2.3.3. Проблемы гетероскедастичности...................................................................... 29

Резюме................................................................................................................................. 29

3. Эконометрический анализ на основе временных рядов................................................ 30

3.1. Основные понятия в теории временных рядов....................................................... 30

3.2. Цели, этапы и методы анализа временных рядов.................................................... 31

3.3. Модели тренда и методы его выделения из временного ряда................................ 32

3.4. Порядок анализа временных рядов........................................................................... 33

3.5. Графические методы анализа временных рядов...................................................... 34

3.6. Пример анализа временных рядов............................................................................ 35

Резюме................................................................................................................................. 41

Литература.............................................................................................................................. 42

Приложение 1......................................................................................................................... 43

Приложение 2......................................................................................................................... 46

Приложение 3......................................................................................................................... 47

Приложение 4......................................................................................................................... 48


1. Основные задачи, цели и последовательность
проведения эконометрического анализа

1.1. Что изучает эконометрика?

В настоящее время не существует однозначного понимания термина «эконометрика». Можно лишь говорить о смысловом значении этого термина как «науки об экономических измерениях». Однако такое определение вряд ли кого-либо может устроить, так как становится непонятно что, зачем и кому надо измерять в экономике? Авторы учебников и пособий по эконометрике не старались отвечать на эти вопросы, считая, что ответ на них очевиден. Все это так, если бы мы видели очень заметные достижения в области эконометрического анализа в экономике и бизнесе, особенно в условиях нестабильного Российского рынка. Но этого сегодня пока нет, по крайней мере, автор о заметных достижениях в этой области не слышал. Наиболее полное из имеющихся в литературе определений термина «эконометрика» предложено в работе [3]: Эконометрика – наука, исследующая количественные закономерности и взаимозависимости в экономике при помощи методов математической статистики. Основа этих методов - корреляционно-регрессионный анализ. С этим определением можно было бы согласиться, но второе предложение, выделенное курсивом, резко уменьшает круг задач, решаемых в эконометрике. Очень большое количество экономических процессов протекает во времени с определенной регулярностью, например спрос. Для этих процессов используется другой математический аппарат, основанный на анализе временных рядов . С учетом этого, в более широком смысле можно сказать, что Эконометрика – наука, исследующая закономерности и взаимозависимости между различными факторами в экономике и бизнесе при помощи методов статистического анализа. При этом под фактором понимаются измеряемые и не измеряемые экономические показатели, например уровень инфляции, покупательский спрос, цена, объем продаж и т.д. Основная задача эконометрики – проверка экономических теорий на фактическом (эмпирическом) материале при помощи методов математической статистики. По сути, работая с этими моделями, мы предполагаем, что вся информация о сути экономического явления содержится в эмпирическом материале, вполне естественно допуская при этом определенные ошибки. Эконометрический анализ позволяет предвидеть только те экономические процессы, которые сохраняют основные тенденции развития, либо повторялись несколько раз в прошлом. Нельзя ожидать от него чего-то большего.

Цель эконометрического анализа – разработка эконометрических моделей , позволяющих прогнозировать тенденции развития экономических и бизнес процессов для получения наиболее эффективных и обоснованных решений. Эконометрические модели позволяют выявить особенности функционирования экономического объекта и на основе этого предсказывать будущее его поведение при изменении каких-либо параметров. Предсказание будущих изменений, например, повышение обменного курса, ухудшение экономической конъюнктуры, падение прибыли может опираться и на интуицию. Однако при этом могут быть упущены, неправильно определены или неверно оценены важные взаимосвязи экономических показателей, влияющие на рассматриваемую ситуацию. В модели все взаимосвязи переменных могут быть оценены количественно, что позволяет получить более качественный и надежный прогноз. Для любого экономического субъекта возможность прогнозирования ситуации означает, прежде всего, получение лучших результатов, избежание потерь или минимизации рисков.

Кто проводит эконометрический анализ? Ответ на этот вопрос также неоднозначен. На Западе это делает специалист в области эконометрического анализа – аналитик или эконометрист. В России, в соответствие с новыми государственными стандартами это должен делать экономист и менеджер по любой специализации. В России аналитиков не готовят, ими становятся только те, кто владеет эконометрическими методами анализа.

1.2. Краткая история развития эконометрики

Первые работы по эконометрике появились в конце XIX - начале XX века. В 1897 г. была опубликована работа одного из основателей математической школы в экономической теории В.Парето, посвящен­ная статистическому изучению доходов населения в разных странах. Была предложена кривая Парето

у = A(x-a) ,

где х – величина дохода;

у – численность лиц, имеющих доход, больший х;

а – минимальный доход;

А и а - параметры зависимости, получаемые статистическими методами.

В самом начале XX века вышло несколько работ английского статистика Гукера, в которых он применил корреляционно-регрессионные методы, разработанные Пирсоном и его школой, для изучения взаимосвязей экономических показателей, в частности - влияния числа банкротств на товарной бирже на цену зерна. В дальнейшем появилось огромное число работ как по развитию теории математической статистики и ее прикладных элементов, так и по практическому приложению этих методов в экономическом анализе. К первой группе могут быть, например, отнесены работы Р. Фишера по дисперсионному анализу, ко второй - работы по оценке и исследованию производственных функций, в частности - классическая работа Кобба и Дугласа 1928 г.

Значительные достижения в эконометрике во многом определились работами М.Дж. Кендалла и А. Стьюарта, Э. Кейна, С.А. Айвазяна, Я.Р. Магнуса и других ученых.

Эконометрические модели и методы сейчас - это не только мощный инструментарий для получения новых знаний в экономике, но и широко применяемый аппарат для принятия практических решений в прогнозировании, банковском деле и бизнесе.

1.3. Классификация эконометрических моделей

Главным инструментом эконометрии служит эконометрическая модель или экономико-математическая модель, параметры которой (факторы) оцениваются средствами математической статистики. Эта модель выступает в качестве средства анализа и прогнозирования конкретных экономических процессов на основе реальной статистической информации.

Эконометрические модели можно классифицировать по ряду классификационных признаков. Одной из основных классификационных эконометрических моделей является классификация по направлению и сложности причинных связей между показателями, характеризующими экономическую систему. Если пользоваться термином «переменная», то в любой достаточно сложной экономической системе можно выделить внутренние или эндогенные переменные (например, выпуск продукции, численность работников, производительность труда) и внешние или экзогенные переменные (например, поставка ресурсов, климатические условия и др.). Экзогенные переменные – те, которые задаются вне модели, т.е. известны заранее, а эндогенные переменные получаются в результате расчетов. Тогда по направлению и сложности связей между внутренними переменными и внешними переменными выделяют следующие эконометрические модели: регрессионные модели, системы взаимозависимых моделей, рекурсивные системы и модели временных рядов.

1.3.1. Регрессионные модели

Регрессионными называют модели, основанные на урав­нении регрессии, или системе регрессионных уравнений, связывающих величины эндогенных и экзогенных перемен­ных. Различают уравнения (модели) парной и множественной регрессии. Если для обозначения эндогенных переменных использовать букву у , а для экзогенных переменных букву х , то в случае линейной модели уравнение парной регрессии имеет вид

у = ao + a1 х , (1.1)

а уравнение множественной регрессии:

у = a0 +a1 x1 +a2 x2+… . (1.2)

Для нахождения параметров этих моделей а0 , а1 , … и т.д. обычно используют метод наименьших квадратов .

1.3.2. Системы взаимозависимых моделей


Системы взаимозависимых моделей наиболее полно описывают экономическую систему, содержащую, как правило, множество взаимосвязанных эндогенных и экзогенных переменных. Такие модели задаются системой взаимозависимых уравнений следующего вида (п – число эндогенных переменных, т – число экзогенных переменных):

Для нахождения параметров системы взаимозависимых уравнений используются более сложные методы: двух- и трехшаговый метод наименьших квадратов, методы максимального правдоподобия с полной и неполной информацией, методы математического программирования и др.

1.3.3. Рекурсивные системы

На практике стремятся упростить системы взаимозависимых моделей и привести их к так называемому рекурсивному виду. Для этого сначала выбирают эндогенную переменную (внутренний показатель), зависящую только от экзогенных переменных (внешних факторов), обозначают ее у1 . Затем выбирается внутренний показатель, который зависит только от внешних факторов и от y1 , и т.д.; таким образом, каждый последующий показатель зависит только от внешних факторов и от внутренних предыдущих. Такие системы называются рекурсивными . Параметры первого уравнения рекурсивных систем находят методом наименьших квадратов, их подставляют во второе уравнение и опять применяется метод наименьших квадратов, и т.д.

1.3.4. Модели временных рядов

Временной ряд – это последовательность экономических показателей измеренных через равные промежутки времени. В экономике временные ряды – это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.

В моделях временных рядов yt обычно выделяют три составляющих ее части: тренд xt , сезонную компоненту St, циклическую компоненту Ct и случайную компоненту e . Обычно модель имеет следующий вид:

yt = xt + St + Ct + e при t = 1, ... , n (1.4)

В последнее время к указанным трем компонентам все чаще добавляют еще одну компоненту, именуемую интервенцией . Под интервенцией понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника», когда курс доллара за день вырос почти на тысячу рублей.

Трендом временного ряда называют плавно изменяющуюся, не циклическую компоненту, описывающую чистое влияние долговременных факторов, эффект которых сказывается постепенно.

В экономике к таким факторам можно отнести:

• изменение демографических характеристик популяции, включая рост населения, изменение структуры возрастного состава, изменение географического расселения и т.д.;

• технологическое и экономическое развитие;

• рост потребления и изменение его структуры.

Действие этих и им подобных факторов происходит постепенно, поэтому их вклад исследователи предпочитают описывать с помощью гладких кривых, просто задающихся в аналитическом виде.

Сезонная компонента отражает присущую миру и человеческой деятельности повторяемость процессов во времени. Она часто присутствует в экономических, метеорологических и других временных рядах. Сезонная компонента чаще всего служит главным источником краткосрочных колебаний временного ряда, так что ее выделение заметно снижает вариацию остаточных компонент.

Сезонная компонента временного ряда описывает поведение, изменяющееся регулярно в течение заданного периода (года, месяца, недели, дня и т.п.). Она состоит из последовательности почти повторяющихся циклов. Типичным примером сезонного эффекта является объем продаж в декабре каждого года в преддверии Рождества и нового года. В то же время пик объема продаж товаров для школьников приходится на начало нового учебного года. Объем перевозок пассажиров городским транспортом имеет два характерных пика утром и вечером, причем период вечернего пика и продолжительность его более длительны. Сезонные эффекты присущи многим сферам деловой активности: многие производства имеют сезонный характер производства, потребление товаров также имеет ярко выраженную сезонность.

В некоторых временных рядах сезонная компонента может иметь плавающий или изменяющийся характер. Классическим примером подобного эффекта является праздник Пасхи, сроки которого изменяются из года в год. Поэтому локальный пик объемов междугородных перевозок во время пасхальных каникул является плавающим сезонным эффектом.

Циклическая компонента занимает как бы промежуточное положение между закономерной и случайной составляющими временного ряда. Если тренд – это плавные изменения, проявляющиеся на больших временных промежутках и, если сезонная компонента – это периодическая функция времени, ясно видимая, когда ее период много меньше общего времени наблюдений, то под циклической компонентой обычно подразумевают изменения временного ряда, достаточно плавные и заметные для того, чтобы не включать их в случайную составляющую, но такие, которые нельзя отнести ни к тренду, ни к периодической компоненте. Циклическая компонента временного ряда описывает длительные периоды относительного подъёма и спада.

1.4. Постановки некоторых эконометрических задач

Приведем несколько примеров задач эконометрического анализа.

Пример № 1. [1]. Рынок квартир в Москве . Данные для этого исследования собраны студентами РЭШ Российской экономической школы) в 1996 г. После проведенного анализа была выбрана логарифмическая форма модели, как более соответствующая данным:

Здесь LOGPRICE — логарифм цены квартиры (в долл. США), LOGUVSP — логарифм жилой площади (в кв. м), LOGPLAN — логарифм площади нежилых помещении (в кв. м), LOGKJTSP — логарифм площади кухни (в кв. м), LOGDIST — логарифм расстояния от центра Москвы (в км). Включены также бинарные, «фиктивные» переменные, принимающие значения 0 или 1: FLOOR — принимает значение 1, если квартира расположена на первом или на последнем этаже, BRICK — принимает значение 1, если квартира находится в кирпичном доме, BAL — принимает значение 1, если в квартире есть балкон, LIFT — принимает значение 1, если в доме есть лифт, R1 — принимает значение 1 для однокомнатных квартир и 0 для всех остальных, R1, R3, R4 — аналогичные переменные для двух-, трех- и четырехкомнатных квартир. Результаты оценивания уравнения (1.5) для 464 наблюдений, относящихся к 1996 г., приведены в таблице 1.

Таблица 1

Переменная

Коэффициент

Стандартная ошибка

t-статистика

P-значение

CONST

7.106

0.290

24.5

0.0000

LOGUVSP

0.670

0.069

9.65

0.0000

LOGPLAN

0.431

0.049

8.71

0.0000

LOGKITSP

0.147

0.060

2.45

0.0148

LOGDIST

-0.114

0.016

-7.11

0.0000

BRICK

0.134

0.024

5.67

0.0000

FLOOR

-0.0686

0.021

-3.21

0.0014

LIFT

0.114

0.024

4.79

0.0000

BAL

0.042

0.020

2.08

0.0385

Rl

0.214

0.109

1.957

0.0510

R2

0.140

0.080

1.75

0.0809

S3

0.164

0.060

2.74

0.0065

R4

0.169

0.054

3.11

0.0020

Мы не будем сейчас заниматься анализом полученной эконометрической модели. Подобная модель позволяет оценить стоимость квартиры в Москве с учетом рассмотренных выше факторов. Надо отметить, что число факторов можно было увеличить, включив в модель время в пути до ближайшего метро, экологическое состояние района, наличие «зеленой зоны» и другие факторы. В этом случае модель была бы более прогрессивной и имеющей больший практический смысл.

Пример № 2. Модель стоимости обучения в высшем учебном заведении. Безусловно, что ценовая политика вуза во многом определяется следующими основными факторами: уровнем профессорско-преподавательского состава (PS), качеством планирования учебного процесса (UP), количеством часов занятий в неделю (UZ), состоянием аудиторного фонда (AF), наличием специализированных компьютерных аудиторий (SA), количеством компьютеров на одного обучаемого (CO), наличием выделенной линии ИНТЕРНЕТ (TL), принятым нормативом обеспеченности книг на одного человека (BO), количество периодических изданий выписываемых вузом (BP), уровнем организации внеучебной работы со студентами (US), уровнем организации производственной практики студентов (UP), наличием международных связей (MS), наличием спортивного зала и спортивного оборудования (SZ), уровнем работы администрации вуза (UA), местом расположения вуза и наличием рядом станции метро (MR).

Часть этих факторов является нормативными величинами, например UZ, SA, CO, TL, MR, другая часть определяется по некоторой шкале (например, 10-бальной) путем анализа состояния аудиторного фонда (AF), качества учебного процесса (UP), уровня организации учебного процесса (UA).

Модель может иметь следующий вид:

(1.6)

Подобная модель позволяет оценить уровень оплаты за обучения путем анализа влияющих на организацию учебного процесса основных факторов.

1.5. Последовательность разработки эконометрических моделей

Процесс построения и использования эконометрических моделей включает в себя следующие основные этапы:

1) определение цели исследования;

2) построение системы показателей и логический отбор факторов, наиболее влияющих на каждый показатель;

3) выбор формы связи изучаемых показателей между собой и отобранными факторами;

4) сбор исходных данных, их преобразование и анализ;

5) построение эконометрической модели и определение ее параметров;

6) проверка качества построенной модели, в первую очередь ее адекватности изучаемому экономическому процессу;

7) использование модели для экономического анализа и прогнозирования.

При практической реализации указанных этапов особенно важным является построение системы показателей исследуемого экономического процесса и определение перечня факторов, влияющих на каждый показатель.

Укажем основные требования, предъявляемые к включаемым в эконометрическую модель факторам:

· каждый из факторов должен быть обоснован теоретически;

· в перечень целесообразно включать только важнейшие факторы, оказывающие существенное воздействие на изучаемые показатели, при этом рекомендуется, чтобы количество включаемых в модель факторов не превышало одной трети от числа наблюдений в выборке (длины временного ряда);

· факторы не должны быть линейно зависимы, поскольку эта зависимость означает, что они характеризуют аналогичные свойства изучаемого явления. Например, заработная плата работников зависит, наряду с другими факторами, от роста производительности труда и от объема выпускаемой продукции. Однако эти факторы могут быть тесно взаимосвязаны, коррелированны[1] и, следовательно, в модель целесообразно включать только один из этих факторов. Включение в модель линейно взаимозависимых факторов приводит к возникновению явления мультиколлинеарности[2] , которое отрицательно сказывается на качестве модели;

· влияющие на экономический процесс факторы могут быть количественные и качественные. В модель рекомендуется включать только такие факторы, которые могут быть численно измерены;

· в одну модель нельзя включать совокупный фактор и образующие его частные факторы. Одновременное включение таких факторов приводит к неоправданно увеличенному их влиянию на зависимый показатель, к искажению реальной действительности.

При отборе влияющих факторов используются статистические методы отбора. Так, существенного сокращения числа влияющих факторов можно достичь с помощью пошаговых процедур отбора переменных. Ни одна из этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получать достаточно хорошие наборы существенно влияющих факторов, кроме того, их можно сочетать с другими подходами к решению данной проблемы, например, с экспертными оценками значимости факторов. Среди пошаговых процедур отбора факторов наиболее часто используются процедуры пошагового включения и исключения факторов. Обе эти процедуры хорошо формализованы и потому успешно реализованы в различных машинных программах статистического анализа. Очень хорошо вписываются в исследования методы группового учета аргументов.

Метод исключения предполагает построение уравнения, включающего всю совокупность переменных, с последующим последовательным (пошаговым) сокращением числа переменных в модели до тех пор, пока не выполнится некоторое наперед заданное условие. Суть метода включения — в последовательном включении переменных в модель до тех пор, пока регрессионная модель не будет отвечать заранее установленному критерию качества. Последовательность включения определяется с помощью частных коэффициентов корреляции: переменные, имеющие относительно исследуемого показателя большее значение частного коэффициента корреляции, первыми включаются в регрессионное уравнение.

Выше отмечено, что одной из предпосылок применения методов регрессионного анализа для построения эконометрических моделей является отсутствие среди независимых переменных (факторов) линейно связанных. Если данная предпосылка не выполняется, то возникает, как уже сказано выше, явление мультиколлинеарности, что приводит к искажению смысла коэффициентов регрессии и затруднению выявления наиболее существенно влияющих факторов.

Основные причины, вызывающие мультиколлинеарность, – независимые переменные, либо характеризующие одно и то же свойство изучаемого явления, либо являющиеся составными частями одного и того же признака.

В настоящее время существует ряд методов, позволяющих оценить наличие мультиколлинеарности в совокупности не­зависимых переменных, измерить ее степень, выявить взаимно коррелированные переменные и устранить или ослабить ее негативное влияние на регрессионную модель. Наиболее распространенным методом выявления мультиколлинеарности является метод корреляции. На практике считают, что две переменные коллинеарны (линейно зависимы), если парный коэффициент корреляции между ними по абсолютной величине превышает 0,8. Устраняют мультиколлинеарность чаще всего путем исключения из модели одного из коррелированных факторов. Более подробно об этом будет рассказано во второй главе.

Резюме

1. Эконометрика, новое направление в развитии математических методов в экономическом анализе. В основу этого анализа положены математические методы корреляционно – регрессионного анализа и методы анализа временных рядов.

2. К сожалению, сегодня еще нет ярких и убедительных примеров применения методов эконометрического анализа в реальной жизни. Это обусловлено, по крайней мере, двумя причинами: прежде всего отсутствием специалистов, умеющих правильно применить эти методы и сделать аргументированный эконометрический анализ и слабая предсказуемость экономических процессов в настоящее время в России.

3. Наивно думать, что эконометрические модели работают в условиях недостаточной информации. Для этого существуют совершенно другие методы. Можно уверенно прогнозировать только те экономические процессы, которые имеют определенную повторяющуюся регулярность во времени и имеется достаточно статистики (не менее 4-х длительных периодов, в которых повторялись эти регулярности). Только в этом случае применение методов эконометрического анализа оправдано и целесообразно.

2. Эконометрический анализ
на основе моделей линейной регрессии

2.1. Однофакторная линейная регрессия

Регрессионные методы позволяют выявить связи между переменными, причем особенно эффективно, если эти связи не совершенны или не имеют точного функционального описания между этими переменными. В эконометрическом анализе используются независимые переменные хi и одна зависимая переменная y. Регрессией в общем виде представляется функцией следующего вида

(2.1)

где - известные коэффициенты регрессии;

xi - переменная. В эконометрическом анализе переменные представляют собой статистические данные, например стоимость товара, объем продаж, курс валюты. Так как эти данные чаще всего «привязаны» ко времени, то в эконометрических моделях используют и другие обозначения переменных, такие как Xt , где индекс t обозначает, что мы используем временной ряд.

e - невязка (ошибка, отклонение), обусловленная недостаточной пригодностью модели и ошибкой данных. Обычно эти причины являются смешанными.

Обозначения в модели 2.1 интерпретируются достаточно просто. Например, сумму

можно представить как сумму произведений коэффициента b и переменной х

.

В последующем для упрощения выражений знак суммы мы будем обозначать без индексов, как .

В том случае, если исследуется влияние одной переменной или фактора, то выражение (2) упрощается к виду

. (2.2)

Выражение (2) представляет собой линейную однофакторную регрессию. Геометрический смысл уравнения 2.2 поясним на рис. 1.

Пусть мы имеем четыре измерения переменной х , которые имеют конкретное значение р1 , р2 , р3 , р4 . Этим значениям соответствуют определенные значения зависимой переменной y. Тогда уравнение регрессии 2.2 представляет собой прямую линию проведенную определенным образом через точки р1 , р2 , р3 , р4 . Так как истинное значение переменной нам неизвестно, то мы предполагаем, что оно располагается на этой прямой в точках Q1 , Q2 , Q3, Q4 . Свободный член а уравнения 2.2 имеет реальный экономический смысл. Это минимальное или максимальное значение зависимой переменной (результативного признака).

Коэффициент b представляет собой постоянную величину, равную отношению

Какова природа ошибки e?

Существует, по крайней мере, две причины появления в модели 2.2 этой ошибки:

1. Наша модель является упрощением действительности и на самом деле есть еще и другие параметры, от которых зависит переменная y. Например, расходы на питания в семье зависят от размера заработной платы членов семьи, национальных и религиозных традиций, уровня инфляции и т.д.

2. Скорее всего, наши измерения содержат ошибки. Например, данные по расходам семьи на питание составляются на основе анкетного опроса и эти данные не всегда отражают истинное значение параметров.

Таким образом, можно считать, что ошибка e есть случайная величина с некоторой функцией распределения.

Для нахождения коэффициентов уравнений (2.1) и (2.2) используется метод наименьших квадратов. Сущность метода заключается в том, чтобы минимизировать сумму квадратов отклонений

, (2.3)

где - значение результата, вычисленное по уравнению (2) в точке xi ;

yi - экспериментальное значение результата в этой же точке.

Рассмотрим задачу «наилучшей» аппроксимации набора наблюдений Yt ,, t = 1,..., n, линейной функцией (2.2) минимизацией функционала

Запишем необходимые условия экстремума

Раскроем скобки и получим стандартную форму нормальных уравнений (для краткости опустим индексы суммирования у знака суммы):

а, b – решения системы (2.4) можно легко найти:

Порядок построения эконометрической модели рассмотрим на следующем примере [3].

В таблице 2 представлены статистические данные о расходах на питание и душевом доходе для девяти групп семей. Требуется проанализировать зависимость величины расходов на питание от величины душевого дохода.

В соответствии с этим первый показатель будет результативным признаком, который обозначим у, а другой будет факторным признакам, или просто фактором, и мы обозначим его соответственно х1 . Это обозначение не случайно, в последующем примере мы рассмотрим более сложную модель, в которой будет два фактора х1 и х2 .

Таблица 2

Номер группы

Расход на
питание (у)

Душевой
доход (х1 )

1

433

628

2

616

1577

3

900

2659

4

1113

3701

5

1305

4796

6

1488

5926

7

1646

7281

8

1914

9350

9

2411

18807

Рассмотрим однофакторную линейную модель зависимости расходов на питание (у) от величины душевого дохода семей 1 ).

Расчеты проведем в таблице 3.

Таблица 3

Номер группы

Расход на
питание (у)

Душевой
доход (х1 )

Y Х1

Х1 2

1

433

628

271924

394384

2

616

1577

971432

2486929

3

900

2659

2393100

7070281

4

1113

3701

4119213

13697401

5

1305

4796

6258780

23001616

6

1488

5926

8817888

35117476

7

1646

7281

11984526

53012961

8

1914

9350

17895900

87422500

9

2411

18807

45343677

353703249

S = 11826

S = 54725

S = 98056440

S = 575906797

Используя данные табл.3, и (2.4) получим систему уравнений:

(2.5)

Можно найти значения коэффициентов по формулам 2.5, но мы покажем как можно использовать более общий подход к решению задачи по правилу Крамера, для этого найдем значения определителей системы (2.5):

Тот же результат можно получить, используя формулы 2.5.

Таким образом, модель имеет вид:

(2.6)


y = 660,11 + 0,108 Х1

Уравнение (2.6) называется уравнением регрессии, коэф­фициент b — коэффициентом регрессии. Направление связи между у и x1 определяет знак коэффициента регрессии а1 . В нашем случае данная связь является прямой и положительной.

Вычислим дисперсии оценок а и b . Известно [1], что дисперсии оценок а и b можно определить как

(2.7)

(2.8)

где - дисперсия ;

отклонения исходной выборки от среднего значения;

(2.9)

, среднее значение;

- значения расходов на питание, вычисленные по модели 2.6

Для проведения расчетов дисперсий полученных оценок используем таблицу 4

Таблица 4

№№

Y

X

X2

1

433

628

394384

727

-294

86436

-5453

29730362

2

616

1577

2486929

830

-214

45796

-4504

20282013

3

900

2659

7070281

947

-47

2209

-3422

11707042

4

1113

3701

13697401

1059

54

2916

-2380

5662285

5

1305

4796

23001616

1178

127

16129

-1285

1650083

6

1488

5926

35117476

1300

188

35344

-155

23887

7

1646

7281

53012961

1446

200

40000

1200

1441067

8

1914

9350

87422500

1669

245

60025

3269

10689267

9

2411

18807

353703249

2691

-280

78400

12726

161962388

S=11826

6081

S=575906797

S=367255

S=243148394

Следующий этап – оценка значимости коэффициентов полученной модели . На этом этапе проверяется статистическая гипотеза о равенстве нулю коэффициентов модели а и b . Проверяем гипотезу Н0 : b=0 против гипотезы Н1 :b#0 при заданном уровне значимости гипотезы a. Обычно a =0.05. При проверке используется распределение Стьюдента. Для этого рассчитывают значение t-критерия для исходной выборки наблюдений по формуле

(2.10)

Затем сравнивают его с табличным значением с (n-2) степенями свободы при заданной степени свободы. Это значение берут из таблицы значений t -критерия (приложение 4, таблица 2). Для a =0,05 при степени своды равном 7 табличное значение t –критерия (tp ) равно 2,37. Если расчетное значение критерия больше табличного, то гипотеза Н0 отклоняется и принимается гипотеза Н1 : значение коэффициента отличается от 0. В нашем случае . Так как 7,35>2,37, то делаем вывод о значимости коэффициента b в модели. Расчетное значение t-критерия для коэффициента а равно 5,62, что тоже свидетельствует о его значимости в модели.

Для оценки тесноты связи модели с исходными данными рассчитывается коэффициент детерминации

(2.11)

Для определения коэффициента детерминации проведем расчеты с использованием таблицы 5.

Таблица 5

№№

Y

1

433

295

86986

2

616

214

45979

3

900

47

2236

4

1113

-53

2828

5

1305

-127

16109

6

1488

-188

35300

7

1646

-200

39817

8

1914

-244

59580

9

2411

280

78549

S=11826

S=367383

Значения ESS возьмем из таблицы 4.

Коэффициент детерминации показывает долю изменения (вариации) результативного признака под действием факторного признака. В нашем случае R2 = 0,884, а это означает, что фактором душевого дохода можно объяснить почти 88% изменения расходов на питание.

Коэффициент корреляции можно определить как

(2.12)

Чем ближе значение коэффициента корреляции к единице, тем теснее корреля-ционная связь. Полученное значение коэффициента корреляции свидетельствует, что связь между расходами на питание и душевым доходом очень тесная.

Коэффициенты регрессии (в рассматриваемом случае это коэффициент b) нельзя использовать для непосредственной оценки влияния факторов на результативный признак из-за различия единиц измерения исследуемых показателей. Для этих целей вычисляются коэффициенты эластичности.

Коэффициент эластичности для рассматриваемой модели парной регрессии рассчитывается по формуле:

(2.13)

Он показывает, насколько процентов изменяется результативный признак у при изменении факторного признака Xt на один процент.

В нашем примере коэффициент эластичности расходов на питание в зависимости от душевого дохода будет равен

Это означает, что при увеличении душевого дохода на 1 % расходы на питание увеличатся на 0,49 %.

Качество эконометрических моделей может быть установлено на основе анализа остаточной последовательности. Остаточная последовательность проверяется на выполнение свойств случайной компоненты экономического ряда: близость нулю выборочного среднего, случайный характер отклонений, отсутствие автокорреляции и нормальность закона распределения.

О качестве моделей регрессии можно судить также по значениям коэффициента корреляции и коэффициента детерминации для однофакторной модели. Чем ближе абсолютные величины указанных коэффициентов к 1, тем теснее связь между изучаемым признаком и выбранными факторами и, следовательно, с тем большей уверенностью можно судить об адекватности построенной модели, включающей в себя наиболее влияющие факторы.

Для оценки точности регрессионных моделей обычно используются, средняя относительная ошибка аппроксимации (2.11).

Проверка значимости модели регрессии проводится с использованием F-критерия Фишера , расчетное значение которого находится как

(2.14)

Расчетное значение F-критерия сравнивают c табличным (таблица 1, приложения 4) при заданном уровне значимости гипотезы (обычно 0,05) и степенях свободы f1 = n – 1 и f2 = n - m - 1 , где n – обьем выборки, m – число включенных факторов в модель.

Для нашего случая f1 = 8, f2 = 7. Табличное значение F – критерия находим по таблице 2 приложения 4 Ft = 3,50.

Если расчетное значение F – критерия больше табличного, то модель считается адекватной исходным данным.

В нашем случае 53,50 > 3,50, следовательно, модель значима и адекватно описывает исходные данные.

Эти же расчеты можно выполнить значительно быстрее при использовании ЭВМ. В электронных таблицах EXCEL в разделе меню СЕРВИС при полной инсталляции пакета присутствует функция АНАЛИЗ. При выборе этой функции открывается окно (рис.2). В предлагаемом перечне необходимо выбрать раздел регрессия и в появившейся форме необходимо заполнить соответствующие поля. Исходные данные необходимо представить на рабочем листе в виде, показанном на рис.3.

На рис. 4 представлена форма с заполненными исходными данными для проведения регрессионного анализа.

Рис. 4

После нажатия клавиши OK, проводится расчет и результаты заносятся на новый лист в следующем виде (рис. 5).

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0,94046717

R-квадрат

0,8844785

Нормированный R-квадрат

0,86797542

Стандартная ошибка

229,054087

Наблюдения

9

df

SS

MS

F

Значимость F

Регрессия

1

2811892

2811892

53,594779

0,000159874

Остаток

7

367260,4

52465,77

Итого

8

3179152

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Y-пересечение

660,106766

117,5052

5,61768

0,000801

382,2512536

Переменная X 1

0,1075384

0,014689

7,320845

0,0001599

0,072803654

Рис. 5. Результаты расчетов в электронных таблицах EXCEL

Использование электронных таблиц EXCEL позволяет обойтись без таблиц с критическими значениями t-критерия и F-критерия. В результатах расчетов появляются новые значения Значимость F и Значимость t , которое определяет расчетный уровень значимости F и t-критериев по заданным исходным данным. Если это значение меньше заданного (0,05), то модель считается адекватной исходным данным и значимой.

2.2. Многофакторная линейная регрессия

В многофакторных моделях результативный признак зависит от нескольких факторов. Множественный или многофакторный корреляционно-регрессионный анализ решает три задачи: определяет форму связи результативного признака с факторными, выявляет тесноту этой связи и устанавливает влияние отдельных факторов. Для двухфакторной линейной регрессии эта модель имеет вид:

(2.15)

Параметры модели ao , a1, a2 находятся путем решения системы нормальных уравнений:


(2.16)

Покажем особенности эконометрического многофакторного анализа на рассмотренном выше примере, но введем дополнительный фактор – размер семьи. В таблице 6 представлены статистические данные о расходах на питание, душевом доходе и размере семьи для девяти групп семей. Требуется проанализировать зависимость величины расходов на питание от величины душевого дохода и размера семьи.

Таблица 6

Номер группы

Расход
на питание (у)

Душевой
доход (х)

Размер
семей (чел)

1

433

628

1,5

2

616

1577

2.1

3

900

2659

2.7

4.

1113

3701

3.2

5

1305

4796

3.4

6

1488

5926

3.6

7

1646

7281

3,7

8

1914

9350

4,0

9

2411

18807

3.7

Рассмотрим двухфакторную линейную модель зависимости расходов на питание (у) от величины душевого дохода семей (x1 ) и размера семей (x2 ). Результаты расчетов с использованием электронных таблиц EXCEL представлены в таблице 7.

Таблица 7

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0,997558

R-квадрат

0,995121

Нормированный R-квадрат

0,993495

Стандартная ошибка

50,84286

Наблюдения

9

df

SS

MS

F

Значимость F

Регрессия

2

3163642

1581821

611,9239

1,1612E-07

Остаток

6

15509,98

2584,996

Итого

8

3179152

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Y-пересечение

-187,141

77,17245

-2,42498

0,051513

-375,97561

Переменная X 1

0,071995

0,004463

16,13289

3,61E-06

0,06107576

Переменная X 2

343,0222

29,40592

11,66507

2,39E-05

271,068413

Эконометрическая модель имеет следующий вид

Высокие значения коэффициента детерминации R2 = 0,995 и значение F – критерия однозначно говорит об адекватности полученной модели исходным данным. Необходимо отметить, что эти значения намного превышают значения R2 и F – критерия, которые были получены в модели с одним фактором. Таким образом, введение в модель еще одного фактора улучшает качество модели в целом.

В какой степени допустимо использовать критерий R2 для выбора между несколькими регрессионными уравнениями? Дело в том, что при добавлении очередного фактора R2 всегда возрастает и, если взять число факторов, равным числу наблюдений, то можно добиться того, что R2 = 1. Но это вовсе не будет означать, что полученная эконометрическая модель будет иметь экономический смысл.

Попыткой устранить эффект, связанный с ростом R2 при возрастании числа факторов, является коррекция значения R2 с учетом используемых факторов в нашей модели.

Скорректированный (adjusted) R2 имеет следующий вид:

(2.17)

где n – объем выборки;

k – количество коэффициентов в уравнении регрессии.

Для нашего случая

В определенной степени использование скорректированного коэффициента детерминации R2 более корректно для сравнения регрессий при изменении количества факторов.

В том случае, когда имеются одна независимая и одна зависимая переменные, естественной мерой зависимости является (выборочный) коэффициент корреляции между ними. Использование множественной регрессии позволяет обобщить это понятие на случай, когда имеется несколько независимых переменных. Корректировка здесь необходима по следующим очевидным соображениям. Высокое значение коэффициента корреляции между исследуемой зависимой и какой-либо независимой переменной может, как и раньше, означать высокую степень зависимости, но может быть обусловлено и другой причиной. Например, может существовать третья переменная, которая оказывает сильное влияние на две первые, что и является, в конечном счете, причиной их высокой коррелированности. Поэтому возникает естественная задача найти «чистую» корреляцию между двумя переменными, исключив (линейное) влияние других факторов. Это можно сделать с помощью коэффициента частной корреляции:

где

(2.19)

(2.20)

(2.21)

Значения вычисляются как

Значения коэффициента частной корреляции лежат в интервале [-1,1], как у обычного коэффициента корреляции. Равенство этого коэффициента нулю означает, говоря нестрого, отсутствие прямого (линейного) влияния переменной X1 на У.

Существует тесная связь между коэффициентом частной корреляции и коэффи-циентом детерминации, а именно

или

Влияние отдельных факторов в многофакторных моделях может быть охарактеризовано с помощью частных коэффициентов эластичности, которые в случае линейной двухфакторной модели рассчитываются по формулам:

Черта над символом, как и ранее, означает среднюю арифметическую. Частные коэффициенты эластичности показывают, насколько процентов изменится результативный признак, если значение одного из факторных признаков изменится на 1%, а значение другого факторного признака останется неизменным.

Для определения области возможных значений результативного показателя при известных значениях факторов, т.е. доверительного интервала прогноза, необходимо учитывать два возможных источника ошибок. Ошибки первого рода вызываются рассеиванием наблюдений относительно линии регрессии, и их можно учесть, в частности, величиной среднеквадратической ошибки аппроксимации изучаемого показателя с помощью регрессионной модели (Sy )

(2.23)

Ошибки второго рода обусловлены тем, что в действительности жестко заданные в модели коэффициенты регрессии являются случайными величинами, распределенными по нормальному закону. Эти ошибки учитываются вводом поправочного коэффициента при расчете ширины доверительного интервала; формула для его расчета включает табличное значение t-статистики при заданном уровне значимости и зависит от вида регрессионной модели. Для линейной однофакторной модели величина отклонения от линии регрессии задается выражением (обозначим его R):

, (2.24)

где п – число наблюдений,

L – количество шагов вперед,

а – уровень значимости прогноза,

X – наблюдаемое значение факторного признака в момент t ,

– среднее значение наблюдаемого фактора,

– прогнозное значение фактора на L шагов вперед.

Таким образом, для рассматриваемой модели формула расчета нижней и верхней границ доверительного интервала прогноза имеет вид:

где UL означает точечную прогнозную оценку изучаемого результативного показателя по модели на L шагов вперед.

2.3.Некоторые особенности применения многофакторных
регрессионных моделей в эконометрическом анализе

2.3.1. Мультиколлинеарность

В предыдущих разделах были рассмотрены основные вопросы применения регрессионных моделей в эконометрическом анализе.

На практике исследователю нередко приходится сталкиваться с ситуацией, когда полученная им регрессия является «плохой», т.е. t-статистики большинства оценок малы, что свидетельствует о незначимости соответствующих независимых переменных. В то же время F -статистика может быть достаточно большой, что говорит о значимости регрессии в целом. Одна из возможных причин такого явления носит название мультиколлинеарности и возникает при наличии высокой корреляции между факторами.

Одним из условий классической регрессионной модели является предположение о линейной независимости объясняющих переменных. При нарушении этого условия, т.е. когда одна из переменных является линейной комбинацией их других, это называется полной коллинеарностью. В этой ситуации нельзя использовать метод наименьших квадратов (МНК). На практике полная коллинеарность встречается исключительно редко. Гораздо чаще приходится сталкиваться с ситуацией, когда между факторами имеется высокая степень корреляции. Тогда говорят о наличии мультиколлинеарности. В этом случае МНК-оценка (оценка методом наименьших квадратов) формально существует, но обладает «плохими» свойствами.

Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания. В частности, так может случиться, когда значения одной независимой переменной являются датированными значениями другой.

Выделим некоторые наиболее характерные признаки мультиколлинеарности.

1. Небольшое изменение исходных данных (например, добавление новых наблюдений) приводит к существенному изменению оценок коэффициентов модели.

2. Оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (высокое значение коэффициента детерминации R2 и соответствующей F-статистики).

3. Оценки коэффициентов имеют неправильные с точки зрения теории знаки или неоправданно большие значения.

Что же делать, если по всем признакам имеется мультиколлинеарность? Однозначного ответа на этот вопрос нет, и среди эконометристов есть разные мнения на этот счет. При столкновении с проблемой мультиколлинеарности может возникнуть естественное желание отбросить «лишние» независимые переменные, которые, возможно, служат ее причиной. Однако следует помнить, что при этом могут возникнуть новые трудности. Во-первых, далеко не всегда ясно, какие переменные являются лишними в указанном смысле. Мультиколлинеарность означает лишь приблизительную линейную зависимость между факторами,