Главная      Учебники - Разные     Лекции (разные) - часть 12

 

Поиск            

 

Практикум предназначен для студентов 2, 3, для 4 курсаов технологических специальностей, всех форм обучения. Авторы: Панов Валерий Петрович

 

             

Практикум предназначен для студентов 2, 3, для 4 курсаов технологических специальностей, всех форм обучения. Авторы: Панов Валерий Петрович

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ

(образован в 1953 году)

Кафедра Технологии продуктов питания и экспертизы товаров

Дистанционное

обучение

Общ.пит.-19.21.2701.очн. Общ.пит.-19.21.0135.очн. Общ.пит.-19.21.2705.очн.

Общ.пит.-19.21.2701.вчр.плн. Общ.пит.-19.21.0135.зчн.скр. Общ.пит.-19.21.2705.вчр.плн.

Общ.пит.-19.21.2701.вчр.скр. Общ.пит.-19.21.0135.зчн.плн. Общ.пит.-19.21.2705.вчр.скр.

Общ.пит.-19.21.2701.зчн.плн. Общ.пит.-19.21.0135.вчр.скр. Общ.пит.-19.21.2705.зчн.плн.

Общ.пит.-19.21.2701.зчн.скр. Общ.пит.-19.21.0135.вчр.плн Общ.пит.-19.21.2705.зчн.скр.

Общ.пит.-19.21.2703.очн. Общ.пит.-19.21.2707.очн. Общ.пит.-19.21.2708.очн.

Общ.пит.-19.21.2703.вчр.плн. Общ.пит.-19.21.2707.вчр.скр. Общ.пит.-19.21.2708.вчр.скр.

Общ.пит.-19.21.2703.вчр.скр. Общ.пит.-19.21.2707.вчр.плн. Общ.пит.-19.21.2708.вчр.плн.

Общ.пит.-19.21.2703.зчн.плн. Общ.пит.-19.21.2707.зчн.плн. Общ.пит.-19.21.2708.зчр.скр.

Общ.пит.-19.21.2703.зчн.скр. Общ.пит.-19.21.2707.зчн.скр. Общ.пит.-19.21.2708.зчр.плн.

Общ.пит.-19.21.2710.очн. Общ.пит.-19.21.2710.зчн.плн. Общ.пит.-19.21.2712.вчр.плн.

Общ.пит.-19.21.2710.вчр.плн. Общ.пит.-19.21.2710.зчн.скр. Общ.пит.-19.21.2712.вчр.скр.

Общ.пит.-19.21.2710.вчр.скр. Общ.пит.-19.21.2712.очн. Общ.пит.-19.21.2712.зчн.плн.

Общ.пит.-19.21.2704.вчр.плн. Общ.пит.-19.21.2704.зчн.скр. Общ.пит.-19.21.2704.зчн.плн.

Общ.пит.-19.21.2704.вчр.скр. Общ.пит.-19.21.2704.очн.

В.П. Панов, Е.С. Якунина

БИОХИМИЯ

Конспект лекций

для студентов всех технологических специальностей (всех форм обучения)

www. msta.ru

4312

Москва - 2004


УДК 577.1

© Панов В.П., Якунина Е.С. Биохимия. Конспект лекций. М., МГТА, 2004.

Рекомендовано Институтом информации образования РАО

В конспекте лекций доктора химических наук профессора В.П. Панова, кандидата химических наук доцента Е.С. Якуниной, в кратком и систематическом виде изложены краткие теоретические сведения и подробные описания хода проведения лабораторных работ по биохимии. В биохимию студента вводят основополагающие принципы молекулярной логики жизни. Даётся оригинальный материал по биологическим мембранам и клеточному транспорту, процедурам гормональной регуляции, молекулярной генетике, генетической инженерии.

Практикум предназначен для студентов 2, 3, 4 курсов технологических специальностей, всех форм обучения.

Авторы: Панов Валерий Петрович

Якунина Елена Сергеевна

Рецензенты: профессор кафедры биохимии медико - биологического

факультета Российского государственного медицинского

университета доктор биологических наук, А.В. Карякин,

директор Института питания РАМН, академик РАМН,

профессор В.А. Тутельян.

Редактор: Свешникова Н.И.

© Московский государственный университет технологий и управления, 2004

109004, Москва, Земляной Вал, 73

С О Д Е Р Ж А Н И Е

Стр.

Тема 1. Аминокислоты и пептиды ____________________________________ 5

1.1. Пептиды ______________________________________________________ 9

Вопросы для самоконтроля __________________________________________ 9

Тестовые вопросы _________________________________________________ 10

Тема 2. Введение в белки ____________________________________________ 10

Вопросы для самоконтроля __________________________________________14

Тестовые вопросы _________________________________________________ 14

Тема 3. Пространственная структура белков ____________________________15

Вопросы для самоконтроля __________________________________________ 17

Тестовые вопросы __________________________________________________18

Тема 4. Введение в ферменты ________________________________________ 18

Вопросы для самоконтроля __________________________________________ 21

Тестовые вопросы __________________________________________________ 22

Тема 5. Липиды ____________________________________________________ 22

Вопросы для самоконтроля __________________________________________ 26

Тестовые вопросы __________________________________________________ 26

Тема 6. Витамины __________________________________________________ 27

6.1. Водо-растворимые витамины ____________________________________ 27

6.2. Жирорастворимые витамины _____________________________________ 29

Вопросы для самоконтроля __________________________________________ 30

Тестовые вопросы __________________________________________________ 30

Тема 7. Биомембраны и транспорт ____________________________________ 30

Вопросы для самоконтроля __________________________________________ 33

Тестовые вопросы __________________________________________________ 33

Тема 8. Углеводы __________________________________________________ 33

8.1. Моносахариды _________________________________________________ 34

8.2. Дисахариды ____________________________________________________37

8.3. Полисахариды __________________________________________________38

Вопросы для самоконтроля __________________________________________ 38

Тестовые вопросы __________________________________________________ 39

Тема 9. Нукелеотиды и нуклеиновые кислоты __________________________ 39

Вопросы для самоконтроля __________________________________________ 42

Тестовые вопросы __________________________________________________ 42

Тема 10. Принципы биоэнергетики ____________________________________43

Вопросы для самоконтроля __________________________________________ 46

Тестовые вопросы __________________________________________________ 46

Тема 13. Метаболизм липидов ________________________________________47

13.1. - окисление насыщенных жирных кислот _______________________ 48

13.2. Метаболизм полинасыщенных жирных кислот _____________________ 49

Вопросы для самоконтроля __________________________________________ 50

Тестовые вопросы __________________________________________________50

Тема 14. Обмен белков ______________________________________________ 51

Вопросы для самоконтроля __________________________________________ 52

Тестовые вопросы __________________________________________________ 52

Тема 15. Гормональная регуляция _____________________________________52

Вопросы для самоконтроля __________________________________________ 55

Тестовые вопросы __________________________________________________ 55

Тема 16. Введение в молекулярную генетику ___________________________ 56

Тестовые вопросы __________________________________________________58

Тестовые вопросы по дисциплине _____________________________________58

Список рекомендуемой литературы ___________________________________ 61

ТЕМА 1. АМИНОКИСЛОТЫ И ПЕПТИДЫ

Все белки, независимо от того принадлежат ли они древним линиям бактерий или наиболее сложным формам жизни, сконструированы из одних и тех же субъединиц - 20 аминокислот, ковалентно связанных в характеристичные линейные последовательности. Из этих строительных блоков различные организмы могут изготовить ферменты, гормоны, антитела, линзы глаз, рога, антибиотики, яды грибов и мириады других веществ с ярко выраженной биологической активностью. Первой аминокислотой, открытой в белках в 1806г. был аспарагин, последняя из 20 аминокислот - треонин была найдена в 1938г. Все 20 аминокислот, найденные в белках, имеют карбоксильную группу и аминогруппу, присоединенные к Сa - атому углерода.

аминокислота глицин

Во всех аминокислотах, за исключением глицина, Сa - атом хирален, все аминокислоты (кроме глицина) оптически активны. Аминокислоты являются L-стереоизомерами. т.е. вращают плоскополяризованный свет влево.

L-аланин D-аланин

Свойства аминокислот

L -аминокислота

Аббревиатура

М

рК1

(-СООН)

рК2

(- NH 3 + )

Доля в белках, %

Неполярные алифатические R -группы

Глицин

Gly

G

75

2,34

9,60

7,5

Аланин

Ala

A

89

2,34

9,69

9,0

Валин

Val

V

117

2,32

9,62

6,9

Лейцин

Leu

L

131

2,36

9,60

7,5

Изолейцин

Ile

I

131

2,36

9,68

4,6

Пролин

Pro

P

115

1,99

10,96

4,6

Ароматические R -группы

Фенилаланин

Phe

F

165

1,83

9,13

3,5

Тирозин

Tyr

Y

181

2,20

9,11

3,5

Триптофан

Trp

W

204

2,38

9,39

1,1

Полярные незаряженные R -группы

Серин

Ser

S

105

2,21

9,15

7,1

Треонин

Thr

T

119

2,11

9,62

6,0

Цистеин

Cys

C

121

1,96

8,18

2,8

Метионин

Met

M

149

2,28

9,21

1,7

Аспарагин

Asn

N

132

2,02

8,80

4,4

Глутамин

Gln

Q

146

2,17

9,13

3,9

Отрицательно заряженные R -группы

Аспартат

Asp

D

133

1,88

9,60

5,5

Глутамат

Glu

E

147

2,19

9,67

6,2

Положительно заряженные R -группы

Лизин

Lys

K

146

2,18

8,95

7,0

Аргинин

Arg

R

174

2,17

9,04

4,7

Гистидин

His

H

155

1,82

9,17

2,1

Аминокислоты в водном растворе ионизованы и могут действовать как кислоты или основания. Знание кислотно-основных свойств аминокислот чрезвычайно важно для понимания физико-химических и биологических свойств белков. Способы разделения, идентификации и количественного определения аминокислот, что является необходимой стадией определения аминокислотного состава и аминокислотной последовательности в белках, также основаны на характеристиках их кислотно-основного поведения. Аминокислоты, имеющие одну амино- и одну карбоксильную группы, кристаллизуются из нейтральных водных растворов в полностью ионизованных формах, называемых цвиттерионами , имеющими как положительный, так и отрицательный заряды.

Аминокислоты с неполярными алифатическими R -группами


глицин аланин валин

лейцин изолейцин пролин

Аминокислоты с ароматическими R -группами


фенилаланин тирозин триптофан

Аминокислоты с полярными незаряженными R-группами

серин треонин цистеин

метионин аспарагин глутамин

Аминокислоты с положительно заряженными R -группами

лизин аргинин гистидин

Аминокислоты с отрицательно заряженными R -группами


аспартат глутамат

Триптофан, тирозин и в меньшей степени фенилаланин поглощают в ультрафиолетовом свете. Аспарагин и глутамин являются амидами двух других аминокисдот: аспартата и глутамата. Цистеин легко окисляется с образованием ковалентно связанной димерной аминокислоты, называемой цистином, в котором две цистеиновые молекулы соединены дисульфидным мостиком. Дисульфидные мостики встречаются во многих белках, стабилизируя их структуру.

В дополнение к стандартному набору из 20 аминокислот найдены другие аминокислоты, как компоненты ограниченных типов белков, они образуются в белках путем модификации стандартных аминокислот. Нестандартными аминокислотами являются: 4-гидроксипролин, 5-гидроксилизин, N-метил-лизин, селеноцистеин, орнитин и другие. Аминокислоты могут действовать как кислоты и как основания .


Ионообменная хроматография наиболее широко распространенный метод разделения, идентификации и количественного определения аминокислот в смеси. Эта техника основана на различии зарядов и величин зарядов аминокислот при заданном значении рН и следовательно различной аффинности каждой аминокислоты к ионообменной смоле. Наиболее развитыми методами аминокислотного анализа являются автоматический аминокислотный анализ и высокоэффективная жидкостная хроматография (жидкостная хроматография высокого давления, ЖХВД).




0 5 10 15 20 25 30 35

Аминограмма Время, мин.

1.1. Пептиды.

Две аминокислоты могут ковалентно соединяться посредством пептидной связи с образованием дипептида.


Три аминокислоты могут соединяться посредством двух пептидных связей с образованием трипептида. Несколько аминокислот образуют олигопептиды, большое число аминокислот - полипептиды. Пептиды содержат только одну a-аминогруппу и одну a-карбоксильную группу. Эти группы могут быть ионизованы при определенных значениях рН. Подобно аминокислотам они имеют характеристические кривые титрования и изоэлектрические точки, при которых они не двигаются в электрическом поле.

Подобно другим органическим соединениям пептиды участвуют в химических реакциях, которые определяются наличием функциональных групп: свободной аминогруппой, свободной карбоксигруппой и R-группами. Пептидные связи подвержены гидролизу сильной кислотой (например, 6М НС1) или сильным основанием с образованием аминокислот. Гидролиз пептидных связей - это необходимый этап в определении аминокислотного состава белков. Пептидные связи могут быть разрушены действием ферментов протеаз .

Многие пептиды, встречающиеся в природе, имеют биологическую активность при очень низких концентрациях.

Пептиды - потенциально активные фармацевтические препараты, есть три способа их получения:

1) выделение из органов и тканей;

2) генетическая инженерия;

3) прямой химический синтез.

В последнем случае высокие требования предъявляются к выходу продуктов на всех промежуточных стадиях.

Вопросы для самоконтроля

1. Связь между структурой и свойствами аминокислот.

2. В какой форме присутствуют молекулы L-аланина в изоэлектрической точке?

3. Сколько хиральных центров имеет L-изолейцин?

4. Сравните величины рКа аминокислоты и ее пептидов.

5. Методы получения пептидов.

Тестовые вопросы

1. Какой связью соединяются остатки аминокислот в белковой молекуле?

а) пептидной;

б) водородной;

в) сложноэфирной.

2. Как классифицируют аминокислоты?

а) по количеству аминных и карбоксильных групп;

б) по химическому строению боковой цепи;

в) по количеству SH – групп.

3. Сколько незаменимых аминокислот известно?

а) 8;

б) 5;

в) 4;

г) 3.

4. Какие белки называют полноценными?

а) состоящие из углеводов;

б) состоящие из восьми незаменимых аминокислот;

в) состоящие из трёх витаминов.

5. Какие аминокислоты относятся к заменимым?

а) могут синтезироваться в организме человека;

б) не могут синтезироваться в организме человека;

в) могут частично синтезироваться.

ТЕМА 2. ВВЕДЕНИЕ В БЕЛКИ

Почти все что происходит в клетке включает в свое действие один или несколько белков. Белки формируют структуру, катализируют реакции в клетке, а также выполняют множество других задач. Их центральное место в клетке отражено в том факте, что выражением генетической информации выступает белок. Для каждого белка существует сегмент ДНК (ген ), который кодирует информацию, специфическую для его аминокислотной последовательности. В типичной клетке присутствуют тысячи различных видов белков, каждый из которых геном, и несет специфическую функцию. Белки в отличие от других биологических макромолекул имеют чрезвычайно разносторонние функции.

Белки имеют множество различных биологических функций, их часто классифицируют в соответствии с их биологической ролью.

Ферменты . Это, как правило, белки, обладающие каталитической активностью. Большинство химических реакций органических биологических молекул в клетках катализируются ферментами. Многие тысячи различных ферментов, каждый из которых в состоянии катализировать определенный тип химической реакции, открыты в различных организмах.

Транспортные белки . Транспортные белки в плазме крови связывают и переносят определенные молекулы или ионы от одного органа к другому. Гемоглобин эритроцитов связывает кислород, когда кровь проходит через легкие, и переносит его в периферические органы, где происходит окисление продуктов питания. В плазме содержатся липопротеиды, которые переносят липиды от печени к другим органам. Другие типы транспортных белков представлены в плазматических мембранах, внутриклеточных мембранах всех живых организмов. Они связывают глюкозу, аминокислоты и другие вещества и транспортируют их сквозь мембраны.

Питательные белки и белки запаса . Семена многих растений содержат питательные белки, необходимые для прорастания саженцев. Овальбумин (основной белок яичного белка), казеин (основной белок молока) являются наиболее известными примерами питательных белков. Ферритин, найденный в некоторых бактериях, а также в растениях и тканях животных, является хранителем ионов железа.

Сокращающиеся или подвижные белки . Некоторые белки способны изменять форму, или склонны к перемещению в пространстве. Актин и миозин функционируют в сокращающихся системах скелетных мышц, а также во многих немышечных клетках. Тубулин - это белок, из которого построены микротубулы, участвующие в движении клеток.

Структурные белки . Многие белки служат для формирования нитей, пластинок, чтобы придать биологическим структурам прочность, усилить их защитные свойства. Основным компонентом сухожилия является фибринный белок коллаген. Волос содержит нерастворимый белок кератин. Основным компонентом шелка, нитей паука является белок фиброин. Эластичность крыльев насекомых обусловлена белком резилином.

Защитные белки . Многие белки защищают организмы от вторжения (инвазии ) других видов или защищают их от повреждения. Иммуноглобулины или антитела это - белки, продуцируемые лимфоцитами позвоночных животных, которые способны распознать и нейтрализовать инвазивные бактерии, вирусы или чужеродные белки других видов. Фибриноген и тромбин являются белками свертывающей системы крови, они предохраняют организм от потери крови, когда нарушена целостность сосудистой системы.

Регуляторные белки . Некоторые белки помогают регулировать клеточную или физиологическую активность. К ним относятся прежде всего гормоны. Примерами гормонов служат инсулин, который регулирует метаболизм углеводов, гормон роста, тиреоидин, окситацин и т.д. Иные регуляторные белки связываются с ДНК и регулируют синтез белков и РНК.

Другие белки . Существуют белки, чьи функции достаточно экзотичны и их не так легко классифицировать. В плазме крови некоторых антарктических рыб содержатся антифризные белки, которые защищают их кровь от замораживания.

Несмотря на экстраординарность всех этих групп белков, существенное различие их свойств и функций, все они построены из 20 аминокислот.

Белки - это высокомолекулярные соединения с числом аминокислотных остатков от 50 до нескольких тысяч.

Молекулярные параметры некоторых белков .

Белок

Молекулярная масса

Число остатков

Число полипептидных цепей

Инсулин (говяжий )

5733

51

2

Цитохром C (человека )

13000

104

1

Рибонуклеаза А (говяжья )

13700

124

1

Лизоцим (яичного белка )

13930

129

1

Миоглобин (конский )

16890

153

1

Химотрипсин (говяжий )

21600

241

3

Химотрипсиноген (говяжий )

22000

245

1

Гемоглобин (человека )

64500

574

4

Альбумин (человека )

68500

550

1

Иммуноглобулин G (человека )

145000

1320

4

РНК-полимераза (Е. коли )

450000

4100

5

Аполипопротеин В (человека )

513000

4536

1

Глютамат дегидрогеназа

(говяжья печень )

1000000

8300

40

Некоторые белки состоят из одной полипептидной цепи, другие имеют две и более цепи. Индивидуальные цепи в мультисубъединичных белках могут быть идентичными или различными.

Можно вычислить приближенное число аминокислотных остатков в простом белке, если разделить его молекулярную массу на 110. Усредненная величина молекулярной массы для 20 аминокислот составляет около 138, однако более малые аминокислоты доминируют в большинстве белков.

Белки имеют характеристичный аминокислотный состав. Некоторые белки содержат помимо аминокислот другие химические компоненты, обычно называемых конъюгированными белками. Неаминокислотная часть этих белков носит название простетической группы. Ряд белков содержит более чем одну простетическую группу, они играют важную роль в биологической функции белка.

Комплексные белки

Класс

Простетическая группа

Пример

Линопротеины

Липиды

Липопротеин крови

Гликопротеины

Углеводы

Иммуноглобулин G

Фосфопротеины

Фосфатные группы

Казеин молока

Гемопротеины

Гем (железопорфирин)

Гемоглобин

Флавопротеины

Флавин нуклеотиды

Сукцинатдегидрогеназа

Металлопротеины

Железо

Ферритин

Цинк

Алкогольдегидрогеназа

Кальций

Калмодулин

Молибден

Динитрогеназа

Медь

Пластоцианин

Клетка содержит тысячи различных типов белков. Выделение индивидуальных белков важно для изучения их состава, свойств, установления аминокислотной последовательности. Существует множество методов выделения и очистки белков, установления их состава, строения, структуры, свойств.

Методы очистки гипотетического фермента .

Процедура

Объем фракции, мл

Общий белок, мг

Активность, ЕД

Удельная активность, ЕД/мг

1. Грубая клеточная экстракция

1400

10000

100000

10

2. Осаждение

280

3000

96000

32

3. Ионообменная хроматография

90

400

80000

200

4. Эксклюзионная хроматография

80

100

60000

600

5. Аффинная хроматография

6

3

45000

15000

Наряду с хроматографией другим важным методом, пригодным для разделения белков, является электрофорез, основанный на перемещении заряженных белков в электрическом поле.

Электрофоретическая подвижность белка (m ) пропорциональна заряду молекулы, Z , деленному на коэффициент трения, f , т. е. m = Z / f , причем коэффициент трения связан с молекулярной массой и формой биополимера.

Для определения изоэлектрической точки (р I ) белка используют метод изоэлектрического фокусирования. Градиент рН устанавливают с помощью смеси низкомолекулярных органических кислот и оснований.

Изоэлектрические точки некоторых белков

Белок

р I

Пепсин

1,0

Яичный альбумин

4,6

Сывороточный альбумин

4,9

Уреаза

5,0

b-Лактоглобулин

5,2

Гемоглобин

6,8

Миоглобин

7,0

Химотрипсиноген

9,5

Цитохром С

10,7

Лизоцин

11,0

Взаимодействие антитело-антиген используют для качественного определения белков, установления места их локализации. Антитела есть Y -образные белки (иммуноглобулины), состоящие из 4 полипептидных цепей. .При этом в процедуре определения могут быть использованы как поликлональные, так и моноклональные антитела, последние синтезируются популяцией идентичных антител (клон ). Моноклональные тела столь специфичны, что могут различить два белка, отличающихся только одной аминокислотой.

Функция белка зависит от его аминокислотной последовательности, называемой первичной структурой белка. Человек производит до 40000 различных белков, каждый тип белка имеет уникальную структуру. В человеческой популяции аминокислотная последовательность белков не строго фиксирована, имеются некоторые вариации в составе, которые практически не оказывают влияние на функции белка.

Существует ряд приемов определения аминокислотной последовательности белка, наиболее распространен метод Эдмана - пошаговой деградации белка (секвинация ). Большие белки предварительно разделяют на малые фрагменты (разрушение дисульфидных связей, направленная фрагментация полипептидной цепи).

Аминокислотная последовательность может быть выведена, если известна последовательность ДНК.

Вопросы для самоконтроля

1. Молекулярные массы белков крови.

2. Размеры молекул белков.

3. Чем определяется суммарный электрический заряд молекул белков?

4. Изоэлектрические точки наиболее распространенных белков.

5. Методы очистки белков.

6. Определение аминокислотной последовательности белков.

Тестовые вопросы

1. Какая связь формирует вторичную структуру белков.

а) водородная связь;

б) ковалентная связь;

в) сложноэфирная;

г) пептидная связь.

2. Какие факторы приводят к денатурации белков?

а) tºС;

б) гидролиз;

в) добавление NaCl.

3. Что такое простетическая группа белка?

а) небелковая часть;

б) белковая часть;

в) SH – группы;

г) минеральные вещества.

4. К каким белкам относятся альбумины?

а) к протеидам;

б) к протеинам;

в) к простетической группе.

5. Что такое нативная конформация белка?

а) природное состояние белка;

б) выпавший в осадок белок;

в) закристализованный.

ТЕМА 3. ПРОСТРАНСТВЕННАЯ СТРУКТУРА БЕЛКОВ

Ковалентный скелет белков состоит из сотен индивидуальных связей. Если было бы возможно свободное вращение вокруг даже части этих связей, белки имели бы почти безграничное число трехмерных структур. Однако каждый белок имеет специфическую функцию, что предполагает для него уникальную пространственную структуру. Тот факт, что белки кристаллизуются, дает убедительное доказательство наличия таких структур. Строгий молекулярный порядок в кристалле может быть реализован в том случае, если все молекулы имеют идентичную форму в кристалле. Фермент уреаза с ММ 483кДа был среди первых закристаллизованных белков.

Пространственное расположение атомов в молекуле белка называют его конформацией . Изменения конформации встречаются при вращении вокруг одинарных связей без их разрушения. В белках реализуются четыре уровня архитектуры.

Первичная структура связана с ковалентными связями между аминокислотными остатками (аминокислотная последовательность). Относительное пространственное расположение связанных аминокислот не является специфичным. Полипептидные цепи не могут иметь любые пространственные структуры по выбору. Стерические ограничения, а также множество слабых невалентных взаимодействий приводят к тому, что отдельные пространственные формы более устойчивы чем остальные.

Вторичная структура относится к регулярным расположениям соседних аминокислотных остатков в полипептидной цепи (регулярные конформации). Для вторичной структуры полипептидных цепей наиболее характерны a - спираль и b - конформация .

Третичная структура относится к пространственному расположению всех аминокислот полипептида. Связь между вторичной и третичной структурой в настоящее время не достаточно ясна. Несколько различных типов вторичной структуры часто обнаруживаются в третичной структуре большого белка.

Белки с несколькими пептидными цепями имеют еще один более высокий уровень организации: четвертичную структуру , которая относится к пространственному расположению полипептидных цепей или субъединиц в белке. Можно выделить промежуточные уровни между вторичной и третичной структурой. Устойчивый кластер из нескольких элементов вторичной структуры относят к супервторичной структуре. Еще более высокий уровень структуры представляет домен . Его относят к компактной структуре, включающей возможно от 40 до 400 аминокислот, домен представляет отчетливую единицу в большой полипептидной цепи. Многие домены складываются независимо в термодинамически устойчивые структуры. Большая полипептидная цепь может содержать несколько доменов, которые легко различимы. В некоторых случаях индивидуальные домены имеют отдельные функции.

Конформация белка стабилизируется большим числом слабых невалентных взаимодействий. Устойчивость нативной конформации белка невелика, так разность в свободной энергии сложенных и несложенных состояний в типичных белках в физиологических условиях находится в интервале от 20 до 65 кДж/моль. Энтропия и водородное связывание многих групп полипептидной цепи с растворителем (водой) приводят к раскрытым формам. К складчатым формам приводят химические взаимодействия в виде дисульфидных мостиков, а также невалентные взаимодействия: водородные связи, гидрофобные, ионные и ван-дер-ваальсовы взаимодействия.

Наиболее общей вторичной структурой белков является a-спираль. В этой структуре полипептидный остов закручен относительно длинный оси молекулы, а R-группы аминокислотных остатков расположены с внешней стороны спирали. Шаг спирали составляет 0.56 нм. Вторым типом регулярной структуры в белках является b-конформация, которая способствует укладыванию полипептидных цепей в слои, при этом возможно как параллельное, так и антипараллельное расположение цепей. В некоторых белках (например в коллагене) помимо этих регулярных конформаций встречаются и другие типы вторичной структуры: b-складка и b-виток. Хотя фибриллярные белки имеют только один тип вторичной структуры, глобулярные белки могут включать несколько типов вторичной структуры для одной молекулы. Глобулярные белки, включая ферменты, транспортные белки, некоторые гормоны и иммуноглобулины, образуют складчатые структуры, более компактные чем a- и b- конформации.

Третичная структура представляет трехмерное расположение всех атомов в белке, она имеет дело с дальнодействующими взаимодействиями аминокислотных остатков. Свиной альбумин имеет 584 остатка в одной цепи.

Ниже показаны относительные размеры цепи в b-конформации, в форме a-спирали и нативной глобулярной форме.


b - конформация : 200 х 0.5 нм

a - спираль : 90 х 1.1 нм нативная глобулярная форма : 13х3 нм

Пространственное расположение атомов в кристаллической решетке белка определяют методом рентгеноструктурного анализа исходя из углов и интенсивности дифракций от электронных оболочек атомов. К настоящему времени этим методом установлены третичные структуры сотен глобулярных белков (миоглобин, инсулин, цитохром с, лизоцим, рибонуклеаза и т.д.).

Доля a -спиралей и b -форм в некоторых белках .

Белок

( число остатков )

Остатки, %

a - спираль

b - форма

Миоглобин (153)

78

0

Цитохром с (104)

39

0

Лизоцим (129)

40

12

Рибонуклеаза (124)

26

35

Химотрипсин (247)

14

45

Карбоксипептидаза (307)

38

17

Белки могут денатурировать при нагревании, резком изменении рН, обработке органическими растворителями, солями тяжелых металлов с разрушением третичной структуры и потерей функциональной активности.

Третичные структуры не являются жесткими, в процессе синтеза белка они формируются достаточно быстро, не случайным образом. Существует несколько типов третичных структур достаточно общих для многих белков (a/b баррел , b-b сэндвич и другие).

Некоторые белки содержат две и более отдельные пептидные цепи, которые могут быть идентичны или различны по структуре. Пространственное расположение белков и его субъединиц в трехмерном комплексе представляет четвертичную структуру, которую определяют на практике методом рентгеноструктурного анализа монокристалла белка. Таким образом установлена четвертичная структура гемоглобина, который содержит четыре полипептидные цепи и четыре гемпростетические группы.

Некоторые белки образуют надмолекулярные комплексы, которые сохраняют принципы, присущие всем уровням организаций белков. Из этих надмолекулярных комплексов построены биологические машины, осуществляющие функционирование клетки (сокращение мышц, синтез белков в рибосомах, упаковка ДНК, перемещение органелл и т.д.).

Вопросы для самоконтроля

1. Свойства пептидной связи.

2. Влияние рН на конформационную структуру белков.

3. Роль дисульфидных связей.

4. Чем определяется термическая устойчивость нативной структуры белков?

5. Локализация специфических аминокислот на поверхности глобулярных белков.

6. Чем определяется молекулярная масса гемоглобина?

Тестовые вопросы

1. Перечислите основные уровни организации белковой молекулы? И приведите конкретные примеры.

а) 4 уровня;

б) 5 уровней;

в) 6 уровней;

г) 1 уровень.

2. Какие вещества являются мономерами белков?

а) аминокилоты;

б) углеводы;

в) жиры;

г) витамины.

3. Какую функцию выполняют транспортные белки?

а) переносят аминокислоты, молекулы, ионы;

б) питательную функцию;

в) защитную;

г) структурную.

4. И.Э.Т. белка рН – 4,8. Какие аминокилоты преобладают в составе?

а) моноаминомонокарбоновые;

б) диаминомонокарбоновые;

в) моноаминодикарбоновые.

5. Какие виды гидролиза белка известны?

а) кислотные;

б) щелочной;

в) ферментативный.

ТЕМА 4. ВВЕДЕНИЕ В ФЕРМЕНТЫ

Ферменты есть катализаторы реакций в биологических системах. Они обладают чрезвычайно высокой каталитической активностью, они имеют высокую специфичность к своим субстратам, они ускоряют строго определенные химические реакции, они функционируют в водных растворах в мягких условиях температуры и рН. Ферменты - это один из ключей понимания функционирования и размножения клеток. Действуя в организованных последовательностях, они катализируют последовательно сотни реакций по пути метаболизма, при этом молекулы питательных веществ деградируют, накапливается химическая энергия, она трансформируется в другие формы, из простых молекул синтезируются биологические макромолекулы. Некоторые из этого множества ферментов, принимающих участие в метаболизме, служат регуляторными ферментами, которые дают ответ на различные сигналы метаболизма, изменяя соответственно свою каталитическую активность. Благодаря действию регуляторных ферментов, энзиматические системы высоко скоординированы и приводят к гармоничному взаимодействию множества метаболических процессов, необходимых для поддержания Жизни. Изучение ферментов также имеет исключительную практическую значимость. Некоторые заболевания, особенно наследственные генетические расстройства, приводят к дефициту или полному отсутствию одного или нескольких ферментов в органах и тканях. Неестественные условия функционирования также могут вызвать исключительную активность какого-то специфичного фермента. Измерения активности определенных ферментов в плазме крови, эритроцитах, в образцах тканей позволяют диагностировать заболевания. Ферменты стали важными инструментами не только в медицине, но и в химической промышленности, при производстве продуктов питания, в сельском хозяйстве. Мы сталкиваемся с ферментами в каждодневной жизни, будь то приготовление пищи, чистка одежды, уборка помещения.

История биохимии в значительной части связана с историей изучения ферментов. Биологический катализ был открыт в начале 18 века. В 1850г. Луи Пастер пришел к заключению, что превращение сахара в спирт под действием дрожжей катализируется ферментами. Он постулировал, что эти ферменты, названные позже энзимами , неотделимы от структуры дрожжевых клеток, эта точка зрения превалировала в научном мире в течение многих лет. В 1897г. Эдвард Бюхнер открыл способность дрожжевых экстрактов преобразовывать сахар в спирт, т.е. ферменты без потери активности могут быть отделены от живых клеток. С этого момента биохимиками выделены и очищены многие тысячи различных ферментов, исследованы их каталитические свойства.

Большинство ферментов, за исключением небольшой группы молекул каталитических РНК, представляют собой белки. Их каталитическая активность зависит от целостности их нативной структуры. Если фермент денатурирует или диссоциирует на субъединицы, каталитическая активность теряется. Разрушение фермента до аминокислот, также сопровождается потерей каталитической активности. Таким образом первичная, вторичная, третичная и четвертичная структуры белковых ферментов существенны для их каталитической активности.

Ферменты имеют молекулярные массы в диапазоне от 12 тысяч до 1 миллиона Дальтон. Некоторые ферменты для проявления своей активности не требуют иных химических групп, представленных аминокислотными остатками. Другие требуют дополнительный химический компонент, называемый кофактором . Кофакторами могут выступать один или более неорганических ионов, таких как Fe+2 , Mg+2 , Mn+2 , Zn+2 , или комплексная органическая или металлорганическая молекула, называемая коферментом . Некоторые ферменты требуют для проявления активности наряду с коферментом одного или более ионов металла. Кофермент или ион металла ковалентносвязанные с белковой молекулой фермента, называется простетической группой . Полностью каталитически активный фермент совместно с коферментом и/или ионами металла называется холоферментом . Белковая часть такого фермента носит название апофермента или апопротеина . Коферменты функционируют как непрерывные переносчики определенных функциональных групп.

Многие витамины, органические продукты питания, требуемые в малых количествах в диете, являются предшественниками коферментов.

Ферменты классифицируются в соответствии с реакциями, которые они катализируют . Их называют путем добавления суффикса "аза " к названию их субстрата или слову или фразе, описывающих их активность. Так, уреаза катализирует гидролиз мочевины, а ДНК-полимераза катализирует синтез ДНК. Есть ферменты, такие как пепсин и трипсин, которые в названиях не отражают своих субстратов. Некоторые ферменты имеют два и более наименования. Поэтому существует международное соглашение по классификации ферментов.

Каждый фермент имеет четырех цифровой классификационный номер и систематическое название, которое идентифицирует катализируемую реакцию.

Международная классификация ферментов

Класс

Тип катализируемой реакции

1. Оксидоредуктазы

Передача электронов

2. Трансферазы

Передача функциональных групп

3. Гидролазы

Гидролиз

4. Лиазы

Присоединение групп по двойным связям или образование двойных связей при удалении групп

5. Изомеразы

Перегруппировка молекулы с образованием изомерных форм

6. Лигазы

Образование C-C, C-S, C-O и C-N связей в реакциях конденсации с распадом АТФ на АДФ

В ферменте реализуется специфическое окружение, внутри которого заданная реакция энергетически более предпочтительна. Отличительной особенностью ферментативной реакции является наличие некого "кармана" у фермента, называемого активным центром . Молекула, связываемая активным центром, получила название субстрата . Образование фермент-субстратного комплекса является основой для описания механизма ферментативных реакций.

Е + S ES ЕР Е + Р ,

Е - фермент, S - субстрат, Р - продукт, ES - комплекс фермента с субстратом,

ЕР - комплекс фермента с продуктом.

Переходное состояние, (+ + )


Свободная Химическая

энергия , G DGS ® P + + DGP ® S + + реакция

S

DG + +

P

Координата реакции

(+ + )


DGнекат+ + Ферментативная

Свободная реакция

энергия , G DGкат + +

DGкат+ + < DGнекат+ +

ES EP

Координата реакции

Исходя из теории переходного состояния, скорость реакции равна:

K × T

k = × e - D G / RT

h ,

где К - постоянная Больцмана, h - постоянная Планка.

Увеличение скорости реакций под действием ферментов

Карбоангидраза

107

Фосфоглюкомутаза

1012

Сукцинил-СоА трансфераза

1013

Уреаза

1014

Кинетика ферментативных реакций раскрывает механизм их действия, позволяет установить влияние на скорость реакций температуры, рН, ионной силы раствора, фиксировать конкурентоспособность ингибиторов реакций и т.д.

Вопросы для самоконтроля

1. Состав ферментов.

2. Классификация ферментов.

3. Пространственная структура ферментов.

4. От чего зависит активность ферментов?

5. Способы количественного измерения активности ферментов?

6. Способы ингибирования действия ферментов?

7. Энзиматическая активность лизоцима.

8. Использование ферментов в пищевой промышленности.

9. Способы иммобилизации ферментов.

Тестовые вопросы

1. Сколько классов ферментов?

а) 5;

б) 6;

в) 3;

г) 7.

2. Что такое активные центры ферментов?

а) место в молекуле где происходит реакция субстратом;

б) центр, отвечающий за строение ферментов;

в) сочетание группировок от аминокислот.

3. Какая оптимальная tºС должна быть для мах активности ферментов?

а) 80ºС;

б) 100ºС;

в) 40-50ºС;

г) 20ºС.

4. По какому принципу осуществляется классификация ферментов?

а) по конечному продукту реакции;

б) по типу реакции которая катализируется этим ферментом;

б) по исходным веществам которые использованы для самой реакции.

5. Какую реакцию катализирует фермент сахараза?

а) инверсия сахарозы;

б) синтез крахмала;

в) перенос фосфорных остатков.

ТЕМА 5. ЛИПИДЫ

Липиды природного происхождения - это группа соединений, общей особенностью которых является отсутствие растворимости в воде. Биологические функции липидов весьма разнообразны. Жиры и масла есть главные формы аккумуляции энергии во многих организмах, фосфолипиды и стеролы составляют около половины массы биологических мембран. Другие липиды, хотя и присутствуют в относительно низких концентрациях, играют решающую роль в качестве кофакторов ферментов, переносчиков электронов, светопоглощающих пигментов, гормонов, эмульгирующих агентов, гидрофобных анкеров, внутриклеточных передатчиков.

Жиры и масла - это производные жирных кислот, которые в свою очередь являются производными углеводородов. Полное окисление жирных кислот до СО2 и Н2 О в клетке подобно двигателю внутреннего сгорания есть высокоэнергетическая реакция.

Жирные кислоты - это карбоновые кислоты с числом атомов углерода в углеводородной цепи от 4 до 36.

Некоторые природные жирные кислоты

Углеродный

Скелет

Структура

Название

жирн. кислоты

Т плавл . ° С

12:0

СН3 (СН2 )10 СOOH

Лауриновая

44,2

14:0

СН3 (СН2 )12 СOOH

Миристиновая

53,9

16:0

СН3 (СН2 )14 СOOH

Пальмитиновая

63,1

18:0

СН3 (СН2 )16 СOOH

Стеариновая

69,6

18:1(D9 )

СН3 (СН2 )7 СH=CH (CH2 )7 COOH

Олеиновая

13,4

18:2 (D9,12 )

СН3 (СH2 )4 СН=СHCH2 CH=CH(CH2 )7 СОOH

a-Линолевая

- 5

18:3 (D9,12,15 )

СH3 CH2 CH=CHCH2 CH=CHCH2 CH=CH-

-(CH2 )7 COOH

Линоленовая

- 11

18:4 (D5,8,11,14 )

CH3 (CH2 )2 CH=CHCH2 CH=CHCH2 CH=CH-

-CH2 CH=CH(CH2 )3 COOH

Арахидоновая

- 49,5

Положение двойной связи в жирных кислотах обозначается знаком D . Двойные связи в ненасыщенных жирных кислотах имеют цис-конфигурацию.

В позвоночных животных свободные жирные кислоты циркулируют в крови, связанные с сывороточным альбумином. Однако в основном жирные кислоты представлены в виде производных - сложных эфиров и амидов. Самые простейшие липиды, сконструированные из жирных кислот, представляют собой триацилглицеролы (или триглицериды ). В большинстве клеток эукариот триацилглицеролы образуют отдельную фазу жировых капелек в водном цитозоле.

Триацилглицеролы обеспечивают запас энергии в организмах. Некоторые люди имеют 15-20 кг триацилглицеролов, сохраняемые в адипоцитах в подкожных областях, эти количества обеспечивают запас энергии на несколько месяцев. Триацилглицеролы служат также изолирующим материалом, защищающим организм от переохлаждения. Большинство продуктов питания содержат триацилглицеролы.

Жирнокислотный состав природных жиров

Состав при комн. t

(25 ° C )

Жирные кислоты

Насыщенные

ненасыщеные

С4 - С12

С14

С16

С18

С16 + С18

Оливковое масло

Жидкое

< 2

< 2

13

3

80

Коровье масло

Твердое (размяг.)

11

10

26

11

10

Коровий жир

Твердое (хрупкое)

< 2

< 2

29

21

46

При гидролизе триацилглицеролов образуются мыла.


омыление

Воска служат источником запасенной энергии и водонепроницаемым покрытием, они представляют сложные эфиры длиноцепочечных насыщенных и ненасыщенных жирных кислот (имеющих от 14 до 36 атомов углерода) с длиноцепочечными спиртами (имеющими от 16 до 30 углеродных атомов).

Основной компонент пчелиного воска :

Характерной особенностью биологических мембран является двойной липидный слой, который служит барьером для проникновения полярных молекул и ионов.

Основные классы запасных и мембранных липидов

Запасные липиды

(нейтральные)


|

Фосфолипиды

Гликолипиды

|

|

|

|


Жирная к-та


Глицерофосфолипиды являются производными фосфатидиловой кислоты. В некоторых фосфолипидах жирные кислоты присоединяются через простые эфирные связи.

Тромбацитарный фактор активации

Сфинголипиды будучи производными сфингозина (аминоспирта ) являются центрами биологического распознавания на поверхности клетки, так например, они служат детерминантами групп крови человека А , В и О .


Жирная к-та

Fuc О-Антиген

Glc Gal GalNAc Gal