Главная      Учебники - Разные     Лекции (разные) - часть 15

 

Поиск            

 

Указания методические и контрольные задания для студентов -заочников Салават,2000

 

             

Указания методические и контрольные задания для студентов -заочников Салават,2000

Министерство энергетики Российской Федерации

Учебно-методический кабинет по горному, нефтяному и

энергетическому образованию

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Методические указания и контрольные задания для

студентов –заочников

Салават ,2000


Методические указания составлены в соответствии с примерной программой по дисциплине «Электротехника и электроника» по специальности 2505 Переработка нефти и газа

Зам.директора по УР

Бикташева Г.А

« »______________2000 г.

Подпись _____________

Составитель:

Преподаватель Салаватского индустриального колледжа

Мананкина Е.И.

Рецензенты:

Преподаватель Уфимского нефтяного техникума

Преподаватель Салаватского индустриального колледжа

Доцент предметно методической комиссии “Электроника и электрооборудоваения предприятий. ”

Салаватского филиала Уфимского государственного нефтяного технического университета

Панченко Н.С.

Вяхирев С.В.

Баширов М.Г.

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебной дисциплины « Электротехника и электроника» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки студентов по специальности 2505 Переработка нефти и газа и является единой для всех форм обучения. Примерная программа служит основой для разработки рабочей программы учебной дисциплины образовательным учреждением среднего профессионального образования.

Учебная дисциплина «Электротехника и электроника» является общепрофессиональной, устанавливающей базовые знания для освоения специальных дисциплин.

Дисциплина предусматривает значение физических процессов, происходящих в электрических цепях постоянного и переменного тока, свойства электрического и магнитного полей, принципы действия и основных свойств электрических машин трансформаторов, измерительных приборов, электрофизических основ работы электровакуумных ламп, газоразрядных и полупроводников приборов, которые являются конструктивными элементами узлов и блоков, широко распространенных устройств электронной техники.

В результате изучения дисциплины студент должен:

Иметь представление :

· О способах получения ,.передачи и применения электрической и других видов энергии;

· О правилах выбора типа электродвигателя к соответствующему технологическому оборудованию;

· О компонентах электронной техники, микропроцессорах и микро-ЭВМ в структуре средств вычислительной техники и в системах автоматического контроля и управления процессами и объектами в производстве;

Знать:

· Основные законы электротехники ;

· Методы расчета простейших электрических и магнитных цепей ;

· Основные характеристики средств измерения ;

· Устройство, назначение, принцип действия трансформаторов, электрических машин переменного и постоянного тока; типы электроприводов и элементов автоматики для управления ими ;

· Современные достижения и перспективы развития промышленной электроники;

· Элементы устройства электронных ,полупроводниковых ,фотоэлектронных приборов ,узлов и блоков электронной аппаратуры ( выпрямителей ,стабилизаторов, усилителей, генераторов и др.)

Уметь:

· Составлять по заданным условиям принципиальные схемы несложных электрических цепей ;

· Обрабатывать результаты измерений;

· Использовать электрические измерительные приборы при составлении принципиальных электрических и монтажных схем

Примерная программа рассчитана на 55 часов ( в том числе 15 часов лабораторные работы) для базового уровня среднего профессионального образования.

При разработке рабочей программы учебной дисциплины образовательного учреждения в зависимости от профиля и специфики подготовки специалистов может вносить дополнения и изменения в содержании, последовательность изучения учебного материала и распределение учебных часов по разделам (темам), а также перечень практических занятий, не нарушая логики изложения дисциплины при условии выполнения требований к уровню подготовки выпускников, заложенных в стандарте по специальности 2505.

Рабочая программа должна рассматриваться предметной ( цикловой) комиссией и утверждаться заместителем директора по учебной работе.

Дисциплина носит прикладной характер, поэтому при изучении необходимо указать ее взаимосвязь с другими дисциплинами и будущей профессиональной деятельностью.

В процессе преподавания дисциплины необходимо формировать у студентов интерес у профессии, навыки самостоятельного изучения учебного материала, применять эффективные формы и методы обучения, позволяющие развить творческие способности студентов.

Дисциплина "Электротехника и электроника" обеспечивает теоретическую подготовку студентов в данной области.

Изложение вопросов предполагает, что студенты хорошо помнят основные законы и понятия из курса физики, на которые опирается изучаемая дисциплина.

Она является продолжением базовых дисциплин.

Сейчас невозможно назвать отрасль народного хозяйства, где бы ни применялись совершенные электротехнические устройства, позволяющие достичь высокой степени автоматизации производственных процессов. Широко применяются различные электрические машины, разнообразная электрическая аппаратура, силовые и полупроводниковые преобразователи, экономические источники света и т. д.

Автоматизация производства немыслима без приборов контроля, регулирования и управления. Электротехнические устройства для получения, передачи и обработки информации с использованием средств информационных технологий широко внедряются во все отрасли .

Поэтому специалисту любого профиля необходимо овладеть знаниями основ "Электротехники и электроники".

Основная форма изучения дисциплины- самостоятельная работа студентов с рекомендуемой литературой .

В методических указаниях рассмотрены вопросы, являющиеся наиболее сложными. Вопросы для самоконтроля помогут проконтролировать степень изученного материала. При изучении дисциплины студенты выполняют одну контрольную работу из 5 задач.

2 ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН.

Наименование разделов и тем

Количество аудиторных часов при очной форме обучения

Всего

В том числе лабораторные работы

1

2

3

Введение

1

Раздел 1. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

35

11

Тема 1.1 Электрическое поле

1

Тема 1.2 Электрические цепи постоянного тока

3

1

Тема 1.3 Электромагнетизм

3

Тема 1.4 Электрические измерения

3

1

Тема 1.5 Однофазные электрические цепи переменного тока.

5

1

Тема 1.6 Трехфазные электрические цепи переменного тока

4

2

Тема 1.7 Трансформаторы

3

2

Тема 1.8 Электрические машины переменного тока

4

2

Тема 1.9 Эл.машины постоянного тока

3

2

Тема 1.10 Электрические и магнитные элементы автоматики

4

Тема 1.11 Основы электропривода

1

Тема 1.12 Передача и распределение электрической энергии

1

Раздел 2 . ОСНВЫ ЭЛЕКТРОНИКИ

19

4

Тема 2.1 Полупроводниковые приборы

3

2

Тема 2.2 Фотоэлектронные приборы

2

Тема 2.3 Электронные выпрямители и стабилизаторы

4

2

Тема 2.4 Электронные усилители

2

Тема 2.5 Электронные генераторы и измерительные приборы

2

Тема 2.6 Электронные устройства автоматики и вычислительной техники

2

Тема 2.7 Интегральные схемы микроэлектроники

2

Тема 2.8 Микропроцессоры и микро-ЭВМ

2

Всего по дисциплине:

55 15

Введение

Студенты должны иметь представление:

- · о содержании дисциплины;

- · о связи с другими дисциплинами;

- · о роли и перспективах развития электроэнергетики, электротехники, электроники;

Содержание дисциплины и ее задачи, связь с другими дисциплинами. Роль в электрификации и развитии экономики. История электрификации России. Совершенное состояние и перспективы дальнейшего развития электроэнергетики, электротехники, электроники.

Электрическая энергия, ее свойства и применение.

Электромагнитное поле – носитель электрической энергии; две стороны электромагнитного поля; электрическое поле, магнитное поле; материальность магнитного поля.

Методические указания

Электротехника – наука о применении электрической энергии в практических целях. Электротехника рассматривает вопросы производства электрической энергии, ее распределение и преобразование в другие виды энергии.

История развития электротехники, основные этапы, вклад русских ученых.

Значение электроники как основного средства для управления, автоматизации и контроля сложных производственных процессов в различных отраслях, развитии современной техники и прогрессивных технологий.

РАЗДЕЛ 1. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Тема 1.1. Электрическое поле

Студент должен знать :

· основные характеристики электрического поля;

· определение емкости плоского конденсатора.

Уметь :

· производить расчеты цепей со смешанным соединением конденсаторов.

Основные характеристики электрического поля.

Проводник и диэлектрик в эл. поле. Эл.ёмкость. Конденсаторы. Соединение конденсаторов.

Методические указания

Всякое тело содержит электрические заряды, которые взаимодействуют друг с другом. Взаимодействие объясняется тем, что каждый заряд окружает электрическое поле.

Электрическое поле обладает электрической энергией.

Электрическое поле характеризуется электрической силой, напряженностью, потенциалом, напряжением. В зависимости от концентрации носителей заряда определяется электрическая проводимость вещества. Все вещества в зависимости от электрической проводимости и зависимости её от ряда физических факторов делятся на проводники, диэлектрики и полупроводники.

Проводники обладают высокой проводимостью (металлы, их сплавы). Диэлектрики, наоборот, обладают ничтожной проводимостью (газы, минеральные масла, лаки и т.д.). Полупроводники обладают промежуточной проводимостью между проводниками и диэлектриками (кремний, германий, селен и др.)

При внесении диэлектрика в электрическое поле под действием сил поля орбиты электронов смещаются в направлении, противоположном полю. Явление смещения называется поляризацией диэлектрика. Способность диэлектрика поляризоваться оценивается диэлектрической проницаемостью.

Система из двух проводников, разделенных диэлектриком, представляет собой электрический конденсатор. Конденсатор характеризуется электрической емкостью. Конденсаторы выпускаются различных емкостей и напряжений; устройства и назначения.

Вопросы для самоконтроля :

1. Сформулируйте определение эл. напряжения, напряженности, потенциала.

2. В чем смысл явления поляризации диэлектрика?

3. Что такое электрическая емкость?

4. Чему равна эквивалентная емкость при параллельном и последовательном соединении конденсаторов

[1,2,3,]

Тема 1.2. Электрические цепи постоянного тока

Студент должен знать :

· основные законы электротехники;

· правила последовательного и параллельного соединений резисторов.

Уметь :

Производить электрические расчеты с использованием законов Ома и Кирхгофа.

Общие сведения об электрических цепях: определение, классификация. Направление, величина и плотность электрического тока. Электрическая проводимость и сопротивление проводников; закон Ома; зависимость электрического сопротивления проводников от температуры.

Основные элементы электрических цепей: источники и приемники электрической энергии, их мощность и к.п.д.

Основы расчета электрических цепей постоянного тока: понятие о режимах электрических цепей (номинальный, рабочий, холостого хода, короткого замыкания), условные обозначения, применяемые в электрических схемах; участки схем электрических цепей, ветвь, узел, контур; законы Кирхгофа. Последовательное, параллельное и смешанное соединение элементов и их свойства. Расчеты электрических цепей методом преобразования

Методические указания

Электрической цепью называют совокупность устройств и объектов, предназначенных для распределения, взаимного преобразования и передачи электрической и других видов энергии и (или) информации. Свое назначение цепь выполняет при наличии в ней электрического тока.

Электрическая цепь состоит из отдельных частей, выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии.

Основной закон электротехники – закон Ома, применяемый для расчета электрических цепей. При изучении методов расчета электрических цепей постоянного тока обратить внимание на используемые способы и приемы, а также на основные законы (Ома и Кирхгофа)

Вопросы для самопроверки:

1. Физ. смысл эл. сопротивления. От чего оно зависит?

2. В чем различие между ЭДС и напряжением?

3. Как рассчитать эквивалентное сопротивление цепи при смешанном соединении резисторов?

4. Какова методика расчета сложных эл. цепей?

[1,2,3]

Лабораторная работа 1

Изучение соединений резисторов и проверка законов Ома и Кирхгофа

Тема 1.3. Электромагнитизм

Студент должен знать:

· определение характеристик магнитного поля, определение индукции, самоиндукции и взаимоиндукции.

Уметь:

· объяснять явления электромагнитной индукции, самоиндукции и взаимоиндукции.

Основные свойства и характеристики магнитного поля, силовое действие магнитного поля, закон Ампера, магнитная индукция, магнитный поток, потокосцепление.

Индуктивность: собственная индуктивность, индуктивной катушки, взаимная индуктивность, коэффициент магнитной связи.

Электромагнитные силы: сила, действующая на проводник с током в магнитном поле, правило левой руки; сила, действующая на параллельные провода с током; тяговое усилие электромагнита; энергия магнитного поля.

Магнитные свойства веществ: намагниченные вещества; магнитная проницаемость: абсолютная и относительная; напряженность магнитного поля; ферромагнитные материалы, их свойства и применение. Работа А.Г.Столетова по исследованию магнитных свойств железа.

Понятие о расчете магнитных цепей; общие сведения о магнитных полях; закон полного тока; неразветвленные магнитные цепи; разветвленные магнитные цепи.

Электромагнитная индукция. Закон электромагнитной индукции. Э.д.с. самоиндукции и взаимоиндукции, вихревые токи.

Э.д.с. в проводнике, движущемся в магнитном поле, правила правой руки; принцип преобразования механической энергии в электрическую и электрической энергии в механическую.

Методические указания

Магнитное поле – это один из видов материи. Магнитное поле всегда сопутствует электрическому току и обладает энергией. Магнитное поле можно изобразить графически, определяя направление по правилу буравчика. Основные характеристики магнитного поля – магнитная индукция, магнитный поток, напряженность, электромагнитная сила.

При расчетах магнитных цепей вводится понятие закона Ома для магнитных цепей, а также закон полного тока. При изучении такого явления как электромагнитная индукция следует обратить внимание на его прикладное значение.

Вопросы для самоконтроля:

1. Физическая сущность характеристик магнитного поля.

2. Как привести законы полного тока к виду, подобному второму закону Кирхгофа?

3. В чем проявляется явление гистерезиса?

4. В чем сущность электромагнитной индукции?

[1,2,3]

Тема 1.4. Электрические измерения

Студент должен знать:

· условное обозначение приборов, устройство, принцип действия систем приборов ( магнитоэлектрической, электромагнитной, электродинамической и др.)

Уметь:

· производить измерение тока, напряжения, мощности.

· определять погрешности измерения электрических величин.

Общие сведения об электрических измерениях и электроизмерительных приборах; физические величины и их единицы измерения; средства измерений ( меры, измерительные приборы, измерительные преобразователи); прямые и косвенные измерения; погрешности измерений; классификация электроизмерительных приборов; условные обозначения на электроизмерительных приборах.

Измерение токаи напряжения: магнитоэлектрический измерительный механизм; электромагнитный измерительный механизм; приборы и схемы для измерения электрического тока; приборы и схемы для измерения электрического напряжения; расширение пределов измерения амперметров и вольтметров.

Измерение мощности и энергии: электродинамический измерительный механизм; измерение мощности в цепях постоянного и переменного тока; индукционный измерительный механизм; измерение электрической энергии индукционным счетчиком.

Измерение электрического сопротивления: измерительные механизмы омметров ( однорамочный, двухрамочный, мегомметр); косвенные методы измерения сопротивления (метод сравнения измеряемого сопротивления с образцовым, метод замещения, одинарная мостовая схема).

Методические указания

Измерить какую-либо величину – это значит сравнить её с другой величиной того же рода, условно принятой за единицу измерения. Устройство, при помощи которого производится сравнение измеряемой величины с единицей измерения, называется измерительным прибором.

При изучении данной темы следует обратить внимание на приемы и принципы, применяемые при измерениях основных электрических величин, а также на приборы, используемые при этом.

Вопросы для самоконтроля:

1. Привести условные обозначения систем измерительных механизмов?

2. Как определить цену деления шкалы многопредельного прибора?

3. Почему при замере необходимо выбрать прибор со шкалой, где стрелка бы находилась в правой половине?

4. Почему амперметр должен включаться последовательно с нагрузкой, а вольтметр - параллельно?

[1,2,3]

Лабораторная работа 2

Исследование методов измерения сопротивлений с применением омметров, измерительных мостов, мегомметра.

Тема 1.5.Однофазные электрические цепи переменного тока.

Студент должен знать:

· особенности переменного тока;

· характеристики синусоидальных величин.

Уметь:

· рассчитывать простейшие электрические цепи;

· строить векторные диаграммы для цепей переменного тока

Переменный ток: определение, получение синусоидальных э.д.с и тока, их уравнения и графики. Характеристики синусоидальных величин: амплитуда, фаза, начальная фаза, угловая частота, период, частота, мгновенные величины.

Действующая и средняя величина переменного тока.

Векторная диаграмма и ее обоснование. Элементы и параметры электрических цепей переменного тока. Цепь с активным сопротивлением, цепь с индуктивностью, цепь с емкостью; уравнения и графики тока и напряжения, векторные диаграммы; определение тока по заданному напряжению; мощности активная и реактивная, их определение для каждой цепи.

Цепь с активными и реактивными элементами: индуктивная катушка и конденсатор с потерями энергии, их схемы замещения; уравнения, графики, векторные диаграммы; определение тока по заданному напряжению и напряжения по заданному току; активные и реактивные сопротивления; активные и реактивные мощности; треугольники сопротивлений и мощностей. Неразветвленная цепь переменного тока: векторная диаграмма, расчетные формулы; резонанс напряжений. Разветвленная цепь переменного тока: векторная диаграмма, расчетные формулы, резонанс токов.

Методические указания

Переменный ток имеет громадное практическое значение, что объясняется в первую очередь возможностью его трансформирования.

При изучении данной темы необходимо обратить внимание на способы получения переменного тока, его основные характеристики и понятия, параметры. Кроме того следует учесть, что при расчетах электрических цепей переменного тока вводятся такие понятия как активные, реактивные элементы, их составляющие.

При изучении разветвленных и неразветвленных электрических цепей переменного тока следует обратить внимание на условия возникновения явлений резонанса напряжения и токов, их промышленного применения.

Вопросы для самоконтроля :

1. Дать определение амплитуды, периода, частоты, фазы, сдвига фаз, действующих значений напряжений и токов.

2. Как определить реактивные сопротивления конденсатора и катушки.

3. Объяснить способ построения векторных диаграмм.

4. Как определяются активная, реактивная, полная мощности? В каких единицах они измеряются?

5. В чем заключается явление резонанса напряжений и токов?

6. В чем смысл коэффициента мощности? Способы его улучшения.

[1,2,3]

Лабораторная работа 3

Неразветвленная цепь переменного тока с активным сопротивлением и индуктивностью .

Тема 1. 6. Трехфазные электрические цепи переменного тока

Студент должен знать:

· принцип получения электроснабжения по трехфазной системе;

· соотношение между фазными и линейными токами и напряжениями.

Уметь:

· рассчитывать трехфазные цепи при соединении приемников электрической энергии звездой и треугольником.

Трехфазная система электрических цепей, трехфазная цепь. Соединения обмоток трехфазных генераторов электрической энергии: трехфазная симметричная система э.д.с., прямая и обратная последовательность фаз;

соединение обмоток генератора и потребителей звездой; соединение обмоток генератора треугольником; фазные и линейные напряжения, соотношения между ними.

Трехфазные симметричные цепи: соединения обмоток генератора и приемника энергии звездой, четырехпроводная трехфазная цепь, роль нулевого провода; краткие сведения об аварийных режимах в трехфазных цепях.

Методические указания

Трехфазная система переменного тока получила широкое распространение как система, обеспечивающая более выгодную передачу энергии и позволяющая создать надежные в работе и простые по устройству электрические машины и аппараты.

Трехфазной системой электрических цепей называется система, состоящая из трех электрических цепей переменного тока одной частоты, с системой трех э.д.с., которые сдвинуты по фазе на 1/3 периода.

Каждая из обмоток трехфазного генератора может быть самостоятельным источником электрической энергии и может замыкаться на свой приемник энергии. В этом случае получается несвязная трехфазная система. На практике такие системы не применяются. Обычно обмотки трехфазного генератора соединяются звездой или треугольником. В зависимости от способа соединения генератора и приемников энергии трехфазная система может быть четырех- или трехпроводной.

В данной теме необходимо обратить внимание на особенности и взаимосвязи между параметрами при соединениях обмоток генераторов и приемников энергии звездой и треугольником.

Вопросы для самоконтроля:

1. В чем преимущества трехфазной системы перед однофазной.

2. Зависят ли фазные токи от линейных при соединении звездой, при соединении треугольником?

3. Какова роль нулевого провода?

4. Каково соотношение между фазными и линейными токами и напряжениями при соединении звездой, треугольником?

5. Как изменяются токи в фазах при обрыве линейного провода, если включено по схеме: звезда, треугольник.

[1,2,3]

Лабораторная работа 4

Исследование трехфазной цепи при соединении приемников электроэнергии звездой и треугольником.

Тема 1. 7. Трансформаторы

Студент должен знать:

· устройство, назначение и принцип действия силового трансформатора.

Уметь:

· проводить опыты: холостого хода, короткого замыкания, рабочего режима трансформатора;

· определять коэффициент трансформации, к. п. д.

Назначение трансформаторов. Принцип действия и устройство однофазного трансформатора, принципиальная схема, коэффициент трансформации, э.д.с. обмоток, номинальные величины; магнитопроводы, обмотки; нагревание и охлаждение, элементы защиты силовых трансформаторов.

Режимы работы трансформатора: холостой ход, рабочий режим, режим короткого замыкания, потери энергии и к.п.д. трансформатора.

Типы трансформаторов: трехфазные, многообмоточные, сварочные, измерительные, автотрансформааторы, их применение.

Методические указания

Трансформатором называется электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения, при той же частоте.

Устройство однофазного трансформатора: магнитопровод, на котором располагаются обмотки – первичная и вторичная.

Принцип действия трансформаторов основан на явлении взаимной индукции.

При изучении данной темы необходимо обратить внимание на специальные трансформаторы, их устройство и назначение.

Вопросы для самоконтроля

1. Почему обмотки трансформатора располагаются на сердечнике, каким должен быть сердечник?

2. При каких условиях проводится опыт холостого хода, короткого замыкания трансформатора?

3. Почему при холостом ходе можно пренебречь потерями в меди, а при коротком замыкании - потерями в стали?

4. При каких условиях к. п. д. трансформатора достигает максимума?

[1,2,3,4]

Лабораторная работа 5

Исследование режимов работы трансформатора.

Тема 1. 8. Электрические машины переменного тока

Студент должен знать:

· устройство, назначение, принцип действия асинхронного двигателя с короткозамкнутым ротором.

Уметь:

· определять параметры, пользоваться характеристиками электрических машин при анализе работы машин и аппаратов нефтегазоперерабатывающих производств

Назначение машин переменного тока и их классификация.

Получение вращающегося магнитного поля в трехфазных асинхронных электродвигателях и генераторах. Устройство машин переменного тока: статор электродвигателя и его обмоток. Принцип действия трехфазного асинхронного электродвигателя. Частота вращения магнитного поля статора и частота вращения ротора. Скольжение. Э.д.с., сопротивление и токи в обмотках статора и ротора. Вращающий электромагнитный момент асинхронного электродвигателя. Пуск в ход трехфазных асинхронных электродвигателей с короткозамкнутым и фазным роторами. Регулирование частоты вращения трехфазных электродвигателей. Однофазный электродвигатель. Потери энергии и к.п.д. асинхронного электродвигателя. Области применения асинхронных электродвигателей. Понятие о синхронном электродвигателе.

Методические указания

Асинхронный двигатель – наиболее распространенный тип современного электродвигателя. Обладая высокими техническими и экономическими показателями, этот электродвигатель находит широкое применение в промышленных и бытовых установках.

Асинхронный двигатель состоит из двух главных частей: неподвижной части – статора и вращающейся части - ротора.

Принцип действия АД основан на наведении э.д.с. в обмотке ротора вращающимся магнитным полем.

В данной теме необходимо обратить внимание на основные параметры и характеристики АД, особенности пуска короткозамкнутых двигателей и двигателей с фазным ротором.

Вопросы для самоконтроля:

1. Как образуется магнитное поле асинхронных машин?

2. Как изменить направление вращения ротора двигателя?

3. Объяснить принцип работы асинхронного двигателя.

4. Назвать ряд возможных синхронных частот вращения магнитного поля статора при частоте 50 Гц.

5. Как определить скольжение?

[1,2,3,4]

Лабораторная работа № 6

Снятие рабочих характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

Тема 1.9. Электрические машины постоянного тока

Студент должен знать :

· устройство, назначение, принцип действия машин постоянного тока, ее обратимость.

Уметь:

· определять характеристики генератора и двигателя постоянного тока.

Устройство, назначение, принцип действия электрической машины постоянного тока: магнитная цепь, коллектор, обмотка якоря.

Генераторы постоянного тока: генератор с независимым возбуждением, генератор с постоянным возбуждением, генератор с последовательным возбуждением, генератор смешанного возбуждения.

Электродвигатели постоянного тока: общие сведения; двигатели параллельного возбуждения; двигатели последовательного и смешанного возбуждения; пуск в ход, регулирование частоты вращения двигателей постоянного тока.

Методические указания

Электрическими машинами называются устройства, предназначенные для преобразования механической энергии в электрическую или электрической в механическую. В первом случае они называются генераторами, во втором – двигателями.

Электрические машины постоянного тока находят применение на электрическом транспорте, шахтных подъемниках и пр.

При изучении данной темы необходимо обратить внимание на то, что одна и та же машина может работать и в качестве генератора и в качестве двигателя в зависимости от подведенной энергии. Это является отличительной особенностью электрических машин постоянного тока от прочих.

Вопросы для самоконтроля:

1. Перечислить основные конструктивные узлы машины постоянного тока, их назначение.

2. Какие условия должны быть соблюдены для самовозбуждения генератора постоянного тока?

3. Почему в момент пуска двигатель потребляет значительный ток? Какова роль противо-эдс?

4. Как регулируется частота вращения электродвигателей?

5. Почему у двигателя параллельным возбуждением скоростная характеристика называется жесткой?

[1,2,3,4]

Лабораторная работа 7

Испытание генератора или двигателя постоянного тока с параллельным возбуждением.

Тема 1.10. Электрические и магнитные элементы

автоматики

Студент должен знать:

· назначение, основные характеристики электрических и магнитных элементов автоматики.

Уметь:

· снимать характеристики измерительных преобразователей.

Общие понятия об автоматике, автоматических системах, автоматизации производственных процессов. Элементы автоматики и их классификация по назначению, принципу действия.

Чувствительные элементы ( измерительные преобразователи), их использование для электрических измерений неэлектрических величин, для систем автоматического контроля, регулирования, управления.

Исполнительные элементы: приводные электромагниты ( клапанные, прямоходовые, с поперечным движением), магнитные муфты; исполнительные электродвигатели (постоянного тока, синхронные, асинхронные), шаговые электродвигатели.

Электромеханические промежуточные элементы систем автоматики: электромеханические контактные реле; шаговые распределители; контакторы; электромагнитные усилители; электромеханические элементы систем синхронной связи ( контактные и бесконтактные сельсины, магнесины).

Ферромагнитные промежуточные элементы систем автоматики: дроссели с подмагничиванием постоянным током; магнитные усилители (дроссельный, трансформаторный); обратная связь в магнитном усилителе; ферромагнитные бесконтактные реле; ферромагнитные стабилизаторы напряжения; ферромагнитные элементы логических и запоминающих устройств.

Методические указания

Автоматика – это область техники по созданию и применению автоматических устройств, приборов, механизмов, машин, т.е. средств автоматики, выполняющих управление производственными процессами без непосредственного участия человека. Та область автоматики, в которой применяются электрические и электронные приборы и устройства, называется электроавтоматикой.

Для контроля и управления различными производственными процессами применяется огромное число разнообразных автоматических устройств. По назначению различают: автоматический контроль, автоматическое управление и автоматическое регулирование.

Устройства автоматики состоят из различных элементов, которые можно разделить на следующие группы:

· чувствительные элементы – первичные преобразователи или датчики – предназначены для измерения значений различных величин;

· реле и переключатели – предназначены производить включение, выключение, переключение цепей измерения и управления;

· усилители – представляют собой промежуточные элементы, предназначенные для усиления полученных при измерении и контроле сигналов до значений, достаточных для приведения в действие исполнительных устройств или двигателей;

· исполнительные устройства и двигатели – производят требуемые изменения управляющих параметров.

Вопросы для самоконтроля:

1. Каково назначение исполнительных электродвигателей?

3. Пояснить механическую и регулировочную характеристику исполнительных двигателей.

4. Сравнить устройство и принцип действия контактных и бесконтактных элементов.

[1,2,3,4]

Тема 1.11. Основы электропровода

Студент должен знать:

· определение электропривода; режимы работы электродвигателей.

Уметь:

· читать принципиальные схемы управления электродвигателями.

Понятие об электроприводе. Выбор электродвигателя по механическим характеристикам Механические характеристики рабочих машин, соответствие их механическим характеристикам электродвигателей; классификация электродвигателей по способу сопряжения с рабочими машинами, по способу защиты от воздействия окружающей среды.

Нагревание и охлаждение электродвигателей. Режимы работы электродвигателей (длительный с постоянной и переменной нагрузкой, кратковременный, повторно-кратковременный); общее условие выбора двигателя по мощности. Метод эквивалентных величин (тока, мощности, момента) для выбора электродвигателя на длительный режим с переменной нагрузкой; выбор электродвигателя для кратковременного режима; выбор электродвигателя для повторно-кратковременного режима.

Схемы управления электродвигателями: общие сведения о схемах управления; магнитные пускатели (нереверсивный, реверсивный); примеры схем управления электродвигателя с применением релейноконтактной аппаратуры, с магнитными усилителями, с тиристорами.

Методические указания

Электрическим приводом (электроприводом) называется сочетание рабочего механизма машины, механической передачи и электродвигателя с аппаратурой для его управления.

Правильный выбор мощности двигателя имеет очень важное значение. При недостаточной мощности двигатель перегревается и не обеспечивает нормальную ра боту механизма; завышенная мощность двигателя снижает к.п.д. и cos j .

При изучении данной темы следует обратить внимание на выбор мощности двигателей в зависимости от их режимов работы. При неавтоматическом управлении все операции с двигателями, а именно : включение и выключение, изменение скорости и направления вращения, производятся вручную обслуживающим персоналом. Для этой цели в цепи двигателей устанавливают рубильники, выключатели, контроллеры, реостаты, а для защиты от перегрева – предохранители и автоматические выключатели.

Если управление производится без вмешательства обслуживающего персонала при помощи аппаратов управления и зависит лишь от характеристик аппаратов и их связи с производственным процессом, то оно называется автоматическим.

Аппараты автоматического управления: контакторы, реле, командо-аппараты.

Вопросы для самоконтроля:

1. Какой режим работы двигателя называют продолжительным, кратковременным, повторно-кратковременным? Начертить диаграммы работы двигателя в этих режимах.

2. Как определить мощность двигателя при указанных режимах?

3. Перечислить пускорегулирующие аппараты для управления электродвигателем.

[1,2,3,4]

Тема 1.12. Передача и распределение электрической энергии

Студент должен иметь представление:

· о типовых схемах электрического снабжения потребителей электрической энергии,

· о назначении и роли защитного заземления.

Схемы электроснабжения потребителей электрической электроэнергии, общая схема электроснабжения, понятия об энергосистеме и электрической системе. Простейшие схемы электроснабжения промышленных предприятий; схемы осветительных электросетей.

Элементы устройства электрических сетей: воздушные линии, кабельные линии, электропроводки, трансформаторные подстанции.

Выбор проводов и кабелей: выбор сечений проводов и кабелей по допустимому нагреву; выбор сечений проводов и кабелей с учетом защитных аппаратов; выбор сечений проводов и кабелей по допустимой потери напряжения.

Некоторые вопросы эксплуатации электрических установок: компенсация реактивной мощности; экономия электроэнергии; защитное заземление в электроустановках; защита от статического электричества; контроль электроизоляции.

Методические указания

Электрическая энергия вырабатывается на гидравлических и тепловых станциях, а затем передается к потребителю.

Величина напряжения для передачи электрической энергии определяется с таким расчетом, чтобы при наименьшей стоимости передачи, при наименьшей затрате проводниковых материалов передача энергии происходила с достаточно малыми потерями.

При изучении данной темы следует обратить внимание на определение сечения и выбор марки провода или кабеля в зависимости от условий работы.

Вопросы для самоконтроля:

1. Что называется энергетической системой?

2. Какие способы прокладки проводов и кабелей в цеховых сетях вам известны?

3. Расшифровать условные обозначения проводов и кабелей: АПР, ПРД, ААБГ, АВВГ, ААБ. Как выполняют заземляющее устройство на предприятии? Принцип его действия.

[1,2,3,4]

РАЗДЕЛ 2. ОСНОВЫ ЭЛЕКТРОНИКИ

Тема 2.1 Электровакуумные лампы, газоразрядные и полупроводниковые приборы

Студент должен иметь представление:

· об устройстве, назначении, принципе действия электровакуумных ламп, газоразрядных приборов;

Знать:

· устройство, назначение, принцип действия, области применения полупроводниковых приборов;

Уметь:

· составлять простейшие электронные схемы

Устройство, принцип действия и применение электровакуумных ламп; электровакуумный диод, его вольт-амперная характеристика, параметры, область применения; электровакуумный триод, его устройство.

Газоразрядные приборы: с несамостоятельным дуговым разрядом, с тлеющим разрядом. Условные обозначения, маркировка.

Электрофизические свойства полупроводников; собственная и примесная проводимости. Электронно-дырочный переход и его свойства, вольт-амперная характеристика. Устройство диодов. Выпрямительные диоды; зависимость характеристик диода от изменения температуры. Обозначение и маркировка диодов. Использование диодов.

Биполярные транзисторы, их устройство, три способа включения. Условные обозначения и маркировка транзисторов.

Тиристоры: устройство, анализ процессов в четырехслойной полупроводниковой структуре; динисторы, тринисторы.

Области применения полупроводниковых приборов.

Методические указания

Электроникой называется область науки и техники, в которой рассматриваются:

· электронные и ионные процессы, происходящие в вакууме, газах, жидкостях, твердых телах и плазме, а также на их границах;

· устройство и свойства электровакуумных, ионных и полупроводниковых приборов;

· применение этих приборов, электронных цепей и установок в различных областях науки, промышленности и т.д.

Электронными называются приборы, в которых явление тока связано с движением только электронов при наличии в приборах высокого вакуума, исключающего возможность столкновения электронов с атомами газа. К этой группе приборов относятся, например, двух- и трехэлектродные электронные лампы, электронно-лучевые трубки и др.

Электронные приборы применяются в выпрямителях, усилителях, генераторах, приемных устройствах высокой частоты, а также в автоматике, телемеханике, измерительной и вычислительной технике.

Ионными называются приборы, в которых явление тока обусловлено движением электронов и ионов, полученных при ионизации газа или паров ртути электронами. К ним относятся газотроны, тиратроны, ртутные вентили и др. Ионные приборы отличаются от электронных значительной инерционностью процессов, обусловленных большой массой иона. Поэтому ионные приборы могут применяться в установках с частотой, не превышающей нескольких килогерц.

Полупроводниковыми называются приборы, в которых ток создается в твердом теле движением свободных электронов и «дырок». Преимущества полупроводниковых приборов: малые размеры, масса, расход энергии, значительная механическая прочность, большой срок службы и простота эксплуатации.

Вопросы для самоконтроля:

1. Что называют собственной и примесной проводимостью полупроводников?

2. Почему полупроводниковый диод используют как выпрямитель переменного тока?

3. Для чего нужно знать параметры диода?

4. Объяснить устройство транзистора, какие возможны схемы его включения.

5. Как устроен тиристор и для чего он применяется?

[1,2,3,5]

Лабораторная работа 8

Снятие входных и выходных характеристик транзистора.

Тема 2. 2 Фотоэлектронные приборы

Студент должен знать:

· устройство, назначение, принцип действия, основные характеристики фотоэлектронных приборов; области применения фотоэлементов

Фотоэлектронные явления (фотоэлектронная эмиссия, фотопроводимость полупроводников, фотогальванический эффект). Законы фотоэффекта. Работы А.Г.Столетова. Фотоэлементы с внешним и внутренним фотоэффектом. Устройство, принцип действия, основные характеристики и параметры ламповых фотоэлементов и фотоэлектронных умножителей.

Фоторезисторы. Солнечные фотоэлементы и фотодиоды.Фототранзисторы. Условные обозначения фотоэлектронных приборов. Фотоэлементы в преобразовательных устройствах промышленных роботов (для обнаружения и определения величины изделия, обнаружения препятствия и т.п.).

Методические указания

Фотоэлементом называется электронно-вакуумный, полупроводниковый или иной электроприбор, электрические свойства которого (сила тока, внутреннее сопротивление или э.д.с.) изменяются под действием падающего на него светового излучения.

В зависимости от среды, в которой происходит движение электронов, фотоэлементы делятся на три класса:

· вакуумные,

· газонаполненные,

· полупроводниковые.

В этих приборах используется внешний фотоэффект или внутренний.

Внешний фотоэффект заключается в том, что источник излучения сообщает части электронов вещества дополнительную энергию, достаточную для выхода их из данного вещества в окружающую среду.

Внутренний фотоэффект заключается в том, что источник излучения вызывает увеличение энергии у части электронов вещества, ионизацию части атомов и образование новых носителей зарядов – свободных электронов и «дырок» , вследствие чего электрическое сопротивление уменьшается (фоторезисторы).

Вопросы для самоконтроля:

1. В чем отличие внешнего фотоэффекта от внутреннего?

2. Почему полупроводники обладают фотоэлектронной эмиссией.

3. Назовите технические устройства, в которых применяются фотоэлектронные приборы.

[1,2,3,5]

Тема 2.3 Электронные выпрямители и стабилизаторы

Студент должен знать:

· виды выпрямителей (одно-, двухполупериодные), особенности схем.

Уметь:

· производить простейший расчет и выбор выпрямителя.

Основные сведения о выпрямителях. Структурная схема выпрямителя. Однофазные и трехфазные схемы выпрямления,принцип их работы. Постоянная и переменная составляющие выпрямленного напряжения. Соотношения между переменными и выпрямленными токами и напряжениями для различных схем выпрямления. Сглаживающие фильтры. Управляемые выпрямители.

Стабилизаторы напряжения и тока, их назначение, коэффициент стабилизации. Схемы электронных стабилизаторов напряжения и тока, их принцип работы.

Методические указания:

Выпрямление переменного тока, т.е. преобразование его в постоянный ток ,производится при помощи устройств, которые обладают весьма малым сопротивлением в прямом направлениии и очень большим сопротивлением в обратном направлении.

Устройства , обладающие таким свойством , называются электрическими вентилями.

Схемы выпрямления могут быть однополупериодными ,двухполупериодными ,трехфазные. Выпрямленное напряжение состоит из постоянной и переменной составляющих.

В большинстве случаев используется только постоянная составляющая напряжения (тока ) .Переменные составляющие обычно не только не используются , но приводят к потерям энергии ,вызывая уменьшение к.п.д. механизмов и устройств. Поэтому стремятся к уменьшению переменной составляющей, представляющей собой пульсации напряжения. Уменьшение пульсаций достигается применением сглаживающих фильтров.

Вопросы для самопроверки:

1. Какие электронные элементы можно использовать как выпрямители переменного тока?

2. Объяснить с помощью графиков работу одно-,двухполупериодных выпрямителей.

3. Для чего в схемах выпрямителей применяют сглаживающие фильтры

[1,3,5]

Лабораторная работа 9

Исследование одно-, двухполупериодного выпрямителя

Тема 2.4 Электронные усилители

Студент должен иметь представление:

· об основных схемах усилителей

Знать :

· принцип работы усилителей напряжения, тока мощности;

Уметь :

· читать электрические схемы усилителей.

Принцип усиления напряжения, тока, мощности. Назначение и классификация усилителей. Основные технические показатели и характеристики усилителей. Усилительный каскад. Динамические характеристики усилительного элемента; определение рабочей точки на нагрузочной линии, построение графиков напряжений и токов в цепи нагрузки. Каскады предварительного усиления, основные варианты оконечных каскадов. Варианты междукаскадных связей. Обратные связи и стабилизация режима работы каскада усилителя. Электронные реле.

Усилители постоянного тока. Импульсные усилители.

Методические указания :

Ламповые и полупроводниковые усилители ,называемые электронными усилителями , нашли самое широкое применение. Благодаря им появилась возможность создания высокочувствительных радиоприемников быстродействующих систем автоматического управления и регулирования и т.д.

Усилению подвергается электрическое напряжение , ток и мощность ; в зависимости от этого различают усилители напряжения тока и мощности .Следует оговорить , что во всех трех случаях происходит усиление мощности . Именно это отличает усилитель от других устройств , например , от трансформатора. Известно, что трансформатор тоже может усилить переменное напряжение или ток, но при этом соответственно ток или напряжение понижаются , так что мощность на выходе трансформатора никогда не может оказаться больше, чем мощность на входе ; наоборот , она всегда несколько меньше из-за потерь в трансформаторе

Мощность на входе усилителя создает источник входного напряжения (микрофон, антенна, различного типа датчики, предыдущий каскад усилителя и т.д.) – источник сигнала. Этот сигнал необходимо усилить , не изменяя по возможности его форму . Но мощность на выходе усилителя должна , как правило , превышать мощность источника сигнала. Для этого к усилителю необходимо подводить дополнительную энергию от другого источника ,называемого источником питания. Следовательно, в усилителе на самом деле используется энергия источника питания ,причем мощность на выходе усилителя ,конечно , меньше мощности ,затрачиваемой источником питания. Энергия же источника сигнала необходима лишь для того , чтобы изменить по своему подобию форму напряжения или тока источника питания.

Для подобного преобразования мощности , получаемой от источника питания , в усилителе необходимо иметь специальный усилительный элемент , в котором энергия источника сигнала регулировала бы энергию источника питания. Бывают различные типы усилительных элементов : вакуумные (триоды, тетроды, пентоды), полупроводниковые (транзисторы),ионные (тиратроны) , электромеханические (реле и электромашинные усилители ), магнитные сверхпроводниковые и другие.

Вопросы для самоконтроля :

1. Какие электронные элементы используют для построения усилительных каскадов?

2. Какие основные показатели характеризуют усилительный каскад?

3. В чем преимущество усилителя на транзисторах перед ламповым?

4. Что называют обратной связью и, как она влияет на режим работы усилителя?

[1,3,5]

Тема 2.5 Электронные генераторы и измерительные приборы

Студент должен знать :

· назначение колебательного контура,

· переходные процессы зарядки и разрядки конденсатора.

Уметь :

· использовать осциллограф в экспериментальных исследованиях различных процессов.

Колебательный контур: незатухающие и затухающие колебания. Электронные генераторы синусоидальных колебаний с трансформаторной, автотрансформаторной и емкостной связями.

Переходные процессы зарядки и разрядки конденсатора (без выхода), постоянная времени цепи. Генераторы пилообразного напряжения. Мультивибраторы. Триггеры.

Электронный осциллограф (структурная схема, принцип действия). Электронно-лучевая трубка с устройствами отклонения и фокусирования луча. Примеры использования осциллографа в экспериментальных исследованиях различных процессов.

Принцип действия электронного вольтметра, его основные узлы.

Методические указания:

Во многих случаях выходное напряжение вовсе не должно повторять форму входного, а, напротив, преобразовывать ее. В других случаях сигнал на вход электронного устройства не подается и оно должно само создавать сигнал той или иной формы , используя при этом энергию источников питания постоянного напряжения . Такие устройства носят название генераторов .

Рассмотрим три типа генераторов в зависимости от формы создаваемого ими сигнала : генераторы синусоидального напряжения, пилообразного напряжения и прямоугольного напряжения . Существуют и др. типы генераторов . Однако ранне указанные часто применяются в самых разнообразных электронных устройствах .

Для создания синусоидального напряжения можно использовать различные методы , но наиболее простым является применение колебательного контура , который , раз возбудившись , сам создает колебания синусоидальной формы .Необходимо только сделать так , чтобы эти колебания не затухали .

Для создания в контуре незатухающих колебаний последовательно или параллельно с ним включают источник переменного напряжения частотой , равной собственной частоте контура .Генератор, принимающий напряжение от внешнего источника , называется генератором с посторонним возбуждением .

Пилообразным напряжением называется напряжение , которое нарастает или спадает со скоростью , близкой к постоянной в течение относительно большого промежутка времени , после чего оно быстро возвращается к своему первоначальному значению.

Генераторы пилообразного напряжения применяются в электронных осциллографах, в радиолокационных станциях и телевизорах.

Под действием пилообразно изменяющегося напряжения, подаваемого на горизонтально отклоняющие пластины электронно-лучевой трубки , происходит перемещение электронного луча по горизонтали с постоянной скоростью .

Во всех случаях получения пилообразного напряжения используются процессы заряда и разряда конденсатора.

Мультивибратором называется генератор несинусоидальных колебаний, имеющих форму, близкую к прямоугольной. Слово мультивибратор означает генератор многих колебаний, поскольку импульсы прямоугольной формы состоят из бесчисленного числа частот гармоник различных частот. Мультивибраторы могу быть использованы для различных целей: для генерирования колебаний прямоугольной формы, деления частоты, изменения длительности импульсов и т.д.

Мультивибраторы могут работать в различных режимах. При автоколебательном режиме частота колебаний определяется только параметрами схемы самого мультивибратора. В режиме синхронизации частота колебаний зависит не только от параметров схемы мультивибратора, но и от частоты и параметров колебаний, подводимых к мультивибратору извне . Работа мультивибратора в ждущем режиме начинается только от момента получения извне запускающего импульса .

Достоинством мультивибратора является большая крутизна фронтов генерируемых импульсов, что часто является необходимым для точной работы различных устройств . Наибольшую крутизну имеет задний фронт импульсов . Поэтому в тех случаях , когда достаточно использовать один из фронтов , целесообразно использовать задний фронт импульса.

Триггером называется спусковое устройство , обладающее двумя устойчивыми состояниями равновесия . Выходные величины ( напряжение , ток) триггера изменяются скачкообразно при получении им входного сигнала , подобно тому как это происходит при замыкании и размыкании реле.

Преимуществом их по сравнению с обычными электромеханическими реле является то , что скорость срабатывания у них в тысячи и десятки тысяч раз больше , чем у электромеханических реле . Кроме того , они не имеют контактов , которые подвержены относительно быстрому износу . К недостаткам относятся малая величина рабочего тока . Триггеры являются одним из основных элементов электронных счетных машин .

Триггеры могут выполняться на лампах , тиратронах с горячим и холодным катодом и на транзисторах.

Вопросы для самоконтроля:

1. Назовите основные электронные измерительные приборы.

2. Для чего применяется мультивибратор?

3. Объяснить принцип работы и применение триггера.

4. Как устроена электронно-лучевая трубка?

[1,3,5]

Тема 2. 6 Электронные устройства автоматики и вычислительной техники

Студент должен знать:

· Схему включения треггера: диаграмму состояния триггера

Принцип работы триггера. RS-, T-, D-триггер.

Одноконтактный, двухконтакотный тргиггер. Регистры, сетчики, сумматоры.

Примеры электронных устройств ЭВМ.

Методическое указание:

Логические интегральные микросхемы (ИМС) служат для операций с дискретными сигналами ,принимающими два значения , например ,высокий и низкий (нулевой) потенциалы. Одному из уровней сигнала приписывается символ 1 , другому – 0.

Каждая серия логических элементов содержит несколько типов логических схем , реализующих различные логические функции (И,ИЛИ,НЕ)

Упрощенная структурная схема ЭВМ содержит следующие устройства: арифметическое устройство , запоминающие устройства , устройства управления , пульт управления, устройства ввода и вывода ,которые относятся к внешним устройствам , как и внешние запоминающее устройство .

Арифметическое устройство (АУ) преназначено для выполнения основных арифметических и логических операций. В состав арифметических устройств входят сумматоры ,регистры ,логические элементы.

Сумматор- основной узел арифметического устройства , он состоит из тригеров с логическими элементами . В арифметических устройствах применяют накапливающие сумматоры , в которых слагаемые поступают на входы последовательно и комбинационные , в которых слагаемые поступают одновременно.

Подсчет импульсов в двоичном коде осуществляется счетчиками. Они строятся на основе тригеров. Счетчики могут работать в режиме суммирования и в режиме вычитания . В первом случае единица переноса на выходе какого-либо разряда возникает при переходе этого разряда из единичного состояния в нулевое , а во втором –единица переноса возникает при переходе разряда из нулевого состояния в единичное .

Регистры- устройства, предназначенные для записи, хранения и выдачи в соответствующие цепи ЭВМ двоичного кода числа. Регистры собирают из триггеров, число которых соответствует числу разрядов в машинном слове (цифровом коде). Запоминающее устройство (ЗУ) или память предназначена для приема, хранения и выдачи исходных данных: команд,

чисел ,промежуточных и конечных результатов вычислений.

Устройство управления (УУ) предназначено для управления, выполнения алгоритма вычислений.

Устройство ввода-вывода (УВВ) является внешним, или переферийным устройством ЭВМ. Оно предназначено для преобразования информации на машинный язык в устройстве ввода и обратного преобразования в устройстве вывода. Число внешних устройств современных ЭВМ сильно расширилось . Созданы специальные унифицированные устройства управления вводом-выводом – каналы ввода –вывода (КВВ). КВВ соединяются с ОЗУ по средством унифицированной системы связей ,называемой интерфейсом ОЗУ.

Вопросы для самоконтроля:

1. Какие основные логические элементы используют в ЭВМ?

2. Назвать области применения информационных технологий

[1,3,5]

Тема 2.7 Интегральные схемы микроэлектроники

Студент должен иметь представление:

· о соединении элементов и оформлении микросхем;

Знать:

· классификацию, маркировку интегральных схем микроэлектроники.

Общие сведения. Понятия о гибридных, толстопленочных, тонкопленочных, полупроводковых интегральных схемах. Технология изготовления микросхем. Соединение элементов и оформление микросхем. Классификация, маркировка и применение микросхем.

Методические указания

Современные ЭВМ строят на элементах ,реализованных методами микроэлектроники . Цели микроминиатюризации элементов : снижение объема и массы при одновременном повышении быстродействия и надежности. Основные технологические способы микроминиатюризации элементов следующие :

1. Микромодульная технология (ММТ) ,которая использует дискретные миниатюрные элементы.

2. Тонкопленочная технология (ТПТ) , которая использует процессы осождения или напыления на изолирующие подложки проводящих и полупроводящих пленок.

3. Интегральная тенхнология (ИТ) , которая обеспечивает изготовление компонентов в виде отдельных областей в полупроводниковых материалах , обладающих характеристиками дискретных радиокомпонентов. Все межкомпонентные соединения выполняются совместно с компанентами.

4. Гибридные технологии (ГТ) , которые используют интегральные и тонкопленочные технологические процессы. В логических элементах , выполненных по ГТ , активные компоненты реализуются на основе кремниевых кристаллов , а для пассивных используются тонкие пленки.

В последние годы в микроэлектронике возникло новое направление – молекулярная электроника. Это направление связано с использованием свойств отдельных молекул или комплексов молекул.

Вопросы для самоконтроля:

1. В чем заключается принцип элементарной интеграции.

2. Чем отличается гибридная технология от полупроводниковой интегральной микросхемы.

3. Какие степени интеграции вы знаете?

4. Какими преимуществами обладает микросхема?

[3,5]

Тема 2.8 Микропроцессоры и микро ЭВМ

Студент должен иметь представление:

· о микропроцессах и микро-ЭВМ ( место в структуре вычислительной техники для комплексной автоматизации управления производством; архитектура и функции; примеры применения микропроцессорных систем)

Микропроцессоры и микро ЭВМ, их место в структуре вычислительной техники для комплексной автоматизации управления производством, в информационно-измерительных системах в технологическом оборудовании.

Архитектура и функции микропроцессоров; типовая структура микропроцессора и ее состовляющие; вспомогательные элементы микропроцессоров; устройство управления, стековая память.

Полупроводниковые запоминающие устройства (ЗУ): классификация ЗУ; основные качественные показатели.

Интерфейс в микропроцессорах и микро-ЭВМ; обмен информацией между ЗУ и устройствами ввода и вывода; устройство ввода и вывода интерфейса.

Периферийное оборудование микро-ЭВМ, устройство ввода-вывода, системы отображения информации; специализированные периферийные устройства.

Серийно выпускаемые микропроцессорные комплекты (МКП), микро-эвм, программное обеспечение, стандартизация в области МКП; примеры применения микропроцессорных систем.

Методические указания:

Микропроцессоры – это обрабатывающее и управляющее устройство , выполненное с использованием технологий больших интегральных схем (БИС) и обладающие способностью выполнять под программным управлением обработку информации , включая ввод и вывод информации , принятие решений , арифметические и логические операции.

В состав микропроцессора входят арифметико-логическое устройство , схема управления и синхронизации ,регистр – аккумулятор, сверхоперативное запоминающее устройство , программный счетчик , адресный стек , регистр команд и дешифратор кода операции , схема управления памятью и вводом-выводом.

Микро-ЭВМ – это вычислительная и управляющая система , выполненная на основе микропроцессора , в состав которой входят программная памят , память данных ( оперативное запоминающее устройство ) ,устройство ввода-вывода ,генератор тактовых сигналов ,а также другие устройства ,выполненные с использованием БИС или элементов с меньшей степенью интеграции.

МП и микро-ЭВМ имеют два основных направления применения : первое- традиционное для средств ВТ и второе – нетрадиционное , в котором до появления МП использование средств ВТ не предполагалось , в системах управления технологическими процессами , в измерительных приборах и др.

Микро-ЭВМ имеют ряд преимуществ по сравнению с мини-ЭВМ : достаточно мощная система команд с развитой системой адресации , многоуровневая система прерываний и малое время реакции на запросы , наличие каналов прямого доступа памяти , периферийный интерфейс в виде одной или нескольких БИС ввода-вывода .Микро-ЭВМ имеют на порядок лучшее показатели , чем мини-ЭВМ , по отношению стоимости к числу команд или к числу регистров общего назначения.

Микро-ЭВМ уступают мини-ЭВМ по следующим показателям: меньшая разрядность и в два-три раза меньшее быстродей -ствие.

Применение микро-ЭВМ в системах управления, в измерительных приборах и др. определятся следующими основными преимуществами по сравнению с устройствами с жесткой структурой : значительно большая гибкость , простота конструкций , меньшая стоимость , более высокая надежность. Данные преимущества систем на основе МП обусловили их применение вместо систем в жесткой структурой как основное направление применения .

Вопросы для самоконтроля:

1. Привести пример программного управления технологическим процессом на производстве.

2. Как осуществляется программирование задачи при ее решении на ЭВМ.

[5,8]

3. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

Номер темы

Номер и наименование работы (занятия)

Количество аудиторных часов

1

2

3

Тема 1.2

Лабораторная работа 1. Изучение соединений резисторов и проверка законов Ома и Киргофа

1

Тема1.4

Лабораторная работа 2. Исследование методов измерения сопротивлений с применением омметров, измерительных мостов, мегамметров.

1

Тема 1.5

Лабораторная работа 3. Неразветвленная цепь переменного тока с активным сопротивлением и индуктивностью (емкостью)

1

Тема 1.6

Лабораторная работа 4. Исследование трехфазной цепи при соединении приемников электроэнергии звездой и треугольником.

2

Тема 1.7

Лабораторная работа5. Исследование режимов работы трансформатора

2

Тема 1.8

Лабораторная работа 6. Снятие характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором.

2

Тема 1.9

Лабораторная работа 7. Испытание генератора постоянного тока с параллельным возбуждением.

2

Тема 2.1

Лабораторная работа 8.

Снятие входных и выходных характеристик транзистора.

Тема 2.3

Лабораторная работа 9.

Исследование одно-, двухполупериодного выпрямителя.

2

4 ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

Задача 1

Цепь постоянного тока содержит несколько резисторов, соединенных смешанно. Схема цепи с указанием сопротивлений резисторов приведена на соответствующем рисунке.

Номер рисунка, заданные значения одного из напряжений или токов и величина , подлежащая определению, приведены в табл. 1. Всюду индекс тока или напряжения совпадает с индексом резистора, по которому проходит этот ток или на котором действует это напряжение. Например, через резистор R3 проходит ток I3 и на нем действует напряжение U3 . Определить также мощность, потребляемую всей цепью, и расход электрической энергии цепью за 8 ч. работы.

Пояснить с помощью логических рассуждений характер изменения электрической величины , заданной в таблице вариантов (увеличится, уменьшится, останется без изменения ), если один из резисторов замкнуть накоротко или выключить из схемы . Характер действия с резистором и его номер указаны в табл. 1. При этом считать напряжение UAB неизменным . При трудностях логических пояснений ответа можно выполнить расчет требуемой величины в измененной схеме и на основании сравнения ее в двух схемах дать ответ на вопрос .

Указание. См. решение типового примера 1

Таблица 1

Номер варианта

Номер рисунка

Задаваемая величина

Определить

Действие с резистором

Измерение какой величины рас-

смотреть

Замыкае-тся нако-

ротко

Выключается из схемы

01

1

UAB =100B

I3

R1

-

I5

02

1

I1 =- 20A

I4

-

R4

U5

03

1

U2 =- 30B

I5

R5

-

I1

04

1

I5 =- 10A

UAB

-

R2

I5

05

1

UAB =50B

I1

R2

-

U3

06

1

I2 = 3,75A

I5

-

R5

U1

07

1

I4 =- 5A

UAB

R4

-

I3

08

1

U5 =- 30B

I1

-

R3

U4

09

1

I3 =- 1,25A

U1

R3

-

I2

10

1

UAB =80B

U4

-

R4

I5

11

1

I3 =- 1A

U5

R2

-

U1

12

1

U1 =- 20B

I4

-

R5

I4

13

1

I5 =- 5A

UAB

R5

-

U1

14

1

I1 =- 12A

I3

-

R2

U4

15

1

U5 =- 60B

I1

R1

-

U5

16

1

UAB =5B

U4

-

R5

I3

17

1

I2 =- 3A

I5

R4

-

U1

18

1

U2 =- 12B

U1

-

R4

I5

19

1

U4 =- 36B

I1

R4

-

U5

20

1

I4 =- 12A

UAB

-

R4

U5

21

2

UAB =50B

I3

R1

-

I6

22

2

I2 =- 2A

UAB

-

R2

U1

23

2

I1 =- 5A

U4

R3

-

I1

24

2

U5 =- 18B

I1

-

R6

I2

25

2

I3 =- 1,2A

UAB

R5

-

U1

26

2

I5 =- 6A

I1

-

R3

U2

27

2

UAB =80B

I6

R1

-

U5

28

2

I6 =- 3A

U1

-

R5

U1

29

2

U4 =- 10B

UAB

R3

-

I6

30

2

U1 =- 20B

I4

-

R2

I5

31

2

I4 =- 2A

UAB

R6

-

I1

32

2

U2 =- 30B

I1

-

R4

I5

33

2

I2 =- 4A

U1

R5

-

U3

34

2

U3 =- 20B

UAB

-

R6

U1

35

2

UAB =- 60B

I5

R4

-

I4

36

2

I1 =- 20B

I4

-

R3

U5

37

2

U6 =- 24B

U1

R6

-

I2

38

2

U1 =- 40B

I6

-

R5

I4

39

2

I6 =- 6A

UAB

R4

-

U1

40

2

UAB =- 120B

I5

-

R2

U6

41

3

I1 =- 12A

U6

R1

-

U3

42

3

I4 =- 3A

UAB

-

R2

U1

43

3

UAB =-