Главная      Учебники - Разные     Лекции (разные) - часть 13

 

Поиск            

 

А. В. Воронин

 

             

А. В. Воронин

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

«Томский политехнический университет»

________________________________________________________

А.В. Воронин

МОДЕЛИРОВАНИЕ

МЕХАТРОННЫХ
СИСТЕМ

Издательство

Томского политехнического университета

2007

Содержание

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ГЛАВА 1 ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ

МОДЕЛИРОВАНИЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1. Общие определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2. Классификация методов моделирования по типу модели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3. Математическое моделирование и математические модели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4. Классификация методов математического моделиро-вания применительно к этапу построения математической модели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5. Классификация методов математического моделирова-ния применительно к этапу исследования математической модели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6. Характеристики математической модели . . . . . . . . . . . .

Глава 2. АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ. МЕТОД ГРАФОВ СВЯЗЕЙ . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. Компонентное моделирование . . . . . . .. . . . . . . . . . . . . . . .

2.2. Основные определения графов связей . . . . . . . . . . . . . . . .

2.2.1. Переменные связей . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.2. Интерпретация переменных связей . . . . . . . .. . . . . . . .

2.2.3. Типовые элементы графа связей . . . . . . . . . .. . . . . . . . .

2.2.4. Физическая интерпретация основных элементов графов связей . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3. Моделирование электрических систем на графах связей

2.4. Эквивалентные преобразования графа связей . . . . . . . . . .

2.5. Моделирование механических систем на графах связей .

2.6. Моделирование электромеханических систем . . .. . . . . . .

2.7. Получение математической модели графа связей в форме системы уравнений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8. Причинные отношения в графе связей . . . . . . . . . . . . . . .

2.9. Построение структурных схем по графу связей . . . . . . . .

2.10. Применение правила циклов к графу связей . . . . . . . . . .

2.11. Общие принципы графического представления меха-тронных систем в пакетах автоматизированного моделиро-вания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Глава 3 Исследование систем во временной области . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1. Механизмы продвижения модельного времени . . . . . . . .

3.2. Алгоритмы численного моделирования нелинейных

динамических систем . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1. Свойства методов численного моделирования . . .. . . .

3.2.2. Методы явные и неявные . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3. Выбор между явными и неявными методами в процедурах моделирования мехатронных систем . . . . . . . . . . .

3.2.4. Порядок метода интегрирования . . . . . . . . . . . . . . . . . .

3.2.5. Многошаговые методы интегрирования . . . . . . . . . . . .

3.2.6. Процедуры численного моделирования с автомати-ческим выбором шага . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.7. Особенности численного интегрирования мехатрон-ных систем . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3. Моделирование гибридных (событийно-управляемых) мехатронных систем . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Глава 4. Автоматизированное моделирование технических объектов . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1. Особенности современных систем автоматизированного моделирования . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2. Иерархическое проектирование и многоуровневое моделирование мехатронных систем . . . . . . . . . . . . . . . . . . . . .

4.3. Компонентное моделирование технических систем . . . .

4.4. Архитектура программ автоматизированного моделирования . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1. Графический интерфейс программ математического моделирования динамических систем . . . . . . . . . . . . . . . . . .

4.4.2. Язык описания объекта, транслятор, СУБД, монитор .

4.4.3. Инструментальные средства моделирования (математическое ядро) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5. Методы построения моделирующих программ . . . . . . . .

4.5.1. Структурное моделирование . . . . . . . . . . . . . . . . . . . . .

4.5.2. Решатели для структурного и мультидоменного моделирования . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

глава 5. пакеты визуального моделирования мехатронных систем . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1. Классификация пакетов моделирования технических систем . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2. Пакеты структурного моделирования . . . . . . . . . . . . . . . .

5.2.1. Пакет MATLAB/Simulink . . . . . . . . . . . . . . . . . . . . . . . .

5.2.2. Пакет VisSim . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.3. Пакет МВТУ . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .

5.3. Пакеты физического мультидоменного моделирования .

5.3.1. Пакет Modelica/ Dymola . . . . . . .. . . . . . . . . . . . . . . . . . .

5.3.2. Пакет 20-sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4. Пакеты среды MatLab для моделирования мехатронных систем . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.1. Принципы моделирования механических систем в пакете SimMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.2. Пакет моделирования электрических систем SimPowerSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.3. Пакет моделирования гибридных систем StateFlow . .


Введение

Моделирование является важнейшим и неотъемлемым этапом процедуры проектирования современных мехатронных устройств и систем. В настоящее время сложно представить себе специалиста не способного проверить моделированием обоснованность принятых технических решений. Соответственно, постоянно возрастает роль моделирования в учебном процессе. При подготовке дипломных и курсовых работ по дисциплинам, связанным с разработкой и исследованием технических устройств, этап подготовки и использования соответствующих математических моделей является одним из основных.

Формирование мехатроники можно рассматривать как продолжение и углубление процесса, который в свое время привел к появлению электромеханики, как науки, сочетающей механику и электротехнику. Развитие микроэлектроники и микропроцессорной техники создало условия для нового качественного скачка в функциональных возможностях технических систем, связанных с движением механических устройств, что привело к возникновению новой науки.

Существует большое число формальных определений мехатроники и мехатронных систем, по сути, мало отличающихся друг от друга. В Государственном образовательном стандарте РФ междисциплинарной специальности 07.18 "Мехатроника" (1995 г.) оно звучит следующим образом:

Мехатpоника — это новая область науки и техники, посвященная созданию и эксплуатации машин и систем с компьютеpным упpавлением движением, котоpая базиpуется на знаниях в области механики, электpоники и микpопpоцессоpной техники, инфоpматики и компьютеpного упpавления движением машин и агpегатов.

Из анализа данного определения следует, что:

- мехатронные системы предназначены, для реализации заданного движения и основу любой мехатронной системы составляет некоторый исполнительный механизм;

- необходимой частью мехатронной системы является привод – электромеханический, гидравлический или какой-то другой;

- важным компонентом мехатронной системы является управляющее устройство, задача которого – обеспечение сложных координированных движений механической части.

Это позволяет определить особенности математических моделей мехатронных устройств, понимая под ними объекты, для исследования и проектирования которых используются математические модели, отражающие взаимное влияние протекающих в объекте процессов различной физической природы – механических, электрических, информационных и т.п. [22].

Аналогично тому, что мехатронная система это синергетическое объединение механической, электрической и компьютерной частей, средства моделирования должны допускать совместное моделирование этих частей на единой методологической основе, давая возможность строить и исследовать многоаспектные модели [30].

Реализовать это возможно двумя способами. Во-первых, можно перейти к единой системе дифференциальных уравнений, как это обычно делается в теории автоматического управления (ТАУ). В этом случае все физические особенности отдельных частей системы будут потеряны. Вариантом такого подхода является структурное моделирование, где все переменные являются скалярными сигналами и их можно соединять (как в структурной схеме).

Недостаток подхода – большой объем предварительных преобразований (в случае системы уравнений), или получение схемы, мало напоминающей реальную систему.

Другой вариант – использование систем моделирования, которые способны на единой методологической основе моделировать механические, электрические и информационные компоненты, т.е. объединять их в единую схему, сохраняя при этом привычные для специалистов в предметных областях способы задания исходной информации.

Описываемый подход отличается от принятого в ТАУ тем, что в математических моделях используются не абстрактные сигналы, а величины, непосредственно характеризующие физическое состояние объекта (токи, потенциалы, давления, силы и т.п.) и связанные компонентными уравнениями. Именно этот подход становится доминирующим в последнее время, и именно он является основным объектом рассмотрения в данной книге.

При этом основу моделирования мехатронных систем составляет моделирование механических конструкций. Как правило, именно моделирование механических конструкций является наиболее сложным и трудоемким делом. Именно компоненты механических конструкций описываются наиболее сложными математическими моделями. Они наиболее многомерны и предъявляют наиболее жесткие требования с инструментальным средствам моделирования.

Данное учебное пособие предназначено для студентов, обучающихся по направлению «Автоматизация и управление» и соответствует образовательному стандарту Томского политехнического университета по специальности 071800 – Мехатроника.

Изложенный материал ориентирован на формирование у студентов знаний о современном состоянии и перспективах развития средств и методов моделирования мехатронных систем, умения ставить задачу моделирования, выбирать структуру, а также алгоритмическую и программную реализацию имитационной модели сложного динамического объекта управления; получать математические модели объектов с элементами различной физической природы и оценивать их адекватность; умения ориентироваться в средствах и методах моделирования, выбрать и настроить современную среду автоматизированного моделирования.

Настоящее учебное пособие состоит из 5 частей и начинается с главы, в которой вводятся понятия модели и моделирования, перечисляются задачи, решаемые средствами моделирования, показывается роль и место моделирования в общей процедуре проектирования технических систем. Рассматриваются классификации основных методов моделирования, методов получения и исследования математических моделей с помощью ЭВМ.

Во второй главе рассматривается формализация процесса построения математических моделей мехатронных систем с использованием метода графов связей, относящегося к группе топологических методов, т.е. методов использующих графическое представление исследуемого объекта. Он основан на использовании так называемого «энергетического» подхода и позволяет на единой методологической базе строить математические модели объектов, содержащих элементы различной физической природы. Знакомство с этим методом позволит студентам лучше понять принципы построения современных систем автоматизированного моделирования.

В главе 3 изложены некоторые сведения о принципах управления модельным временем и современных численных методах исследования динамических систем. Данные сведения необходимы студентам, в том числе и для того, чтобы уметь грамотно пользоваться настройками, которые допускают современные инструменты автоматизированного моделирования.

Глава 4 посвящена современным компьютерным инструментам автоматизированного моделирования. Изложены основные сведения об архитектуре и принципам построения систем автоматизированного моделирования, описаны состав и функциональное назначение основных составляющих современных пакетов моделирования, а также принципы управления процессом моделирования.

Глава 5 содержит обзор некоторых наиболее популярных и перспективных инструментов моделирования мехатронных систем. Коротко описаны возможности пакетов структурного (MATLAB/Simulink, VisSim, МВТУ) и физического мультидоменного моделирования (Modelica/ Dymola, 20–sim). Более детально рассмотрены расширения среды MATLAB, в частности пакет моделирования механических систем SimMechanics, электрических систем SimPower, а также пакет событийного моделирования StateFlow. Показано, что комплексирование возможностей этих пакетов на базе пакета Simulink, позволяет получить мощный инструмент исследования сложных мехатронных систем.

ГЛАВА 1

ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ

1.1. Общие определения

С моделированием любой человек сталкивается постоянно, обычно не осознавая этого. Действия пешехода при переходе улицы базируется на построении некоторой модели дорожной обстановки и прогнозе ее развития. От того, насколько верно пешеход воспринимает окружающую действительность, очень часто зависит не только его благополучие и здоровье, но и сама жизнь.

В процессе профессиональной деятельности, если она связана с проектированием и эксплуатацией современных технических объектов и систем, исследователь постоянно вынужден иметь дело с построением и исследованием моделей этих объектов. Сейчас моделирование представляет собой основной научный инструмент, применяемый как для чисто теоретических, так и для практических целей.

Создание нового технического объекта – сложный и длительный процесс, в котором стадия проектирования имеет решающее значение в осуществлении замысла и достижении высокого технического уровня. Моделирование, в свою очередь, является одним из важнейших этапов проектирования любого технического объекта, позволяя заменить или значительно сократить этапы наладки и натурных испытаний. Роль моделирования особенно высока, когда натурные испытания слишком дороги или опасны, как это имеет место, например, для космических аппаратов, химических и ядерных реакторов и других объектов.

Термин «моделирование» весьма многогранен и разными людьми воспринимается по разному. Применительно к техническим (в том числе мехатронным) системам, под моделированием будем понимать процесс, состоящий в выявлении основных свойств исследуемого объекта, построении моделей и их применении для прогнозирования поведения объекта .

Таким образом, моделирование включает в себя отображение проблемы из реального мира в мир моделей (процесс абстракции), анализ и оптимизацию модели, нахождение решения и отображение решения обратно в реальный мир.

Следует отметить, что в иностранной литературе то, что выше определено как моделирование, покрывается двумя терминами:

- • «мodeling» – относится, прежде всего, к процессу построения моделей объектов и систем;

- • «simulation» – обозначает проведение компьютерного эксперимента с моделью (обычно численного), с визуализацией результатов этого эксперимента.

Моделирование, как процесс, имеет дело с моделями. Модель – создаваемое человеком подобие изучаемых объектов: макеты, изображения, схемы, словесные описания, математические формулы, карты и т.д.

Более строго, модель можно определить как физическую или математическую конструкцию, определенным образом отражающую объект и служащую для его изучения .

Модель является заменителем реального объекта, обладающим, по крайней мере, двумя свойствами:

- она отражает те свойства объекта, которые существенны для данного исследования;

- всегда проще объекта.

Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследование свойств объектов на их моделях называется теорией моделирования .

Тот факт, что модель отражает лишь важнейшие для данного исследования свойства объекта, дает возможность соотнести одну и ту же модель с целым рядом конкретных объектов, что позволяет по установленным свойствам одного объекта судить о свойствах больших групп объектов, подобных первому объекту.

Полученные модели можно использовать для следующих целей.

Познание (изучение объекта). Одной из особенностей хорошо построенной модели является то, что она несет в себе информации больше, чем в нее закладывалось при создании. Особенно это относится к моделям природных объектов, получаемых в результате естественнонаучных исследований. Скрытая неосознанная информация проникает в модель объективно, помимо воли исследователя. Это позволяет на основе изучения модели получать новые сведения об объекте, т.е. изучать объект, изучая его модель. Свойство модели служить источником познания называют потенциальностью . Естественно, что разные модели в разной степени «богаты» такой дополнительной информацией.

Процесс познания в фундаментальных дисциплинах (физика, химия и д.р.) развивается по схеме «явление – модель – явление». Открытие и изучение нового явления приводит к построению его модели, которая, в свою очередь, позволяет предсказать новые явления. Классическим примером такой цепочки явилось открытие на основе Ньютоновского закона всемирного тяготения планеты Нептун. И в настоящее время большое число объектов в космологии появляются сначала на уровне теоретических предсказаний и лишь затем подтверждаются наблюдениями.

Предсказание . Правильно построенная модель позволяет предсказывать поведение исследуемого объекта при тех или иных внешних воздействиях. Это свойство является ключевым в процессе замены объекта его моделью. Задача предсказания актуальна в тех случаях, когда эксперименты с реальным объектом невозможны по причинам повышенной опасности, чрезмерной длительности или невозможности воспроизведения внешних условий. Результаты предсказания могут использоваться для формирования управляющих воздействий на объект, а также для поиска оптимальных режимов работы этого объекта.

Обучение. Использование реального объекта для обучения часто связано с рисками как для объекта, так и для обучаемого. Заменяя реальный объект, модели могут быть использованы в качестве имитаторов при создании различных тренажеров, на которых можно не только получить первоначальные навыки управления, но и испробовать такие приемы, которые в иной ситуации отработать невозможно. Для обучения могут использоваться как физические, так и компьютерные модели, а в сложных тренажерах сочетание тех и других. Примером могут служить тренажеры для подготовки пилотов самолетов. Кроме сложной физической системы, моделирующей кабину самолета и обладающей способностью создавать ощущение полета, имитируя движения по крену или тангажу, тренажер снабжен мощной компьютерной моделью, формирующей видеокартинки на экранах кабины и способной адекватно менять их в ответ на действия экипажа.

Отработка новых конструкторских решений . С технической точки зрения возможность использования моделей для проверки и отработки технических решений является самой важной функцией моделирования. Отсутствие реального объекта делает эту функцию безальтернативной, позволяя существенно сократить время разработки нового изделия за счет экономии на его натурных испытаниях. Далее будет показано, что использование модели, для которой еще нет реального объекта, вносит существенные особенности в процесс ее построения и отладки.

В зависимости от типов моделей и методов анализа их поведения различают различные методы моделирования [2,28]. Подходов к классификации этих методов достаточно много. Рассмотрим важнейшие из них.

1.2. Классификация методов моделирования по типу модели

При полунатурном моделировании часть системы (обычно самая громоздкая, дорогая или опасная) заменяется моделью, которая стыкуется с реальным оборудованием (датчиками, средствами обработки информации, приводами, системой управления). Примером является исследование систем ориентации космических аппаратов на конечных этапах проектирования. На Земле невозможно создать условия невесомости, поэтому аппарат помещают на специальные имитационные стенды, обеспечивающие разгрузку несущих конструкций. Вся же остальная аппаратура реальная. Такие же полунатурные эксперименты имеют место при любых проверках ракет, самолетов и т.д. с помощью специальных диагностических устройств.

Достоинство метода в высокой достоверности получаемых результатов. Недостатки – в ограничениях, накладываемых реальным оборудованием. Например, невозможность сжатия процесса моделирования во времени. Реальный объект может быть заменен как реальным объектом, и тогда чаще говорят о макетировании, так и идеальным, в частности математической или компьютерной моделью.

Широко используемое на практике физическое моделирование основано на использовании моделей той же физической природы, что и моделируемый объект, но с более удобными для экспериментирования параметрами: меньшими массой, габаритами и т.п. Оно применяется тогда, когда натурные испытания очень трудно или вообще невозможно осуществить, когда слишком велики (малы) размеры натурного объекта или значения других его характеристик (давления, температуры, скорости протекания процесса и т. п.).

Физическое моделирование основано на свойствах подобия. Два явления физически подобны, если по заданным физическим характеристикам одного можно получить характеристики другого простым пересчетом, который аналогичен переходу от одной системы координат к другой.

Примером физического моделирования является применение аэродинамических труб для продувки уменьшенных копий самолетов или автомобилей. Подобные методы моделирования широко используются и при моделировании гидротехнических сооружений (плотин, каналов).

Достоинство этого метода, прежде всего, в том, что физическую модель зачастую сделать гораздо проще, чем получить ее математическое описание. Современные технические средства позволяют легко получить точную уменьшенную копию самолета или автомобиля. С другой стороны, ряд явлений гораздо легче реализовать физически, нежели расчетным путем (например, эффект трения).

Недостатки данного метода заключаются в его относительной дороговизне, сложности повторения экспериментов и сложности анализа результатов. Не всегда результаты, полученные на малой модели, легко и просто переносятся на реальный объект. Основой обработки результатов физических экспериментов является специальная наука – «теория подобия» [4].

Использование моделей прямой аналогии основано на замене реального объекта моделью иной физической природы. В природе часто физически различные процессы описываются одними и теми же дифференциальными уравнениями или другого типа математическими моделями. Например, много общего имеют течение воды по трубам и ток в электрической цепи. Или заряд конденсатора подобен накоплению кинетического момента в механической системе. Естественно, используется такая модель, которая наиболее проста для реализации и исследований. Обычно это электрические модели. Их просто реализовать, процессы в них проходят быстро, легко могут быть повторены, зафиксированы регистрирующими приборами.

Методы моделирования на электронных вычислительных машинах часто называют методами непрямой аналогии [1]. Они делятся на методы моделирования на аналоговых вычислительных машинах (АВМ) и цифровых (ЦВМ). Во всех методах предполагается наличие исходной системы уравнений в той или иной форме. Это может быть система дифференциальных или логико-дифференциальных уравнений, описывающая весь объект. Либо, например, описания отдельных компонентов и топология объекта.

Методы моделирования на АВМ являются исторически более ранними. Они выросли из методов прямой аналогии и состоят в том, что отдельный электронный компонент реализует определенную элементарную модель (интегратора, усилителя, апериодического звена, устройства умножения, нелинейного звена и т. п.). В результате, электронная модель имеет ту же топологию, что и исходная система. Достоинство моделирования на АВМ – то, что процессы здесь непрерывные, такие же, как в самом объекте. Если регулятор также непрерывный, то моделирование на АВМ может быть эффективным. Недостатки моделей на АВМ заключаются в сложности настройки и перестройки модели, необходимости специальных мер для поддержания ее стабильности, а главное в том, что вес и габариты модели пропорциональны ее сложности. К тому же на аналоговых моделях сложно моделировать современные логико-динамические системы.

Этих недостатков лишены методы моделирования на ЦВМ. Модель легко перестраивается. Реализация цифровых регуляторов также не представляет проблем. Основной недостаток цифровых моделей – необходимость реализации специальных алгоритмов численного интегрирования непрерывных процессов. Если объект имеет широкий разброс постоянных времени, то возникает проблема точного численного интегрирования его динамики, которая решается путем компромисса между временем счета и точностью.

Наконец, возможен расчетно-аналитический метод моделирования , который состоит в получении математической модели и оперировании с ней. С точки зрения исследований систем его возможности ограничены простейшими объектами. Однако формирование математической модели является неотъемлемым элементом любого метода моделирования на ЭВМ.

1.3. Математическое моделирование и математические модели

Введем общее понятие математического моделирования (ММ) , понимая под ним все методы, основанные на построении и использовании различных форм математических моделей проектируемых объектов, независимо от того, как они реализуются. В этом случае методы непрямой аналогии и расчетно-аналитический метод являются методами математического моделирования. При математическом моделировании описание системы производится в терминах некоторой математической теории, например, тео­рии матриц, теории дифференциальных уравнений и т.д.

Математическое моделирование основано на ограниченности числа фундаментальных законов природы и принципе подобия, означающем, что явления различной физической природы могут описываться одинаковыми математическими закономерностями.

Как и всякие модели, математические модели основаны на некотором упрощении, идеализации, отбрасывании факторов, которые для данной задачи или на данном этапе исследований представляются несущественными. Например, модели объектов, используемые на начальных этапах проектирования, могут не учитывать их стохастичность, нелинейность. Механические модели звеньев механизма могут быть получены без учета их реальной формы и т.п.

В зависимости от формы представления математические модели можно разделить на аналитические, структурные и алгоритмические.

Аналитические модели представляют собой отображение взаимосвязей между переменными объекта в виде дифференциальных, алгебраических или любых других систем математических уравнений. Такие модели обычно получают на основе физических законов. Использование аналитических моделей позволяет исследовать фундаментальные свойства объекта, часто без использования ЭВМ.

Структурная модель представляет систему в виде совокупности элементов, а также совокупности необходимых и достаточных отношений между этими элементами и связей между системой и окружающей средой.

В простейшем случае с помощью структурной математической модели воспроизводится структура уравнений, описывающих поведение исследуемого объекта.

Вариантами структурных моделей являются графы, структурные и функциональные схемы, диаграммы и т.д. На принципах структурного математического моделирования работают аналоговые вычислительные машины.

Алгоритмические модели воспроизводят пошаговый процесс численного решения уравнений, представляющих математическую модель исследуемого объекта и обычно реализуются в форме программы для ЭВМ. Результаты исследования на алгоритмических моделях всегда являются приближенными. Применение компьютеров делает алгоритмические модели наиболее универсальными. С их помощью могут быть воспроизведены любые другие математические модели.

Математические модели технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и с возможностями ЭВМ оперировать этими моделями. Как правило, решить все задачи в рамках некоторого единого описания, невозможно. Обычно, требуется структурирование математических моделей на несколько иерархических уровней, отличающихся детальностью описания технического объекта.

Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако большинство математических моделей технических объектов можно отнести к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями. В зависимости от места в иерархии описания математические модели делятся на модели, относящиеся к микро-, макро- и метауровням [29].

Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне – дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями. Попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время , а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Макроуровень является наиболее характерным для исследования мехатронных систем.

Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.

На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние фазовые переменные элементы, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, укрупненное представление элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем размерность ММ на макроуровне.

1.4. Классификация методов математического моделирования
применительно к этапу построения математической модели

В современной науке существуют два основных подхода к построению математических моделей систем [4,29]. Первый их них – это широко распространенный классический подход, который базируется на раскрытии явлений, происходящих внутри рассматриваемой системы.

Построение модели начинается с использования основных физических законов (законов Ньютона, Максвелла или Кирхгофа, законов сохранения массы, энергии, кинетического момента и т.д.) для описания исследуемого объекта, являющегося, например, механическим или электрическим. Из этих законов следуют различные соотношения между рассматриваемыми переменными и, в частности, связывающие их обыкновенные дифференциальные уравнения, дифференциальные урав-нения в частных производных, разностные уравнения.

Базой данного подхода к построению математической модели являются дисциплины, относящиеся к соответствующим предметным областям – теоретическая механика при построении моделей механических объектов, электротехника – при построении моделей электрических цепей и т.д.

Второй подход, характерный для методологии кибернетики и получивший развитие в трудах ее основоположников [9,32], основывается на рассмотрении системы как некоторого объекта, у которого доступными для наблюдения являются только входные и выходные переменные. Его часто называют кибернетическим моделированием . Данный подход сводит изучение системы к наблюдению ее реакций при известных воздействиях, поступающих на вход системы. Модель системы строится при этом как описание некоторого преобразователя вектора входных переменных в вектор выходных переменных. Такая кибернетическая модель сохраняет только подобие векторов входных и выходных переменных оригинала и модели, полностью игнорируя физический смысл и внутреннюю структуру объекта.

Следует отметить, что анализ методов моделирования с точки зрения построения модели может описываться в различных терминах. Выделение классического и кибернетического подхода лишь один из вариантов. Иначе можно говорить о теоретических и экспериментальных моделях. Наиболее же информативным представляется подход к получению модели с позиций «черного» и «белого» ящиков. Его достоинство в том, что он позволяет естественным образом ввести понятие «серого» ящика. Действительно, в реальных условиях редко бывает, что об объекте ничего не известно, кроме реакций. Или, что об объекте известно все. Обычно объект представляет собой «серый» ящик той или иной степени «серости». Эта серость определяется той информацией об объекте, которой владеет исследователь. Может быть известна, например, структура объекта (модели), ориентировочный порядок модели, математическая схема, которую следует применять, линейность и т. д.

Соответственно, разная степень «серости» выливается в разные методы кибернетического моделирования.

Основой кибернетического моделирования являются такие разделы математической теории систем как методы идентификации объектов [32] и методы реализации временных рядов [5].

Целью решения задач идентификации является построение по входным и выходным сигналам изучаемой системы эквивалентной ей системы из заданного класса. Эквивалентность обычно понимается в смысле какого-либо критерия ошибки или функции потерь, являющейся функционалом от выхода объекта и выхода модели , т.е. . Говорят, что модели эквивалентны, если значения функций потерь для этих моделей одинаковы.

Идентификация предполагает использование как априорной информации, так и обработку данных измерений, полученных в результате экспериментов с системой. Такой подход соответствует, скорее, рассмотрению системы как «серого» ящика.

Обычно идентификация – многоэтапная процедура. Основные ее этапы следующие:

- структурная идентификация, которая заключается в определении структуры математической модели на основе теоретических соображений,

- параметрическая идентификация, включающая в себя проведение идентифицирующего эксперимента и определение оценок параметров модели по экспериментальным данным,

- проверка адекватности – проверка качества модели в смысле выбранного критерия близости выходов модели и объекта.

В большинстве технических задач априорные знания об объекте позволяют получить информацию о структуре модели. В результате задача идентификации сводится к задаче оценивания параметров и (или) состояний. Так как реальные системы всегда зашумлены, то идентификация относится к задачам приближенного моделирования.

Следует иметь в виду, что кибернетические модели не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) измерять. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области пространства переменных, в которой осуществлялось их варьирование. Поэтому кибернетические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих в технической системе.

Важно отметить также, что два указанных способа получения математических моделей – классический метод и метод кибернетического моделирования конечно же, не являются взаимоисключающими.

Во-первых, они используют различную исходную информацию и, соответственно, природа ошибок и неточностей в моделях разная. В случае построения моделей на основе изучения «физической реальности» это неопределенность описания среды и неполнота физической модели объекта. В случае кибернетического моделирования основной источник неточностей – зашумленность реальных систем. Соответственно, исходная информация уже искажена помехами.

Во-вторых, при моделировании сложных систем для различных элементов этих систем могут использоваться разные методы получения математических моделей.

1.5. Классификация методов математического моделирования применительно к этапу исследования математической модели

Математическое моделирование процесса функционирования системы можно разделить на аналитическое и имитационное .

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифферен-циальных, конечно-разностных и т.д.) или логических условий.

Аналитическая модель может быть исследована следующими методами:

- аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

- численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных;

- качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость).

Наиболее полное исследование процесса функционирования можно получить, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными исследуемой системы, т.е. в результате аналитического решения задачи. Однако такие зависимости удается получить только для сравнительно простых систем.

Численный метод позволяет исследовать, по сравнению с аналитическим, более широкий класс систем, но при этом полученные решения носят частный характер.

Необходимость учета стохастических свойств системы, недетерминированность исходной информации, дискретность в отдельных элементах, наличие корреляционных связей между большим числом параметров и переменных, характеризующих процессы в системах, приводят к построению сложных математических моделей, которые не могут быть применены в инженерной практике при исследовании таких систем аналитическими методами. Это также не позволяет расчленить систему и использовать принцип суперпозиции в отношении влияющих факторов. Пригодные для практических расчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Указанные обстоятельства приводят к тому, что при исследовании сложных систем наиболее эффективными являются методы имитационного моделирования.

Под имитационным моделированием обычно понимают такое моделирование, при котором реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации. С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области, графических образов.

Основным преимуществом имитационного моделирования, по сравнению с аналитическим, является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов, случайные воздействия и т.д., которые создают трудности при аналитических исследованиях.

Кроме того, имитационная модель обладает гибкостью варьирования структуры, алгоритмов и параметров моделируемой системы, что важно с точки зрения поиска оптимального варианта построения системы. Она позволяет включать в процедуру моделирования результаты натурных испытаний реальной системы или ее частей.

В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе проектирования.

Главным недостатком , проявляющимся при машинной реализации метода ИМ, является то, что решение, полученное при анализе имитационной модели, всегда носит частный характер, так как оно соответствует фиксированным элементам структуры, алгорит­мам поведения и значениям параметров системы, начальных условий и воздействий внешней среды. Поэтому для полного анализа характеристик процесса, а не только получения отдельной точки, приходится многократно воспроизводить имитацион­ный эксперимент, варьируя исходные данные.

Несмотря на то, что имитационное моделирование является мощным инструментом исследования систем его применение не всегда рационально. Издержки, связанные с имитационным моделированием, всегда много выше, чем при аналитических исследованиях, и часто выше, чем при физическом моделировании. Следует хорошо подумать, прежде чем начинать решать задачу таким путем.

В качестве основных критериев целесообразности применения метода имитационного моделирования, по сравнению с аналитическим подходом, можно указать отсутствие законченной математической постановки задачи, не разработанность методов ее аналитического решения либо их чрезмерная сложность и трудоемкость, слабая подготовка персонала, не позволяющая ими воспользоваться.

Если сравнивать с физическим моделированием, то применение имитационного моделирования целесообразно, если иных методов решения задачи просто нет, либо требуется существенное "сжатие" по времени.

1.6. Характеристики математической модели

Математическая модель всегда отражает только часть свойств реального объекта, определяемую целями моделирования. Например, специалиста, автоматизирующего технологический процесс, может интересовать кинематическая модель манипулятора, которая позволяет рассчитать объем зоны обслуживания и траектории перемещения рабочего органа манипулятора. Человеку, проектирующему систему управления робота, кроме кинематической нужна динамическая модель, в которой учитывались бы приведенные к осям приводов моменты инерции звеньев манипулятора, жесткость звеньев, трение в кинематических парах и т.п.. Совершенно иные модели использует конструктор, призванный обеспечить необходимые прочность, жесткость и дизайн проектируемого манипулятора.

Естественно, что при построении модели стремятся как можно более точно отразить свойства объекта, чтобы модель верно отражала свойства моделируемого объекта в смысле, определенном целью моделирования. С другой стороны, чем проще математическая модель, тем легче ее исследовать и использовать при решении задач синтеза. Искусство моделирования состоит в умении выбрать факторы, существенные с точки зрения цели моделирования, и пренебречь эффектами, которые, усложняя математическую модель, не оказывают заметного влияния на поведение системы.

Адекватность. Проблема соответствия модели реальному объекту очень важна. Принято говорить, что модель адекватна оригиналу, если она верно отражает интересующие нас свойства оригинала и может быть использована для предсказания его поведения. При этом адекватность модели зависит от целей моделирования и принятых критериев. Например, модель, адекватная на этапе поискового проектирования, при детализации проекта теряет это свойство и становится слишком "грубой". Учитывая изначальную неполноту модели, можно утверждать, что идеально адекватная модель в принципе невозможна.

В рамках каждой научной дисциплины разрабатывается совокупность приемов и правил, следование которым позволяет создавать отвечающее исходным гипотезам описание и получать предварительную оценку его адекватности рассматриваемому явлению. Окончательный анализ данной оценки осуществляется на этапе проверки модели, на котором устанавливается правомерность исходных посылок в соответствии с целью исследования реального явления и определяется степень соответствия ему полученной модели.

Приближенность модели к действительному объекту можно рассматривать в следующих аспектах [2,4,3]:

- с точки зрения корректности связи «вход-выход»;

- с точки зрения корректности декомпозиции модельного описания применительно к целям исследования и использования моделей.

Степень соответствия моделей в первом случае принято называть собственно «адекватностью», во втором – аутентичностью. В последнем случае требуется, чтобы все подмодели и их элементы были адекватны соответствующим прототипам реального объекта. Проблема аутентичности значительно сложнее адекватности и может рассматриваться лишь при получении математической модели «изнутри». Первая проблема допускает строгий анализ, однако также является актуальной, сложной и далекой от полного разрешения.

Можно выделить два способа оценки адекватности, один из которых используется, если есть возможность сравнить модель и объект, другой – если такой возможности нет.

Первый способ представляет собой разовую процедуру, основанную на сравнении данных, наблюдаемых на реальном объекте, с результатами вычислительного эксперимента, проведенного с моделью. Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью, где под точностью модели понимается количественный показатель, характеризующий степень различия модели и изучаемого явления. Таким образом, в первом способе мера адекватности является количественной. Ей может быть значение некой функции несогласованности между моделью и измерениями.

Причем, оценка принципиально является векторной и взвешенной. Векторность связана с тем, что реальные объекты характеризуются не одним, а несколькими выходными показателями. Наконец, один и тот же выходной параметр модели может оказаться важным для одних применений модели и второстепенным для других.

Обычно погрешность модели по всей совокупности учитываемых выходных переменных оценивается одной из норм вектора

:

или

где – относительная погрешность модели по -ой выходной переменной. Возможна также вариация данного подхода, когда объект заменяется эталонной моделью, заведомо более точной, чем исследуемая. Использование количественной характеристики позволяет сравнивать между собой различные модели по степени их адекватности.

Второй способ представляет собой перманентную процедуру, основанную на использовании верификационного подхода. Такая процедура всегда используется, если нет возможности проверить модель экспериментально (например, объект находится в стадии проектирования, либо эксперименты с объектом невозможны).

Процесс оценки достоверности имеет две стороны:

- - приобретение уверенности в том, что модель ведет себя как реальная система;

- - установление того, что выводы, полученные на ее основе справедливы и корректны.

По сути, он сводится к обычному компромиссу между стоимостью проверки и последствиями ошибочных решений.

Для проверки модели могут использоваться разные приемы, такие как:

- проверка физического смысла (соблюдение физических законов);

- проверка размерности и знаков;

- проверка пределов;

- проверка тренда, т.е. тенденции изменения выходных переменных в зависимости от внутренних и внешних переменных и т.п.

Например, мы должны убедиться, что модель не будет давать абсурдных результатов, если параметры выходят на пределы. Кроме того, результаты должны иметь смысл.

Экономичность. Экономичность математических моделей определяется двумя основными факторами:

- затратами машинного времени на прогон модели;

- затратами оперативной памяти, необходимой для размещения модели. (Особенно актуально для систем реального времени).

Универсальность. Универсальность моделей определяет область их возможных применений. Можно строить отдельные модели для различных экспериментов, например, детерминированные и стохастические. Или для разных режимов работы. Здесь нужен взвешенный подход. Обычно универсальность достигается тем, что в модель включается большое число внутренних параметров, что отрицательно влияет на экономичность.

Устойчивость. При оценке адекватности модели может быть использовано лишь ограниченное подмножество всех возможных значений входных параметров (рабочей нагрузки и внешней среды).

Устойчивость модели – это ее способность сохранять адекватность при исследовании системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы.

Универсальной процедуры проверки устойчивости модели не существует. Разработчик вынужден прибегать к методам «для данного случая», частичным тестам и здравому смыслу. Часто проверка состоит в сравнении результатов моделирования и результатов измерения на системе после внесения в нее изменений. Если результаты моделирования приемлемы, уверенность в устойчивости модели возрастает.

В общем случае можно утверждать, что чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель.

Чувствительность. Очевидно, что устойчивость является положительным свойством модели. Однако если изменение входных воздействий или параметром модели (в некотором заданном диапазоне) не отражается на значениях выходных переменных, то польза от такой модели невелика. В связи с этим возникает задача оценивания чувствительности модели к изменениям параметров рабочей нагрузки и внутренних параметров самой системы.

Обычно такую оценку проводят по каждому параметру отдельно. Основана она на том, что диапазон возможных изменений параметра известен. Данные, полученные при оценке чувствительности модели, могут быть использованы, в частности, при планировании экспериментов: большее внимание должно уделяться тем параметрам, по которым модель является более чувствительной.

Глава 2

АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ мехатронных систем. МЕТОД ГРАФОВ СВЯЗЕЙ

2.1. Компонентное моделирование

С точки зрения уровня моделирования, мехатронные системы являются системами с сосредоточенными параметрами и относятся к макроуровню, на котором исследуемый объект имеет сложную неоднородную структуру, включающую объекты различной физической природы. Эти объекты взаимодействуют друг с другом через энергетические и информационные связи.

В связи с этим серьезный интерес представляют подходы к структурированию сложных объектов. Весьма эффективен при получении моделей технических систем метод функционально законченных элементов [29]. Он основан на выделении типовых элементов технического объекта, завершенных в конструктивном отношении и предназначенных для выполнения определенных функций – двигатель, золотник, усилитель и т. д. Имея библиотеку математических моделей функционально законченных элементов и зная структуру технического объекта, можно составить его полную математическую модель.

Однако отдельный функциональный элемент может также представлять собой достаточно сложный объект. Ничто не мешает применять этот метод иерархически, т.е. строить на том же принципе модели подсистем и отдельных элементов. В результате на нижнем уровне данный метод превращается в то, что в разных источниках называется методом сосредоточенных масс [29], или мультидоменного моделирования [15]. Суть его в том, что в системе выделяются отдельные элементарные материальные элементы, рассматриваемые как носители определенных физических свойств с точки зрения генерации, накопления, передачи и преобразования энергии. Таких элементов совсем не много. В [29] они названы доменами. Каждый из энергетических доменов характеризуется двумя фазовыми переменными, одна из которых называется потоковой, другая потенциальной. Произведение этих переменных всегда есть мощность. Во всех случаях домены представляют собой простые физические устройства, отражают основные физические свойства технических объектов любой физической природы – инерционные, упругие и диссипативные. С точки зрения преобразования энергии это соответствует аккумулированию кинетической энергии, аккумулированию потенциальной энергии и рассеиванию энергии.

Домены составляют основу любой физической модели, но их недостаточно. Нужны еще, как минимум, модели источников энергии и преобразователей параметров потока энергии. Физические свойства элемента, в том числе и домена, описываются математической моделью, отражающей зависимость между фазовыми переменными. Эти выражения называются компонентными уравнениями. Из доменов нижнего уровня могут формироваться более сложные компоненты, характеризующие не одно, а несколько свойств объекта, описываемых системами компонентных уравнений, у которых потенциальные и потоковые переменные носят векторный характер.

Процедура построения математической модели технического объекта представляет собой последовательную интерпретацию свойств этого объекта в форме некоторой структуры, состоящей из типовых компонентов. Достоинство такого подхода, обычно называемого компонентным моделированием , состоит в прозрачности процедуры, в простоте и наглядности самой модели, в легкости внесения в модель изменений, связанных с учетом или не учетом тех или иных свойств объекта. Полученная модель может служить для автоматизированного моделирования технического объекта, либо для перехода к другим традиционным формам математических моделей.

Для получения полной аналитической математической модели технической системы необходимо объединить все компонентные уравнения в общую систему уравнений. Объединение осуществляется на основе физических законов, выражающих условия равновесия и непрерывности фазовых переменных. Уравнения этих законов называются топологическими уравнениями. Условия равновесия записываются для потенциальных переменных в виде , а условия непрерывности – для фазовых переменных типа потока . Если полная математическая модель строится вручную, топологические уравнения формируются исследователем. Если решается задача автоматизированного моделирования, эта функция возлагается на ЭВМ.

Все топологические уравнения являются алгебраическими. Форма компонентных и топологических уравнений одинакова для систем различной физической природы. Полная математическая модель мехатронного объекта, полученная как объединение компонентных и топологических уравнений, представляет систему алгебраических и обыкновенных дифференциальных уравнений относительно фазовых переменных – потоков и потенциалов.

Одним из эффективных методов реализации идеи компонентного моделирования на нижнем уровне (уровне энергетических доменов) является метод графов связей. Метод графов связей относится к группе топологических методов, т.е. методов, использующих графическое представление исследуемого объекта. Он позволяет на единой методологической базе моделировать объекты, содержащие элементы различной физической природы – электрические, механические, электромеханические, гидравлические, пневматические и т.д. В литературе известны применения этого метода к изучению химических и биологических систем. Для расширения сферы его применения нужно лишь найти соответствующую интерпретацию общих понятий метода в соответствующей предметной области.

Метод графов связей является удобным инструментом для теоретического получения моделей компонентов. Это связано с высокой степенью формализации метода, в частности введением моделей узлов, что позволяет оперировать только компонентными уравнениями при формировании моделей сложных объектов. Для графов связей разработаны сравнительно простые процедуры перехода к традиционным моделям в форме систем дифференциальных и алгебраических уравнений, передаточных функций и структурных схем.

Метод графов связей перспективен и для автоматизированного моделирования как средство для формирования моделей сложных объектов. Некоторые пакеты допускают прямое включение элементов графов связей в структурные модели систем.

Наконец, метод графов связей позволяет лучше понять особенности и взаимосвязи двух основных подходов к автоматизированному моделированию мехатронных систем – структурного и физического мультидоменного (другими словами, моделирование на уровне передачи сигналов и моделирование на уровне передачи энергии), что полезно для пользователя современных систем моделирования.

2.2. Основные определения графов связей

Метод графов связей (ГС) или связных графов [26] основан на представлении о том, что любые физические процессы состоят из элементарных актов преобразования энергии. Такими элементарными процессами являются накопление энергии, диссипация (потери) энергии и преобразование энергии без потерь. Таким образом, метод ГС демонстрирует известное единство природы и протекающих в ней физических процессов.

Граф связей представляет собой совокупность элементов, соответ­ствующих основным типам преобразования энергии и изображаемых в качестве вершин графа, соединенных связями (дугами графа).

Связь изображается в графе линией с полустрелкой, показывающей принимаемое при моделировании за положительное направление передачи энергии. Для каждой связи в графе определены шесть величин, три из которых являются интегральными.

Каждый элемент характеризуется уравнением или системой уравнений относительно переменных относящихся к его связям.

2.2.1. Переменные связей

Основными переменными связей являются усилие и поток . Эти величины являются функциями времени и называются переменными мощности связи. Остальные четыре переменные вычисляются через основные по формулам:

мощность

(2.1)

энергия

, (2.2)

перемещение

(2.3)

и момент

(2.4)

Величина – полезная энергия, передаваемая через связь в направлении, определенном полустрелкой.

2.2.2. Интерпретация переменных связей

Некоторые интерпретации переменных связей в системах различной физической природы приведены в табл. 1. Нетрудно проверить, что произведение усилия на поток в каждом случае дает мощность.

Отметим, что принятые в табл. 1.1 способы интерпретации пере-менных не единственно возможные. Можно назвать ток в электрических системах усилием, а напряжение – потоком. Соответственно изменятся и интерпретации момента и перемещения. В этом проявляется дуальность графа.

Таблица 1.1

Интерпретация переменных графов связей

Системы

электри-ческие

механические поступатель-ные

механические вращательные

гидравли-ческие

Усилие

Напряжение

Сила

Момент силы

Давление

Поток

Ток

Скорость

Угловая

скорость

Расход

Момент

Потокосце–пление

Импульс силы

Кинетический момент

Импульс давления

Переме-щение

Заряд

Перемеще–

ние

Угол пово–

рота

Объем

2.2.3. Типовые элементы графа связей

Элементы графа связей делятся на 4 группы: источники энергии, аккумуляторы энергии, элементы потери энергии и преобразователи энергии без потерь.

В первую группу входят два идеальных источника энергии (рис. 2.1a,b): источник усилия , обозначаемый как , и источник потока , имеющий обозначение . Источник усилия задает значение

, (2.5)

а источник потока

. (2.6)

В электрических системах этим элементам соответствуют, очевидно, идеальные источники ЭДС и тока. Легко устанавливаются аналогии и в системах иной природы. В соответствии со смыслом источников энергия выходит из них, что и отражается направлением полустрелок на связях источников.

Рис. 2.1. Односвязные элементы: a – источник усилия, b – источник потока, c – инерционность, d – потери, e – емкость

Группа аккумуляторов тоже включает два элемента: инерционность и емкость (рис. 2.1c,d). Взаимосвязь между усилиями и потоками для аккумуляторов может быть задана уравнениями:

(2.7)

для инерционности и

(2.8)

для емкости.

Если рассматривать линейные модели, то уравнения аккумуляторов можно записать в виде:

, (2.9)

, (2.10)

где для обозначения параметров аккумуляторов и используются те же буквы, что и в обозначениях элементов.

Аккумуляторы различаются тем, что инерционность имеет свойство накапливать кинетическую энергию, а емкость – потенциальную.

В третью группу входит один элемент потерь , для которого в общем случае

(2.11)

В простейшем случае уравнению (2.11) соответствует линейное уравнение

, (2.12)

где – параметр элемента.

Четвертая группа включает 4 преобразователя энергии: трансфор­матор, гиратор, узел общего усилия и узел общего потока.

Трансформатор (рис. 2.2) преобразует энергию в соответствии с формулами:

(2.13)

где – коэффициент передачи трансформатора.

Рис. 2.2. Трансформатор: a – с постоянным коэффициентом,

b – модулированный

Нетрудно увидеть, что мощности в обеих связях трансформатора равны

.

Примерами трансформаторов являются редуктор, трансформатор переменного тока, рычаг. Трансформатор может иметь переменный коэффициент передачи, зависящий как от времени, так и от некоторой другой переменной. Такой трансформатор называется модулированным и обозначается как MTF.

Гиратор можно получить из трансформатора, если в одной из его связей поменять местами усилие и поток. Уравнения гиратора имеют вид:

(2.14)

где – коэффициент передачи гиратора.

Гиратор, как и трансформатор, сохраняет мощность, то есть

Гираторы тоже могут быть модулированными и изображаются, как это показано на рис. 2.3.

Рис. 2.3. Гиратор: a – с постоянным коэффициентом, b – модулированный

Отметим, что свойствами гиратора обладает, например, гироскоп, а в радиоэлектронике известно применение специальных устройств, называемых гираторами, с целью замены индуктивностей емкостями.

Гираторы и трансформаторы могут отображать преобразование энергии одной физической природы, а могут отображать также преобра-зование механического движения в электрическое, электрического в магнитное и т.п.

Узел общего усилия (0-узел) может иметь любое количество связей (рис.2.4). Узел получил свое название потому, что усилия во всех его связях равны

. (2.15)

Рис. 2.4. Узлы графа связей: a – узел общего усилия (0 – узел), b – узел общего потока (1 – узел)

При этом алгебраическая сумма потоков в связях узла равна нулю:

(2.16)

Учитывая (2.15) и (2.16), можно получить закон сохранения энергии в 0-узле:

(2.17)

Узел общего потока (1-узел) во всем подобен узлу общего усилия, если поменять местами усилия и потоки. Таким образом, для 1-узла:

, (2.18)

, (2.19)

. (2.20)

Знаки слагаемых в (2.19) и (2.20) определяются направлением полустрелок в связях.

Узлы общего усилия и потока отображают два возможных способа разветвления или суммирования потоков энергии в физических системах.

2.2.4. Физическая интерпретация

основных элементов графов связей

Примеры физической интерпретации элементов ГС для электри-ческих и механических систем представлены в табл. 2.1.

Таблица 2.1

Электрические системы

Механические системы

Элемент ГС

Физическое устройство, эффект

Элемент ГС

Физическое устройство, эффект

Источник ЭДС

Источник силы,

момента

Источник тока

Источник скорости

Активное сопротивление

Вязкое трение

Индуктивность

Масса, момент инерции

Емкость

Пружина

Трансформатор

Редуктор, рычаг

Гироскоп

0-узел

Параллельное соединение электрических цепей

0-узел

Подвижное соединение элементов

1-узел

Последовательное соединение элементов

1-узел

Жесткое соединение

элементов

2.3. Моделирование электрических систем на графах связей

Аналогии между элементами ГС и электрическими элементами очевидны. Поэтому правила построения графа связей для электрических цепей могут быть получены на основе простых рассуждений.

Первое правило касается отображения в ГС электрических двух­полюсников. Для примера на рис. 2.5 показано прохождение электри-ческой мощности через резистор. При этом часть входной мощности проходит через резистор (мощность ), а часть теряется в форме рассеиваемого тепла. Поскольку токи в выводах резистора равны, то есть

,

то разветвление мощности отражается в ГС узлом общего потока. Потери мощности отображаются элементом потерь . Весь узел с элементом потерь описывается уравнениями

Рис. 2.5. Потоки мощности в резисторе: a – резистор как двухполюсник, b – потоки мощности в резисторе, c – граф резистора

Подобные рассуждения могут быть проведены и для других электрических двухполюсников: источников ЭДС и тока, индуктивности и емкости. Во всех случаях двухполюсники представляются в ГС 1-узлом и соответствующим односвязным элементом ГС: источником усилия или потока , инерционности , емкости .

Второе правило, проиллюстрированное на рис. 2.6, устанавливает соответствие между узлом электрической цепи и его отображением в графе. Поскольку электрический потенциал всех входящих в узел проводников одинаков, а сумма токов в узле равна нулю, то узел электрической цепи отображается в ГС узлом общего усилия.

Рис. 2.6. Потоки мощности в узле электрической схемы

Эти два простых правила позволяют строить математическую модель в форме графа связей для любой электрической цепи, состоящей из двухполюсников. Для примера на рис. 2.7 представлены простая электрическая схема и соответствующий ей граф связей.

Рис. 2.7. Граф связей электрической цепи: a – электрическая цепь, b – граф электрической цепи

2.4. Эквивалентные преобразования графов связей

Одним из достоинств ГС является возможность эквивалентных преобразований, позволяющих упростить граф.

Некоторые из этих преобразований приведены в табл. 2.3.

Таблица 2.2

Исходный граф

Результат

1

2

.

3

4

5

6

7

8

Первые две строки таблицы показывают, что можно исключить из графа узел с двумя связями при условии, что направление мощности в узле не меняется. Строки 3 и 4 иллюстрируют, что два связанных узла одного типа можно заменить одним. Следствием из этого свойства является возможность переставлять местами узлы одного типа вместе с их связями.

Менее очевидные эквивалентные преобразования, показанные в пятой и шестой строках таблицы, заменяют четырехугольник из 0-узлов и 1-узлов на два узла, заметно упрощая граф. В таблице показано только два варианта направления связей четырехугольника из многих, для которых такое преобразование имеет место.

Последние две строки таблицы демонстрируют изменение направ-ления связей, которое может производиться одновременно для всех связей узла. Это свойство можно обобщить и на другие, более сложные структуры графа. Все указанные в табл. 2.2 эквивалентные преобразования легко доказываются с использованием уравнений (2.15) – (2.19).

Следует отметить, что направление любой связи в графе, кроме односвязных элементов и трансформаторов, может быть изменено на противоположное. Такое преобразование не является эквивалентным, но допустимо, так как соответствующее изменение знаков некоторых потоков и усилий бывает обычно безразличным.

Одно из важных эквивалентных преобразований, не приведенное в табл. 2.2, справедливо только для ГС электрических цепей. Оно состоит в исключении из графа одного из 0-узлов вместе со всеми его связями и объясняется линейной зависимостью уравнений суммирования потоков, записанных для всех 0-узлов. Это свойство следует из особенности электричес­ких цепей, при расчетах которых тоже не записывается закон Кирхгофа для одного из узлов схемы.

Применим рассмотрен­ные преобразования к графу, построенному на рис. 2.7,b.

Во–первых, исключим нижний 0-узел из графа. Оставшаяся его часть показана на рис. 2.8,а. Теперь в получившемся графе можно преобразовать ”четырехугольник”, а после этого исключить лишние 1-узлы в связях элементов , и . Результат преобразо­ваний приведен на рис. 2.8,b.

Рис. 2.8. Эквивалентные преобразования графа связей

Тот же результат может быть получен проще, если в исходном графе исключить другой 0-узел, а точнее – сразу два связанных 0-узла, разор­вав, таким образом, одновременно два четырехуголь­ника графа. В оставшемся гра­фе (рис. 2.9) теперь доста­точно изменить направление всех связей нижнего 0-узла и исключить лишние 1-узлы.

Рис. 2.9. Другой вариант эквивалентных преобразований

Несмотря на значитель­ные “потери” в количестве связей, граф, получен­ный на рис. 2.8,b, полностью отражает все свойства исход­ной электрической схемы. Весьма интересное свойство ГС состоит в том, что каждый 0-узел соединяет графы парал­лель­ных частей схемы, а каждый 1-узел связывает модели последовательных участков. Поэтому 0–узел можно на­звать узлом параллельного соедине­ния, а 1-узел – узлом последователь­ного соединения. Для иллюстрации этого свойства на рис. 2.8,b штрихо­вой линией обведены три части гра­фа, связанные 0-узлом. Нетрудно убедиться в том, что этим частям в схеме действительно соответствуют параллельные цепи. Каждый 0-узел и 1-узел позволяет увидеть свой вариант топологии схемы.

Отмеченные интересные свой­ства узлов графа позволяют значи­тельно сократить процедуру постро­ения ГС электрических цепей. Во многих случаях, когда схема может быть представлена параллельно и последовательно соединенными ко­мпонентами, граф связей в конечном виде может быть построен сразу, без промежуточных этапов.

2.5. Моделирование механических систем на графах связей

При моделировании механических систем естественно интерпре­ти­ровать усилие как силу в поступательном движении или момент силы во вращательном движении, а поток – как скорость (линей-ную или угловую . Тогда уравнение инерционности представляет собой не что иное, как второй закон Ньютона

, (2.21)

где – масса поступательно движущегося тела, или

, (2.22)

где – момент инерции тела.

Узел общего потока (1-узел) идеально подходит для того, чтобы отобразить принцип Даламбера: равенство нулю суммы всех внешних сил и силы инерции (рис. 2.10). Этот граф является, в сущ­ности, моделью динамики тела с массой под действием суммы сил, которые могут быть как активными внешними силами, так и реакциями связей с другими телами механической системы.

Рис. 2.10. Графическая интерпретация принципа Даламбера

Одновременно 1-узел можно использовать в качестве узла жесткого соединения твердых тел, при котором они, по существу, становится единым телом.

Действительно, 1-узел – это узел общего потока, что в принятой тер­минологии соответствует общей (равной) скорости для всех связей 1–узла, а равенство скоростей означает движение двух тел как единого целого. Два эквивалентных графа на рис. 2.11 иллюс­трирует такую связь твердых тел с массами и .

Рис. 2.11. Жесткое соединение тел

Отметим, что граф, приведенный на рис. 2.11,а, наглядно демон-стрирует также третий закон Ньютона о том, что действие равно противо­действию. Действительно, сила действует на оба тела, но с противо-положным знаком.

В противоположность 1-узлу узел общего усилия (0-узел) можно считать узлом свободного соединения твердых тел. На рис. 2.12 показано, что соединение двух тел через 0-узел позволяет каждому телу иметь свою скорость ( и соответ­ственно). При этом третья связь 0-узла характеризует относительное движение тел:

. (2.23)

Поэтому 0-узел можно использовать при моделировании упругих связей и трения, которые появляются лишь при наличии относительного движения двух тел.

Рис. 2.12. Подвижное соединение тел

Рассмотрим физический смысл других элементов ГС, которые при моделировании механических систем связываются с 0-узлом.

Уравнение емкости для поступательного движения приобретает вид:

. (2.24)

Если его проинтегрировать, то можно получить привычную форму записи закона Гука

, (2.25)

где – жесткость пружины;

– податливость, т.е. величина, обратная жесткости;

– деформация пружины.

Учитывая свойства 0-узла, пружину можно представить графом, приведенным на рис. 2.13,а.

Рис. 2.13. Подвижное соединение твердых тел : a – идеальная пружина, b – источник механической энергии, c – демпфер, d – пружина с внутренним трением

Как уже отмечалось выше, 0-узел необходим и для моделирования трения между двумя движущимся относительно друг друга твердыми телами (рис.2.13,b). Уравнение элемента потерь при вязком трении может иметь вид

, (2.26)

где – коэффициент вязкого трения.

В общем случае зависимость силы трения от скорости может быть и нелинейной. Узел общего усилия с элементом потерь может отражать не только естественно существующее трение, но и специально вводимые в некоторые механизмы устройства: демпферы, амортизаторы.

Подобно упругости и трению моделируются в механических системах источники энергии (рис. 2.13,с). В большинстве случаев источник механического движения, воздействуя на некоторое тело, одновременно создает равное, но противоположное по знаку усилие на свою опору.

В относительном движении могут одновременно проявляться несколько эффектов. Например, при моделировании реальных пружин иногда требуется учитывать потери энергии за счет внутреннего трения в материале пружины. Граф пружины с внутренним трением можно представить параллельно соединенными моделями идеальной пружины и демпфера (рис. 2.13,d) или эквивалентным графом, который приведен на рис. 2.13,e. Очевидно, что элементы могут соединяться подобным образом в любых сочетаниях, кроме одновременного использования и .

Рассмотрим моделирование поступательного движения трех ваго-неток, из которых две, массой и , жестко связаны друг с другом, а между первой и второй вагонетками упруго-вязкая связь. В колесных парах присутствует трение . Вагонетки приводятся в движение человеком, который прикладывает к первой вагонетке силу .

Рис. 2.14. Граф механической системы :

a ) кинематическая схема, b ) исходный граф, c ) упрощенный граф

Источник усилия в исходном графе подключен через 0–узел. В результате, человек прикладывает одно и то же усилие как к вагонетке, так и к опоре, в данном случае, например, к Земле. Величина силы трения в колесных парах пропорциональна разности между скоростью вагонетки и скоростью опоры.

Строго говоря, неподвижное основание тоже представляет собой твердое тело с очень большой массой и может быть представлено в графе 1-узлом с подключенной к нему инерционностью. Однако этот узел является узлом общего потока (скорости), принимаемого равным нулю. Поэтому связи с неподвижным основанием, а также все связи 1-узлов, соединенных с неподвижным основанием, имеют нулевую мощ­ность и, следовательно, могут быть исключены из графа. Таким образом, граф, полученный после эквивалентных преобразований, приведен на рис. 2.14,с.

Свойство связей с неподвижным основанием в механических систе­мах аналогично свойству связей с общей точкой (массой) в электрических системах. Различие состоит только в том, что в ГС электрической системы исключается 0-узел (узел общего нулевого потенциала). Получить полную аналогию можно было бы, применяя при моделировании механических сис­тем дуальную интерпретацию: считать силу потоком, а скорость усилием. В этом случае инерционность в графах заменяется на емкость , 0-узлы на 1-узлы и наоборот. Однако вряд ли достоинства такого способа интер­претации оправдывают появляющиеся терминологические неудобства.

Приведенный на рис. 2.15 пример иллюстрирует моделирование вертикальных движений подвески автомобиля.

Рис. 2.15 Механическая система с поступательным перемещением

Граф связей приведен на рис. 2.15,b. Здесь предполагается, что источник усилия движется вместе с массой . Это может быть сила инерции, либо, например, реактивный двигатель. Как и в предыдущем примере, модель b) включает неподвижное основание, а в модели с) это основание исключено со всеми своими связями.

Еще один простой пример моделирования рычага представлен на рисунке 2.16. Сила действует на массу , а та, в свою очередь, через рычаг приводит в движение массу . Обе массы движутся поступа-тельно с трением. В данном случае рычаг моделируется с помощью элемента «Трансформатор».

Рис. 2.16. Кинематическая схема и граф рычага

Рассмотренная методика моделирования одномерного поступатель­ного движения механических систем может быть без труда распространена и на системы с вращательным движением.

В этом случае роль силы играет момент силы , линейной скорости – угловая скорость , массы – момент инерции и т.д. В уравнениях (2.21)–(2.26) изменятся только обозначения и размерности переменных и констант.

Приведенный на рис. 2.17 пример иллюстрирует построение ГС для узла передачи вращательного движения, включающего одну ступень редуктора с зубчатыми колесами и упругие валы

Рис. 2.17. Механическая вращающаяся система

Способ моделирования зубчатого соединения в рассмотренном примере справедлив, если основание неподвижно.

В случае, когда редуктор установлен на подвижном основании, как по­казано на рис. 1.18,а, ГС должен учитывать угловую скорость основания .

Рис. 2.18. Модель с подвижным основанием

Граф на рис. 1.18,b показывает связь между абсолютными скоростями w1 и w2 , а граф на рис. 1.18,c – связь между скоростями колес зубчатого со­единения , относительно основания. Последний граф можно преобразовать к более простому виду, приведенному на рис. 1.18,d. Здесь дополнительно учтено также трение в опорах валов.

2.6. Моделирование электромеханических систем

Любая электромеханическая система с точки зрения преобразования энергии может быть представлена состоящей их трех частей: электри­ческой Э, механической М и электромеханического преобразователя ЭМП (рис.2.19). Построение математической модели электромеханической систе­мы можно таким образом свести к детальному моделированию каждой из трех частей.

Рис. 2.19. Электромеханическая система

В качестве достаточно простого примера рассмотрим построение графа связей двигателя постоянного тока с независимым возбуждением.

В электрической части двигателя учтем индуктивное и активное сопротивления обмотки якоря, куда «уходит» часть входной электрической энергии. В графе связей это можно отобразить инер-ционностью и элементом потерь, связанными в узле общего потока (тока).

В механической части учтем только инерционность ротора . Электромеханический преобразователь будем считать идеальным, без потерь преобразующим электрическую энергию в механическую. Среди элементов ГС роль идеального преобразователя могут выполнять только трансформатор и гиратор. Выбор из этих двух элементов определяется характером связи электрических и механических переменных. Если принять во внимание, что вращающий момент двигателя пропорционален току в обмотке якоря, то есть усилие в одной связи пропорционально потоку в другой связи, то выбор становится однозначным: электромеханический преобразователь ведет себя как гиратор.

Построенный практически без формул граф связей двигателя постоянного тока приведен на рис. 2.20,а. Если для каждого 1-узла графа записать уравнения сумми­рования усилий, то получим:

(2.27)

где – коэффициент передачи гиратора.

Полученные уравнения для многих приложений достаточно точно описывают процессы, протекающие в двигателе постоянного тока [26].

Более точная и полная модель такого двигателя представлена на рис. 2.20,b. Здесь в механической части двигателя учтены неизбежные потери на трение, а в электромеханическом преобразователе – зависимость коэффициента от магнитного потока , создаваемого током в обмотке возбуждения.

, (2.28)

где – конструктивный параметр, зависящий от количества пар полюсов и свойств якорной обмотки.

Рис. 2.20. Граф связей двигателя постоянного тока

В этой модели можно учесть также определяемую кривой намагничивания нелинейную зависимость индуктивности обмотки воз-буждения от тока .

Важная особенность построенных моделей состоит в том, что в них явно не определены входы и выходы, что позволяет применять их для моде­лирования любых электрических машин постоянного тока, работающих как в двигательном, так и в генераторном режимах.

2.7. Получение математической модели графа связей

в форме системы уравнений

Самый простой способ построения математической модели проиллюстрируем на примере электрической схемы (рис.2.21,а), граф которой приведен на рис.2.21,b. Для этого пронумеруем все связи в графе и, обозначая в связи с номером поток и усилие как и , соответственно, запишем компонентные уравнения каждого из элементов:

Рис. 2.21. Электрическая схема и ее граф

(2.29)

где – оператор дифференцирования.

Примем начальные условия нулевыми. Тогда (2.29) удобнее рассматривать как систему операторных уравнений, где – оператор Лапласа. В дальнейшем, в данной главе, будем придерживаться именно такой интерпретации символа .

Полученные 12 уравнений с 12 неизвестными могут быть записаны в матричной форме:

(2.30)

Решение системы уравнений (2.29) или (2.30) позволяет найти анали­тические выражения для изображений всех потоков и усилий в графе.

Следует отметить, что матричная форма математической модели (2.30) более удобна при численном формировании и решении систем уравнений на ЭВМ. При обычном “ручном” моделировании решение может быть получено методом подстановок в (2.29). Например, для па-дения напряжения на резисторе , последовательно исключая в (2.29) все переменные, кроме , получим

2.8. Причинные отношения в графе связей

Одной из чрезвычайно интересных и полезных особенностей ГС является возможность определения в нем вычислительной причинности. Чтобы пояснить суть этого термина, рассмотрим три формы записи одного и того же уравнения – закона Ома (элемента потерь графа связей):

, (2.31)

, (2.32)

. (2.33)

Первая формула представляет собой неявную запись закона, говорящую о том, что между током и напряжением существует взаимно однозначное соответствие.

Уравнения (2.32) и (2.33) не только задают закон Ома, но и показывают, как вычислить одну физическую величину через другую. Тем самым эти уравнения задают отношения причинности между пере-менными. В (2.32) причиной является ток , а следствием – напряжение . В (2.33), наоборот, напряжение выступает как причина появления тока . Заметим, что в реальной электронной схеме, как правило, не имеет смысла искать ответ на вопрос: что появляется раньше – напряжение или ток. Причинность может быть чаще всего только вычислительной, имеющей смысл при математическом моделировании.

Причинность, а вместе с ней и форму зависимости между усилиями и потоками можно определить в графе связей. Она задается так называемой причинной стрелкой – отрезком на одном из концов связи. На рис. 2.22 показаны два возможных варианта причинности на связи, соединяющей 1-узел и элемент потерь. В первом варианте поток является причиной, то есть входной переменной элемента потерь, а усилие является следствием или выходной переменной элемента потерь. Это дополнительно иллюстрируется на рисунке стрелками, наглядно показы­вающими вход и выход элемента . Первому варианту соответствует уравнение

.

Альтернативному варианту, представленному на рис. 2.22,b, соот-ветствует уравнение

.

Здесь причиной для элемента является усилие , а следствием поток .

Рис. 2.22. Варианты причинности : a ) причинность по отношению

к 1-узлу, b ) причинность по отношению к .

Заметим, что причинность на рис. 2.22 можно рассматривать не только по отношению к элементу потерь , но и по отношению к 1–узлу. Тогда в первом варианте усилие является причиной (входом) для 1–узла, а поток – следствием (выходом) узла. Таким образом, каждая переменная является одновременно причиной (входом) для одного элемента, и следствием (выходом) для другого элемента.

Будем называть связь причинной по отношению к некоторому элементу, если причинная стрелка определяет в качестве входа этого элемента усилие . Тогда связь на рис. 2.22,а можно назвать причинной по отношению к 1-узлу, а связь на рис. 2.22,b – причинной по отношению к элементу .

Таблица 2.3

Варианты расстановки символов причинности на ГС

ГС

Уравнения

Представление в операторно-структурной схеме

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Возможные варианты расстановки причинности на связях различных элементов представлены в табл. 2.3. Расстановка причинных отношений в графе подчиняется перечисленным ниже требованиям.

1. Причинность в связях источников энергии определяется типом источника. Для источника потока связь всегда должна быть причинной по отношению к источнику, а для источника усилия наоборот – причинной по отношению к узлу, с которым связан источник усилия.

2. Аккумуляторы подобно элементу потерь могут иметь оба варианта причинности. Один из вариантов соответствует интегральной причинности, другой дифференциальной – в соответствии с формой правой части уравнений аккумуляторов. Как это видно из табл. 2.3, интегральной причинности соответствует причинность по отношению к элементу для инерционности и причинность по отношению к узлу для емкости .

3. Гиратор и трансформатор тоже могут иметь два варианта задания причинности. При этом трансформатор сохраняет направление причинности, а гиратор меняет направление причинности на противопо­ложное.

4. 0-узел может иметь одну и только одну причинность по отношению к 0-узлу связь. В противоположность этому все связи, кроме одной, должны быть причинными по отношению к 1-узлу.

Перечисленные правила позволяют расставить причинные отношения в любом графе связей, причем, как правило, несколькими способами. Можно рекомендовать следующую последовательность выполнения этой процедуры.

1. В первую очередь расставляются причинные отношения на связях источников энергии, поскольку они предопределены типами источников и не допускают свободы выбора.

2. Затем задаются причинности на связях аккумуляторов. Можно рекомендовать для всех аккумуляторов выбирать один тип причинности, например, интегральный.

3. Последовательно, в соответствии с правилами, расставляются причинные отношения на остальных связях графа. Если на этом этапе появляется причинное противоречие, то можно вернуться к предыдущему пункту и изменить направление причинности у одного или нескольких аккумуляторов.

Один из вариантов расстановки причин­ных отношений в ГС электри-ческой схемы приведен на рис. 2.23. Здесь связь емкости имеет дифференциальную причинность, а свя­зи инерционности и емкости – интеграль­ную. В этом графе невозможно одновременно обеспечить интегральную причинность для емкостей и .

Рис. 2.23. Граф с расставленными причинными отношениями

Рис. 2.24 демонстрирует два варианта расстановки причинности для графа связей двигателя постоянного тока. В первом варианте выбраны интегральные, во втором – дифференциальные причинные отношения в связях инерционностей.

Рис. 2.24. Причинные отношения в графе связей ДПТ:

a ) интегральные, b ) дифференциальные

2.9. Построение операторно-структурных схем по графу связей

Построение операторно-структурных схем основано на том, что явные зависимости потоков и усилий для элементов ГС, получаемые после расстановки отношений причинности, могут быть, в случае линейных систем, отображены в виде функциональных направленных звеньев с соответствующими передаточными функциями, как это показано в последней колонке табл. 2.3.

Трансформаторы и гираторы в структурной схеме представляются парами одинаковых звеньев, одно из которых передает сигнал в прямом направлении, другое – в обратном.

Каждый 0-узел представляется в структурной схеме точкой разветвле­ния для усилий и сумматором для потоков. Каждый 1-узел представляется, наоборот, точкой разветвления для потоков и сумматором для усилий. Нетрудно заметить, что в каждом узле только одна связь, отличающаяся причинностью, соответствует сумме, остальные соответствуют слагаемым.

Знаки слагаемых зависят от направления полустрелок на связях. Если направление связи слагаемого совпадает с направлением связи суммы, то слагаемое входит в сумму со знаком “плюс”, в противном случае – со знаком “минус”.

Процесс построения структурной схемы двигателя постоянного тока показан на рис. 2.25. Для большей наглядности на рис.2.25,b сохранена форма структурной схемы, соответствующая форме графа связей. Перерисованная в более привычном виде эта схема приведена на рис. 2.25,с.

Рис. 2.25. Построение структурной схемы

двигателя постоянного тока

Кроме этого на рис. 2.25,d приведен и другой вариант структурной схемы, построенный по графу связей двигателя постоянного тока с дифференциальными причинностями (рис. 2.2,b). В соответствии с выбранной причинностью в этой схеме, вместо интегрирующих, появи-лись дифференцирующие звенья.

Возможность получения различных вариантов структурных схем явля­ется одним из достоинств ГС.

Второй пример, проиллюстрированный на рис. 2.26, демонстрирует процедуру построения математической модели динамики механической многомассовой системы с упругими связями.

Рис. 2.26. Построение структурной схемы

многомассовой механической системы с упругими связями

Для того, чтобы сразу получить удобную форму структурной схемы, можно предварительно проанализировать прямой путь прохождения сигнала в графе с расставленными причинными отношениями. Этот путь полностью задается направлениями причинности в узлах графа. Так, начинаясь с входного усилия в связи с номером 1, прямой путь может продолжиться только вдоль связи с номером 2, так как в связи 3 направление причинности противоположно. В 3–ю связь прямой путь может прийти только из второй связи после его прохождения через инерционность. Таким образом, прямой путь прохождения сигнала в структурной схеме выглядит довольно извилистым в графе связей. После построения прямого пути в структурной схеме системы (рис. 2.26,с) остается только замкнуть обратные связи.

2.10. Применение правила циклов к графу связей

Правило циклов [24] позволяет для направленного графа или струк-турной схемы записать передаточную функцию между любыми ее входами и выходами. В соответствии с этим правилом передаточная функция графа определяется как

, (2.34)

где – определитель графа; – передаточная функция -го пути между заданными входом и выходом; – определитель сокращенного графа, образующегося в результате исключения пути с передаточной функцией и вершин, через которые этот путь проходит, из исходного графа.

Определитель графа может быть записан следующим образом:

, (2.35)

где -е произведение передаточных функций циклов для циклов графа, взятых из множества независимых циклов. Сумма берется по всевозможным таким комбинациям.

Поясним некоторые из используемых терминов. Циклом называется замкнутый контур в графе или структурной схеме. Передаточная функция цикла определяется как произведение передаточных функций всех звеньев, входящих в цикл.

Независимыми называются циклы, не касающиеся друг друга, то есть не имеющие в структурной схеме общих точек.

В формуле (2.35) – функция -го контура, – произведение передаточных функций двух не касающихся друг друга контуров, – произведение передаточных функций трех взаимно не касающихся контуров и т.д.

Например, в структур­ной схеме двигателя постоянного тока, приведенной на рис. 2.27, есть два цикла и с передаточными функциями

Циклы касаются друг друга, так как имеют общий участок, вклю-чающий сумматор и звено с передаточной функцией , поэтому определитель

.

Рис. 2.27. Применение правила циклов к структурной схеме

Прямой путь от входного воздействия к выходной величине проходит через элементы с передаточными функциями . Соответственно, передаточная функция этого пути равна

.

Этот путь касается обоих циклов, поэтому сокращенный граф циклов не имеет. Тогда , а передаточная функция двигателя определится как

.

Путь от возмущающего момента нагрузки определяется выражением

.

Этот путь не касается цикла , поэтому определитель сокращен-ного графа

,

а передаточная функция двигателя по возмущению

.

Вся информация, необходимая для расчета передаточной функ-ции, есть, очевидно, и в графе связей, так как из него можно получить структурную схему, к тому же в различных вариантах. Рис. 2.28,а иллюстрирует поиск пути и циклов и в графе связей рассмот-ренной выше модели двигателя.

Путь в ГС проходит вдоль связей, не меняющих направления причин­ности в узлах графа. Изменение причинности (то есть изменение усилия на поток и обратно) может происходить только в односвязных элементах ( ) и в гираторе.

Рис. 2.28. Пути и циклы в графе связей

Циклы в ГС, как это показано на рис. 1.28,с, образуются цепочками связей, сохраняющими направление причинности и заканчивающимися на обоих концах односвязными элементами . Отметим, что источники энергии в циклы входить не могут. Как это показано на рис. 2.29 , цикл может включать последовательность 0-узлов и 1-узлов (рис. 2.29,а), трансформаторы (рис. 2.29,b) и гираторы (рис. 2.29,с). Передаточные функции циклов на рис. 2.29,a,b,c имеют вид, соответственно:

Коэффициенты передачи трансфор­маторов и гираторов входят в пере­даточную функцию цикла в квадрате, поскольку цикл проходит через них дважды: один раз в прямом направ­лении, другой раз – в обратном.

Циклы, образуемые цепочками связей, называются плоскими циклами.

Рис. 2.29. Примеры плоских циклов

Рассмотрим решение задачи расчета передаточной функции механизма с редуктором, граф которого приведен на рис. 2.30.

Рис. 2.30 Циклы в графе связей

Передаточная функция единственного прямого пути , проходя-щего последовательно через инерционность , трансформатор , емкость и инерционность определяется произведением переда-точных коэффициен­тов перечисленных элементов

Граф содержит 5 циклов, отмеченных штриховыми линиями в графе. Передаточные функции циклов

Для того, чтобы найти все пары, тройки и т.д. не касающихся циклов, удобно построить вспомогательный граф (рис. 2.30,b), в котором каждая вершина соответствует одному из циклов, а дуга между вершинами проводится, если циклы не касаются.

Каждая дуга в этом графе соответствует паре не касающихся циклов. Таких пар пять: .

Вспомогательный граф наглядно показывает также тройку незави-симых циклов , которая образует в треугольник. Четверок независимых циклов, которые образовали бы четырехугольник, здесь нет. Таким образом, определитель графа связей можно записать как

Путь не касается только цикла , поэтому а пе-редаточная функция системы имеет вид

.

После необходимых подстановок получим

При использовании правила циклов необходимо учитывать, что знак передаточной функции цикла в ГС всегда отрицательный. Это следует из того, что полустрелки на концах цепочки связей в цикле, как это видно из рис. 1.29, всегда направлены в противоположные стороны. Для определения знака передаточной функции пути тоже не обязательно просматривать все изменения знака в цепочке связей, достаточно сравнить направления полустрелок в начале и конце пути.

2.11. Общие принципы графического представления мехатронных систем в пакетах автоматизированного моделирования

Аппарат графов связей представляет собой хороший инструмент для аналитического моделирования, для получения математических моделей систем и объектов. Однако использование элементов графов связей в автоматизированном моделировании имеет ряд недостатков. Во-первых, структура в виде графа связей является слишком детальной при описании сложных систем, например механических объектов в пространственном движении. Модель становится необозримой и сложной для восприятия. Во-вторых, аппарат графов связей не привычен специалистам предметных областей. Более предпочтительными являются электрическая схема при исследовании электрических систем, или кинематическая механическая цепь, при исследовании пространственных механизмов. Эти сложности заставляют искать в рамках компонентного моделирования другие формы задания графической информации об объекте.

Проблемы моделирования систем с элементами различной физической природы неоднократно поднимались и рассматривались рядом исследователей. В России заслуживает внимания группа авторов, опубликовавших ряд работ по теоретическим проблемам моделирования сложных физически неоднородных систем и реализовавших свои идеи в виде достаточно эффективного для своего времени пакета прикладных программ [1,6]. Эти работы тем более заслуживают внимания, что многие изложенные в них идеи явно проглядывают в современных пакетах визуального моделирования.

Практически, в разработанном пакете присутствовали все те главные особенности пакетов автоматизированного моделирования, которые допускал уровень развития технических средств, а именно, графическое представления исходной информации о моделируемой системе, использование библиотек моделей компонентов, использование компонентов как с направленными, так и не направленными связями, использование информационных и энергетических связей и т. д.

Рассмотрим вкратце основные идеи упомянутых работ и сравним их с возможностями современных пакетов визуального моделирования.

В [1] в качестве графической формы модели введена так называемая формализованная схема , являющаяся некоторым обобщением других типов схем: структурной, принципиальной, кинематической, графа связей. В рамках такой схемы каждая часть моделируемой системы представляется наиболее удобным для нее способом.

Формализованная схема может включать типовые элементы с двумя типами связей. Связи первого типа называются информационными. Такие связи отражают передачу сигналов или информации в системе и полностью соответствуют связям, используемым при построении функциональных и структурных схем. Направление передачи сигнала отображается на информационной связи стрелкой. В зависимости от направления стрелки информационная связь может быть входом или выходом элемента.

Связи второго типа отражают передачу энергии в системе и называются энергетическими. Такие связи используются при моделировании физических объектов, в частности, электрических схем, исполнительных механизмов и приводов. Эти связи подобны связям в ГС.

Формализованная схема определена как произвольная совокупность элементов, внешние связи которых соединяются в точках, называемых узлами схемы. Если пронумеровать узлы схемы числами от 0 до , то совокупности узлов можно поставить в соответствие вектор переменных , называемый по аналогии с электрическими цепями вектором потенциальных переменных.

Энергетические связи в формализованной схеме называются ветвями схемы. Совокупности ветвей, пронумерованных в схеме числами от 1 до , ставится в соответствие вектор потоковых переменных . Для потоковых переменных выполняется правило: их алгебраическая сумма в каждом узле схемы равна нулю. Таким образом, потоковые переменные - это аналог токов в электрических цепях.

Однако, в отличие от электрических цепей, потенциальные и потоковые переменные могут быть не только скалярными, но и векторами произвольной размерности.

Частным случаем формализованной схемы является структурная схема. Она строится с использованием типовых звеньев, соединенных информационными направленными связями. В структурной схеме присутствуют только потенциальные переменные, связанные с узлами схемы. Потоковых переменных в структурной схеме нет. На рис. 2.31 представлена структурная схема в нотации пакета REMOS [6].

Рис. 2.31 Структурная схема в нотации пакета REMOS

Данная схема описывается вектором переменных схемы . Из них переменные и - переменные входа и выхода.

На рис. 2.32 аналогичная схема представлена в нотации MATLAB/Simulink. Современный графический интерфейс пакета Simulink позволил отказаться от нумерации связей в структурной схеме.

Рис. 2.32. Структурная схема в нотации MATLAB/Simulink

Приведенные определения позволяют наиболее естественным образом представлять структуру объектов различной физической природы и их систем управления. Например, электрическая цепь может быть представлена своей принципиальной схемой, построен­ной из типовых элементов (резисторов, емкостей, транзисторов и др.). Для примера на рис. 2.33 приведена простая электрическая схема с энергетическими связями. В ней узлам с номерами 0, 1, 2 соответствуют потенциальные переменные - электрические потенциалы . Ветвям, номера которых отмечены в скобках, соответствуют потоковые переменные - электрические токи .

При моделировании механических объектов удобно использовать подход, эквивалентный методу графов связей, с учетом некоторых изменений в принятой терминологии и в условных обозначениях элементов.

Потоковыми переменными в механических системах удобно считать силы и моменты сил, а потенциальными - линейные и угловые скорости. В этом случае 1-узел графа связей может изображаться в схеме просто точкой соединения связей, то есть узлом схемы, и жесткое соединение твердых тел (рис. 2.11) отображается в схеме более наглядно – просто соединением связей элементов в узле схемы.

Подвижное соединение твердых тел, которое на ГС отображается 0-узлом (рис. 2.12), в схеме отображается элементом, называемым одномерным кинематическим 1-узлом. В названии элемента отражается свойство узла предоставлять одну степень свободы в относительном движении.

С учетом введенных изменений любой граф связей может быть изображен в виде схемы с использованием соответствующих элементов. Для иллюстрации на рис. 2.34 приведена схема механической вращательной системы, соответствующая графу связей, построенному на рис. 2.17. В этой схеме пронумерованы узлы, которым соответствуют угловые скорости и ветви (номера ветвей даны в скобках), которыми соответствуют вращающие моменты .

Достоинством формализованной схемы является возможность использования моделей механических элементов с векторными энерге-тическими связями в качестве компонентов для моделирования пространственного движения механизмов. Такие элементы могут быть построены, в частности, с использованием аппарата графов связей. Примеры формирования сложных компонентов механических цепей рассмотрены в работах [1,6].

На рис. 2.35 приведена модель вращательной кинематической пары, ось вращения которой параллельна осям и , в результате чего все звенья движутся в плоскости .

Рис. 2.35 Модель вращательной кинематической пары: a ) – кинематическая схема, b ) – граф связей, c ) – компонент формализованной схемы.

Такому соединению соответствуют уравнения:

,

где - матрица поворота относительно оси ,

– вектор угловой скорости для вращения относительно оси ,

и – векторы силы в плоском движении,

и – векторы линейной скорости в плоском движении.

Кроме этого, как следует из графа, момент, приложенный в шарнире

.

В этом графе коэффициенты передачи трансформаторов определяются выражениями:

где угол поворота определяется из уравнения: .

Подобным же образом можно получить и представить математические модели твердых тел.

Моделей трех элементов - звена, шарнира и опоры, достаточно для графического представления кинематической схемы пространственного механизма. С использованием этих элементов схема механизма строится просто как последовательное соединение звеньев и шарниров (рис. 2.35). Компонент «основание» необходим в схеме для задания направления силы тяжести.

Приведенная на рис. 2.36 схема двухзвенного манипулятора в нотации пакета REMOS – векторная. В ней каждому из узлов 1 – 5 соответствует векторная потенциальная переменная

, ,

включающая проекции векторов линейной и угловой скоростей соответствующей точки механизма на связанные оси, а также проекции единичного вектора силы тяжести.

Рис. 2.36. Схема двухзвенного манипулятора

Каждой из ветвей с номерами 1 - 9 соответствует векторная потоковая переменная

,

включающая проекции векторов силы и вращающего момента реакции связи. Узлам с номерами 6, 7 соответствуют скалярные переменные - относительные скорости вращения в шарнирах, а узлам 8, 9 - углы поворота в первом и втором шарнирах соответственно. Ветвям 10 - 13 соответствуют скалярные потоковые переменные - вращающие моменты приводов.

Пример моделирования системы с использованием энергетических и структурных компонентов приведен на рис. 2.37. Рассмотрена схема системы управления двухзвенного манипулятора, в которой по каждой из степеней подвижности реализован простейший закон формирования управляющего момента

,

где - заданное значение угла поворота в сочленении (переменные в схеме);

- угол поворота (переменные ).

В этой схеме дополнительно компонентами учтены моменты инерции механической части привода.

Особенностью схемы являются элементы, названные в [1,6] управляемыми источниками. Их роль – преобразовать информационную переменную в энергетическую, в управляющий момент, приложенный в шарнире.

Рис. 2.37

В современных пакетах автоматизированного моделирования механических цепей те детали, которые ранее отражались на схеме, в частности, номера узлов и ветвей, или неявно задавались в модельном соглашении, например, порядок расположения переменных в векторах связей, определяются самой формализованной схемой. Однако общие принципы представления систем, содержащих энергетические и информационные элементы во многом сохранились. Например, в приведенной на рис. 2.38 модели того же самого двухзвенного манипулятора в нотации пакета SimMechaniks, верхняя часть схемы представляет собой кинематическую цепь, включающую основание, два вращательных кинематических узла и два твердых тела. В схеме присутствуют порты для соединения физических элементов, помеченные символами и на вращательных кинематических узлах, и информационные порты, служащие для соединения энергетической и сигнальной части. Блок привода играет ту же роль, что и управляемый источник на рис. 2.36. Схема управления вторым приводом свернута в подсистему.

Рис. 2.38

Глава 3

Исследование МЕХАТРОННЫХ систем во

временной области

3.1. Механизмы продвижения модельного времени

Реальные мехатронные объекты являются динамическими системами. Они функционируют во времени и ход времени необходимо моделировать так же, как и изменения всех остальных переменных.

Любой процесс моделирования на ЭВМ представляет собой взаимодействие трех видов времени:

- реального времени, к моментам которого привязаны события, происходящие в моделируемой системе;

- модельного времени, отсчитываемого программой модели-рования и являющегося моделью реального времени; особенность модельного времени в том, что им можно управлять;

- Машинного время, в котором функционирует аппаратная часть системы моделирования.

В процедурах моделирования наиболее важно управление модельным временем.

Процессы, протекающие в таких моделях, должны адекватно отображать поведение моделируемых объектов: если события в реальной системе совпадают, то они должны совпадать и в модели, если реальные события следуют в определенном порядке, то он не должен нарушаться и в модели. Особенно большую роль играет правильная организация взаимодействия реального и модельного времени в процедурах имитационного моделирования.

- Модельное время может течь независимо от процессов в системе, как течет реальное время.

- Модельное время может изменяться скачками. Такой режим является идеализацией реальных процессов, цель которой – убрать из рассмотрения «пустые» периоды, когда в модели не происходят изменения.

- Модельное время может многократно проходить один и тот же интервал, если в однопроцессорной машине необходимо в режиме имитационного моделирования вести параллельные расчеты.

Любой процесс в динамической системе можно рассматривать как изменение ее состояния, которое может происходить более или менее равномерно, либо в форме резких изменений, связанных с появление событий. При компьютерном моделировании на ЦВМ модельное время может меняться только дискретно, с некоторым шагом . Необходимо согласовать процесс выбора шага и процесс продвижения модельного времени с особенностями процессов в реальном объекте.

Существуют два основных способа продвижения модельного времени: "принцип " и "принцип " [31].

Принцип довольно прост. Модельное время течет малыми шагами . Модельное время может принимать только дискретные значения, кратные этому временному интервалу. Величина шага связана с динамическими особенностями моделируемого объекта. Она может меняться в процессе моделирования, однако напрямую не привязана к событиям, происходящим в моделируемой системе. Это приводит к тому, что события, обычно связанные с выполнением некоторых условий, могут попасть внутрь временного шага. В результате, события могут сдвигаться во времени, а также могут нарушаться причинно-следственные связи между событиями. Обычно события привязываются к правой границе временных интервалов . На рис. 3.1 все события в модельном времени сдвинуты на конец такта. Кроме того, события , которые в реальном времени появляются последовательно и является причиной , в модели выглядят одновременными.

Рис. 3.1. Механизмы продвижения модельного времени

Во многих случаях, при малых значениях временного шага, это не имеет существенного значения. В других, может привести к ошибкам моделирования.

Метод целесообразно использовать если:

- Моделируется непрерывная система, процессы в которой представляют собой непрерывную цепь равнозначных событий;

- В моделируемой системе моменты появления событий обусловлены выполнением некоторых условий, связанных со значениями переменных системы, в результате чего эти моменты невозможно заранее определить.

Для мехатронных систем реализация принципа является основным способом продвижения модельного времени, так как основу мехатронных систем составляют механические устройства, обладающие непрерывной динамикой.

Принцип , называемый также принципом особых состояний, предполагает, что продвижение модельного времени обусловлено событиями, происходящими в моделируемой системе. Как и в первом случае, модельное время меняется дискретно на величину , однако эта величина привязана не к динамическим характеристикам объекта, а представляет собой временной интервал между последовательными событиями в системе. Величина может иметь произвольную величину, в том числе быть равной нулю, если интервал между событиями пренебрежимо мал.

Необходимым условием реализации моделирования по принципу является разработка специальной процедуры планирования событий – так называемого календаря событий [10].

Моделирование по особым состояниям целесообразно использовать, если моделируемая мехатронная система является принципиально дискретной, процессы в системе представляют собой цепь событий, которые распределены во времени неравномерно или интервалы между ними велики, между событиями изменений в системе не происходит.

Обычно, зависимость между скоростью изменения модельного времени и скоростью изменения физического времени является переменной и зависит от требуемых ресурсов компьютера. Однако, эта связь может быть и постоянной, что часто весьма желательно, например при анимации.

Для мехатронных систем достаточно характерным является режим, когда обработка модели должна быть связана с работой реального оборудования. В этом случае говорят, что имеет место моделирование в «режиме реального времени» (РРВ). Режим реального времени - режим обработки данных, при котором обеспечивается взаимодействие вычислительной системы с внешними по отношению к ней процессами в темпе, соизмеримом со скоростью протекания этих процессов. Этот режим обработки данных широко используется информационно-поисковых системах [21]. Кроме того, моделирование в РРВ актуально при полунатурном моделировании и, особенно, при использовании моделей в контуре управления реальными техническими системами.

Еще одна проблема в управлении модельным временем связана с тем, что многие технические системы имеют в своем составе компоненты, работающие одновременно, или, как обычно говорят, параллельно. Эти компоненты могут взаимодействовать между собой, либо работать независимо друг от друга. Учитывая, что в большинстве случаев моделирование ведется на однопроцессорных ЭВМ, возникает задача не только смоделировать параллельные процессы, но и обеспечить их взаимодействие.

Обычно, в таких случаях приходится организовывать квазипараллельные модельные процессы. Одновременные события обрабатываются одно за другим события при остановленном модельном времени. Время остается фиксированным до тех пор, пока не будут обработаны все события, привязанные к текущему моменту. В результате два одновременных события выполняются на ЭВМ последова­тельно, но в один и тот же момент модельного времени, т.е. однов­ременно с точки зрения системы. После этого модельное время опять оживает и начинает двигаться дальше шагами фиксированной длины (принцип ), либо прыгая от события к событию (принцип ).

3.2. Алгоритмы численного моделирования нелинейных

динамических систем

Реальные мехатронные объекты и мехатронные системы описываются, как правило, системами нелинейных алгебраических и дифференциальных уравнений. Для большинства задач, представляющих практический интерес, решение их аналитическими методами невозможно. Результаты могут быть получены путем построения приближенных решений с помощью численных методов интегрирования, в частности конечно-разностных методов.

Общая идея численного интегрирования обыкновенного дифференциального уравнения (ОДУ)

заключается в том, что производится дискретизация независимой переменной - времени на интервале и замена ее рядом значений (принцип ). Расстояние между двумя соседними значениями называется шагом интегрирования. В частном случае он может быть постоянным на всем заданном интервале изменения переменной . В результате, системе дифференциальных уравнений тем или иным способом ставится в соответствие система конечно- разностных уравнений

,

где – некоторая вектор-функция, определяемая способом построения метода; – количество предыдущих точек, которые используются в методе интегрирования.

Процедура интегрирования предполагает решение полученной системы конечно-разностных уравнений для фиксированных моментов времени , начиная с момента , для которого определено начальное состояние исследуемой системы . Соответственно, решение получается в виде совокупности значений для заданных моментов времени.

В теории численных методов разработано большое число различных методов интегрирования, каждому из которых соответствует своя система конечно- разностных уравнений.

Общее представление о них можно получить, разделив их на группы, например, на основе следующей классификации:

- методы явные и неявные;

- методы одношаговые и многошаговые;

- методы первого, второго и т.д. порядков;

- методы с постоянным шагом и методы с автоматическим выбором шага.

3.2.1. Свойства методов численного интегрирования

Основными требованиями, предъявляемыми к численным методам, являются достаточная точность и устойчивость. Дополнительными – универсальность, алгоритмическая надежность, умеренные затраты машинного времени и оперативной памяти ЭВМ [29]. При этом, следует учитывать, что практически все эти характеристики имеют смысл только применительно к конкретному объекту исследования. Поэтому выбор подходящего метода интегрирования может иметь очень важное значение с точки зрения эффективности исследования.

Анализ процесса функционирования технического объекта численными методами всегда сопровождается ошибками в определении характеристик и параметров моделируемого процесса. Эти ошибки обусловлены многими причинами: неадекватностью модели, приближенностью исходных данных, свойствами используемого метода интегрирования. Первые из этих факторов возникают на этапе получения исходной модели. Последние – зависят от выбранного метода численного интегрирования.

Точность метода можно оценить, проанализировав полную ошибку на каждом шаге интегрирования, однако задача это достаточно сложная, так как предполагает наличие точного решения задачи.

Полная ошибка интегрирования на -ом шаге включает следую-щие составляющие:

- Ошибка дискретизации , обусловленная заменой производных конечными разностями;

- Ошибка вычислений , связанная с округлением чисел при вычислениях;

- Ошибка накопления , возникающая в следствии ошибок на предыдущих шагах интегрирования.

Ошибка накопления на -ом шаге равна полной ошибке на предыдущем шаге. Ее оценка связана с исследованием устойчивости численного метода. Если метод устойчив, то существенно не возрастает и общую ошибку интегрирования можно связать в основном с .

Если даже при небольших погрешностях аппроксимации при каждом шаге интегрирования накопленная погрешность растет от шага к шагу, то метод неустойчив и результаты исследований не верны.

Основными источниками неустойчивости процесса интегрирования является несогласованность выбора метода интегрирования и метода управления шагом интегрирования с характером решаемой задачи, с особенностями исследуемой системы дифференциальных уравнений. Один и тот же метод может быть достаточно эффективен при решении одной задачи, и неприемлем для другой.

Анализ устойчивости метода численного интегрирования для конкретного объекта строится на том, что после дискретизации и алгебраизации его модель превращается в систему разностных уравнений. Устойчивость такой системы можно проверить тем же методом, что и устойчивость обычных дискретных систем. Она зависит от расположения корней характеристического уравнения, полученного для системы разностных уравнений, которое, в свою очередь, определяется выбором формулы интегрирования, шагом интегрирования и собственными значениями матрицы Якоби исходной системы дифференциальных уравнений.

Теперь кратко обсудим влияние ошибок округления, возникающих при реализации методов численного интегрирования на ЭВМ, ограничившись следующим интуитивным рассуждением [23]. Ошибка дискретизации любого устойчивого метода стремится к нулю при . Следовательно, за счет уменьшения шага мы можем сделать ее сколь угодно малой. Однако, чем меньше шаг, тем больше потребуется шагов для решения конкретной задачи, тем больше скажутся на полученном решении ошибки округления. На практике, за счет ограниченной разрядности машинных слов, всегда существует величина шага , меньше которой вклад ошибок округления начинает доминировать в суммарной ошибке. Эта ситуация схематически изображена на рис. 3.2.

При малых значениях шага интегрирования велико влияние ошибок округления. В средней части диапазона ошибка растет примерно пропорционально шагу интегрирования (что соответствует методу первого порядка). Превышение шагом значения приводит к неустойчивости процедуры. Значения и могут быть найдены исходя из заданной точности интегрирования.

Рис. 3.2. Зависимость ошибки интегрирования от величины шага интегрирования

Экстремальную величину шага очень трудно установить заранее, но в задачах, где не требуется слишком высокая точность, необходимый шаг обычно будет значительно больше, чем этот минимум, и основной вклад в полную ошибку будет вносить ошибка дискретизации.

3.2.2. Методы явные и неявные

Процесс формирования математической модели для численного интегрирования обязательно включает этап алгебраизации, который состоит в преобразовании обыкновенных дифференциальных уравнений в алгебраические. Он основан на использовании одного из методов численного интегрирования.

Если задано дифференциальное уравнение

(3.1)

и начальные условия , то очередное значение может быть получено интегрированием (3.1):

(3.2)

Определенный интеграл в (3.2) численно равен площади под кривой на интервале (рис. 3.2).

Приближенно эта площадь может быть вычислена как площадь прямоугольника, высота которого равна значению функции на левой границе интервала или значению на правой границе интервала. Очевидно, площади обоих прямоугольников, ограниченных сверху отрезками 1 и 2 на рис. 3.3, будут тем ближе к точному значению интеграла, чем меньше шаг интегрирования .

Рис. 3.3.

Подставив в (3.2) приближенные значения интеграла, можно получить две формулы:

(3.3)

. (3.4)

Выражение (3.3) представляет собой формулу явного метода Эйлера. Называется метод явным потому, что неизвестное значение может быть непосредственно вычислено по известному значению в предыдущей точке.

Формула (3.4) соответствует неявному методу Эйлера. Здесь в правой части выражения используется неизвестное значение , поэтому вычислить его непосредственно по этой формуле нельзя.

Более точное значение интеграла (3.2) дает метод трапеций, которому соответствует отрезок 3 на рис. 3.3. Тогда

. (3.5)

Эта формула относится, очевидно, тоже к неявным.

Для явных методов процедура формирования модели для численного интегрирования ограничивается алгебраизацией исходных дифференциальных уравнений. В частности, формула (3.3) не требует дальнейших преобразований и готова для применения.

Для неявных методов дальнейшие действия зависят от того, какой метод решения системы нелинейных уравнений реализован в данном пакете. Одним из вариантов может быть использование итерационного метода Ньютона, который, как известно, обладает наибольшей скоростью сходимости среди практически применяемых методов, и в котором многократно решается система линеаризованных алгебраических уравнений.

В этом случае реализуется второй этап подготовки математических моделей для неявных методов, который состоит в линеаризации нелинейных алгебраических уравнений, т.е. в разложении нелинейных функций в ряд Тэйлора и сохранении в результате только линейных членов.

Пусть задано нелинейное алгебраическое уравнение

(3.6)

где - вектор переменных.

Разложение (3.6) в ряд Тэйлора с сохранением только линейных членов дает приближенную замену

(3.7)

где – начальное приближение, в качестве которого берутся значения переменных на предыдущем шаге интегрирования;
– неизвестное значение переменной на шаге интегрирования.

Выражение (3.7) может быть записано как линейное алгебраическое уравнение

(3.8)

где – вычисляется для известных значений переменных на предыдущем шаге интегрирования;

Таким образом, процесс численного моделирования в общем случае нелинейных систем неявными методами состоит в формировании и решении на каждом шаге интегрирования системы линейных алгебраических уравнений

(3.9)

которая включает компонентные и топологические уравнения моделируемой схемы. При этом, процедурам алгебраизации и линеаризации подвергаются только компонентные уравнения, так как топологические уравнения всегда линейные алгебраические.

Рассмотрим пример связанный с подготовкой модели для численного решения нелинейного дифференциального уравнения второго порядка

Первым шагом является сведение данного уравнения к задаче Коши, т.е. к системе уравнений первого порядка за счет введения новой переменной .

Явные формулы метода Эйлера имеют вид

Неявные формулы запишутся следующим образом

Для перехода к матричной записи выполним ряд преобразований:

Здесь ,

Матричная запись имеет вид

Формулу (3.7), вообще говоря, необходимо применять итерационно. Решение этого уравнения, найденное для заданного начального приближения , следует использовать в качестве очередного приближения в (3.7) и повторять формирование и решение линейного алгебраического уравнения до тех пор, пока два последовательных приближения не станут близкими с заданной точностью. При численном моделировании можно ограничиться только одной итерацией, выбирая достаточно малый шаг интегрирования и учитывая, что при этом значения переменных на предыдущем шаге являются достаточно хорошим приближением.

3.2.3. Выбор между явными и неявными методами в процедурах моделирования мехатронных систем

Выбор между явными и неявными методами представляет серьезную проблему. Многие специалисты считают неявные методы более мощным и универсальным инструментом для решения задач моделирования технических систем [23,15]. Следует, однако, заметить, что лишь недавно появились достаточно мощные и универсальные системы автоматизированного моделирования, такие, как, например, MATLAB или МВТУ [17], допускающие выбор явного или неявного метода решения задачи. Раньше использовались либо явные, либо неявные методы, так как это требовало разных компонентных моделей.

В современных перспективных системах автоматизированного моделирования, пригодных для моделирования мехатронных систем, применяются, как правило, неявные методы численного интегрирования. Неявные методы лучше приспособлены для решения систем дифференциальных и алгебраических уравнений, к тому же они более устойчивы. В результате, несмотря на большие затраты машинного времени на каждом шаге интегрирования, связанные с необходимостью решения СЛАУ, общие затраты могут быть значительно меньше за счет увеличения шага интегрирования и уменьшения общего количества шагов.

Рассмотрим эту особенность неявных методов на примере явного и неявного методов Эйлера [21], определяемых формулами (3.3) и (3.4), соответственно.

Применим указанные формулы для численного интегрирования простейшего линейного дифференциального уравнения

.

Характеристическое уравнение данной динамической системы имеет вид , или , где – постоянная времени системы.

Единственный полюс системы находится в левой полуплоскости, следовательно, исходная система устойчива. Соответственно, любое решение уравнения, при , стремится к нулю.

Разностное уравнение, соответствующее численному решению явным методом Эйлера, запишется как

.

Известно, что условием устойчивости полученного разностного уравнения является

или .

Это означает, что выбор может качественно изменить вид решения, превратив устойчивый процесс в неустойчивый.

Таким образом, на шаг интегрирования наложено очевидное ограничение – он не может быть больше постоянной времени системы, иначе дискретная аппроксимация станет неустойчивой. Если система имеет несколько постоянных времени, то подобное ограничение связывает шаг интегрирования с самой маленькой постоянной времени.

Переход к методам более высокого порядка мало меняет картину. Для метода Рунге-Кутты 4-го порядка требование устойчивости ограничивает шаг величиной , или, в более общем виде, , где – максимальное собственное значение матрицы Якоби [29].

Применение неявного метода Эйлера к той же системе дает

,

где ограничение на величину шага выглядит по другому:

,

что позволяет выбрать шаг любой величины, ориентируясь только на требуемый уровень погрешности.

3.2.4. Многошаговые методы интегрирования

До сих пор мы имели дело с методами, зависящими только от и не использующими никаких предыдущих значений переменной. Такие методы называются одношаговыми и могут быть представлены в общем виде как

с соответствующей функцией . Представляется вполне вероятным, что можно добиться большей точности, если использовать информацию о нескольких предыдущих точках Именно так поступают в многошаговых методах.

Вернемся к задаче Коши

и рассмотрим лишь один большой и важный класс многошаговых методов, который возникает на основе следующего подхода. Если подставить в приведенное дифференциальное уравнение точное решение и проинтегрировать на отрезке , то получим

,

где в последнем выражении предполагается, что - полином, аппроксимирующий . Чтобы построить этот полином, предположим, как обычно, что – приближения к решению в точках и узлы расположены равномерно с шагом . Таким образом, - полином степени , удовлетворяющий условиям Этот полином можно явно проинтегрировать, что ведет к методу

.

Для , полином есть константа, равная , и мы получаем обычный метод Эйлера. Если , то – линейная функция, проходящая через точки и , т.е.

Интегрируя ее от до , получаем следующее выражение:

, (3.10)

которое соответствует двухшаговому методу интегрирования, поскольку использует информацию в двух предыдущих точках. Аналогично, если , то является квадратичным полиномом, а соответствующий трехшаговый метод имеет вид

. (3.11)

Методы, соответствующие формулам (3.10) и (3.11) называются методами Адамса-Бишфорта.

Процесс можно продолжить, используя интерполяционный полином все более высокого порядка. При этом получаются все более громоздкие формулы, но принцип остается тот же.

Многошаговые методы порождают проблему, которая не возникала при использовании одношаговых методов. Нам задано начальное значение , но при для счета, например, по формуле (3.11), необходима информация о значении функции в точках , которая принципиально отсутствует. Обычный выход из положения состоит в использовании какого-либо одношагового метода того же порядка точности, пока не будет набрана необходимая информация.

Заметим также, что многошаговыми могут быть и неявные методы. В этом случае в формулы входят значения , которые могут быть определены только неявно, и найдены в результате решения системы алгебраических уравнений. Методы этой группы обычно называются методами Адамса-Моултона.

На практике часто используют совместно явную и неявную формулы, что приводит к методам известным как методы прогноза и коррекции [23].

3.2.5. Порядок метода интегрирования.

Главный вопрос при использовании любого численного метода состоит в оценке точности приближенных вычислений . В разделе 3.2.1 уже отмечалось, что существуют два источника погрешности при выполнении шага интегрирования: