Главная      Учебники - Разные     Лекции (разные) - часть 65

 

Поиск            

 

Абелевы универсальные алгебры

 

             

Абелевы универсальные алгебры

"Абелевы универсальные алгебры"


Содержание

Введение

1. Основные определения, обозначения и используемые результаты

2. Свойства централизаторов конгруэнции универсальных алгебр

3. Формационные свойства нильпотентных алгебр

4. Классы абелевых алгебр и их свойства

Заключение

Список литературы


Введение

Теория формаций алгебраических систем, как самостоятельное направление современной алгебры, начало развиваться сравнительно недавно, в конце 60-х годов прошлого столетия. Отметим, что за последующие четыре десятилетия в таких классических областях исследования, как группы, кольца, алгебры Ли, мультикольца и т.д. формационные методы получили довольно широкое развитие. В теории же универсальных алгебр формационные методы не находят такого широкого применения, что, в первую очередь, связано со сложностью самого объекта исследований. Поэтому получение новых результатов, касающихся формационных свойств универсальных алгебр, представляет несомненный интерес. Именно этой задаче посвящается настоящая . Здесь на основе определения централизатора конгруэнции, введенного Смитом , дается определение абелевои алгебры и доказывается основной результат, что класс всех универсальных абелевых алгебр из мальцевского многообразия образует наследственную формацию. Также рассматривается и свойства абелевых универсальных алгебр.

Перейдем к краткому изложению результатов курсовой работы, которая включает в себя введение, четыре параграфа и список цитируемой литературы из восьми наименований.

1 является вспомогательным. Здесь приводятся основные определения, обозначения и результаты, используемые в дальнейшем.

2, 3 носят ивный характер. Здесь подробно с доказательствами на основании результатов работ [1] и [2] излагается теория централизаторов конгруэнции универсальных алгебр и рассматриваются формационные свойства нильпотентных алгебр работы[3]. Сразу же отметим, что все рассматриваемые универсальные алгебры принадлежат фиксированому мальцевскому многообразию.

В 4, который является основным, на основании результатов 3 вводится понятие абелевой алгебры. Используя методы исследования работы [1] доказывается следующий основной результат: класс всех универсальных абелевых алгебр из мальцевского многообразия образует наследственную формацию.


1 О сновные определения, обозначения и используемые результаты

Приведем определения основных понятий, используемых в данной работе из источников [1] и[2]. Для введения понятия алгебы необходимо сначала определить -арные операции.

Определение 1.1. Если – непустое множество и , то -арной операцией на множестве назовем отображение прямого произведения в . Рассматриваются и -арные операции, которые по определению, отмечают некоторый элемент из .

Определение 1.2. Пара , где – непустое множество, а (возможно, пустое) множество операций на , называется универсальной алгеброй или, короче, алгеброй .

Совокупность операций (или опрерационных символов) будем называть сигнатурой . Часто, при введении алгебры, указывают только множество и не указывают сигнатуру.

Элемент алгебры отмечаемый -арной операцией . будем обозначать через .

Определение 1.3. Подмножество называется подалгеброй , если для всякой -арной операции ,

а если и -арная операция из , то

Определение 1.4. Если , – алгебры сигнатуры , то прямое произведение

становиться алгеброй той же сигнатуры, если для каждой -арной операции положить

а для -арной операции , где , –

Возникающая таким образом алгебра называется прямым произведением алгебр .

Приведем некоторые определения из

Определение 1.5. Отображение из алгебры в алгебру называется гомоморфизмом , если для любых элементов и любой -арной операции ( ) справедливо равенство

Если же – нульарная операция, то полагаем

Взаимнооднозначный гомоморфизм алгебры на называется изоморфизмом и обозначается . Гомоморфизм алгебры в себя называется эндоморфизмом алгебры . Изоморфизм алгебры в себя называется ее автоморфизмом .

Определение 1.6. Конгруэнцией на алгебре называется всякая подалгебра прямого квадрата , обладающая следующими свойствами:

1) (рефлексивность ): для всех ;

2) (симметричность ): если , то ;

3) (транзитивность ): если и , то .

Отметим, что условия 1) – 3) означают, что эквивалентностъ на множестве .

Определение 1.7. Пусть – гомоморфизм алгебры в . Ядром гомоморфизма называется подмножество

В работе [3] приводятся следующие теоремы об изоморфизмах

Теорема 1 Ядро гомоморфизма является конгруэнцией.

Определение 1.8. Если – конгруэнция на алгебре и , то множество

называется классом конгруэнции . Множество всех классов конгруэнции обозначают через . При этом для каждой -арной операции считают , а для -арной операции , где , – . Получившуюся алгебру называют фактор-алгеброй алгебры по конгруэнции .

Теорема Первая теорема об изоморфизмах 2 Если – гомоморфизм алгебры в , то

Теорема Вторая теорема об изоморфизмах 3 Пусть конгруэнция на алгебре , – подалгебра алгебры . Тогда

Определение 1.9. Если , – конгруэнции на алгебре и содержится в , то обозначим

и назовем фактором алгебры или фактором на .

Теорема Третья теорема об изоморфизмах 4 Пусть – фактор на алгебре . Тогда

Определение 1.10. Если и – конгруэнции алгебры , то полагают

Теорема 5 Произведение двух конгруэнции является конгруэнцией тогда и только тогда, когда они перестановочны.

Определение 1.11. Класс алгебраических систем называется формацией , если выполняются следующие условия:

1) каждый гомоморфный образ любой -системы принадлежит ;

2) всякое конечное поддекартово произведение -систем принадлежит .

Определение 1.12. Формальное выражение , где и – слова сигнатуры в счетном алфавите , называется тождеством сигнатуры . Скажем, что в алгебре выполнено тождество , если после замены букв любыми элементами алгебры и осуществления входящих в слова и операций слева и справа получается один и тот же элемент алгебры , т.е. для любых в алгебре имеет место равенство

Определение 1.13. Класс алгебр сигнатуры называется многообразием, если существует множество тождеств сигнатуры такое, что алгебра сигнатуры принадлежит классу тогда и только тогда, когда в ней выполняются все тождества из множества . Многообразие называется мальцевским , если оно состоит из алгебр, в которых все конгруэнции перестановочны.

2. Свойства централизаторов конгруэнции универсальных алгебр

Напомним, что класс алгебр сигнатуры называется многообразием , если существует множество тождеств сигнатуры такое, что алгебра сигнатуры принадлежит классу тогда и только тогда, когда в ней выполняются все тождества из множества .

Многообразие называется мальцевским , если оно состоит из алгебр, в которых все конгруэнции перестановочны.

Все алгебры считаются принадлежащими некоторому фиксированному мальцевcкому многообразию. Используются стандартные обозначения и определения из[2].

В данной работе конгруэнции произвольной алгебры будем обозначать греческими буквами.

Если – конгруэнция на алгебре , то

смежный класс алгебры по конгруэнции . или – диагональ алгебры .

Для произвольных конгруэнции и на алгебре будем обозначать множество всех конгруэнции на алгебре таких, что

тогда и только тогда, когда

Так как , то множество не пусто.

Следующее определение дается в работе[2].

Определение 2.1. Пусть и – конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:

1) из

всегда следует

2) для любого элемента

всегда выполняется

3) если

то

Под термином «алгебра» в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие .

Следующие свойства централизуемости, полученные Смитом[3], сформулируем в виде леммы.

Лемма 2.1. Пусть . Тогда:

1) существует единственная конгруэнция , удовлетворяющая определению 2.1;

2) ;

3) если

то

Из леммы 2.1. и леммы Цорна следует, что для произвольной конгруэнции на алгебре всегда существует наибольшая конгруэнция, централизующая . Она называется централизатором конгруэнции в и обозначается .

В частности, если , то централизатор в будем обозначать .

Лемма 2.2. Пусть , – конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

1) ;

2) , где ;

3) если выполняется одно из следующих отношений:

4) из всегда следует

Доказательство:

1) Очевидно, что – конгруэнция на , удовлетворяющая определению 2.1. В силу пункта 1) леммы 2.1. и .

2) – конгруэнция на , удовлетворяющая определению 2.1. Значит

3) Пусть . Тогда

Применим к последним трем соотношениям мальцевский оператор такой, что

Тогда получим

т.е.


Аналогичным образом показываются остальные случаи из пункта 3).

4) Пусть

Тогда справедливы следующие соотношения:

Следовательно,

где – мальцевский оператор.

Тогда

то есть .

Так как

то .

Таким образом . Лемма доказана.

Следующий результат оказывается полезным при доказательстве последующих результатов.

Лемма. 2.3. Любая подалгебра алгебры , содержащая диагональ , является конгруэнцией на алгебре .

Доказательство:

Пусть

Тогда из

следует, что

Аналогичным образом из

получаем, что

Итак, симметрично и транзитивно. Лемма доказана.

Доказательство следующего результата работы [1] содержит пробел, поэтому докажем его.

Лемма 2.4. Пусть . Тогда для любой конгруэнции на алгебре .

Доказательство:

Обозначим и определим на алгебре бинарное отношение следующим образом:

тогда и только тогда, когда

где

Используя лемму 2.3, нетрудно показать, что – конгруэнция на алгебре , причем

Пусть

то есть


Тогда

и, значит

Пусть, наконец, имеет место

Тогда справедливы следующие соотношения:

применяя мальцевчкий оператор к этим трем соотношениям, получаем

Из леммы 2.2 следует, что


Так как

то

Значит,

Но , следовательно, .

Итак,

и удовлетворяет определению 2.1. Лемма доказана.

Лемма 2.5. Пусть , – конгруэнции на алгебре , и – изоморфизм, определенный на .

Тогда для любого элемента отображение определяет изоморфизм алгебры на алгебру , при котором .

В частности, .

Доказательство.

Очевидно, что – изоморфизм алгебры на алгебру , при котором конгруэнции , изоморфны соответственно конгруэнциям и .

Так как


то определена конгруэнция

удовлетворяющая определению 2.1.

Изоморфизм алгебры на алгебру индуцирует в свою очередь изоморфизм алгебры на алгебру такой, что

для любых элементов и , принадлежащих . Но тогда легко проверить, что – конгруэнция на алгебре , изоморфная конгруэнции .

Это и означает, что

Лемма доказана.

Определение 2.2. Если и – факторы на алгебре такие, что

то конгруэнцию обозначим через и назовем централизатором фактора в .

Напомним, что факторы и назыавются перспективными , если либо


либо

Докажем основные свойства централизаторов конгруэнции.

Теорема 6 Пусть , , , – конгруэнции на алгебре . Тогда:

1) если , то

2) если , то

3) если , и факторы , перспективны, то

4) если – конгруэнции на и , то

где , .

Доказательство.

1) Так как конгруэнция централизует любую конгруэнцию и , то


2) Из первого пункта лемы 2.2 следует, что

а в силу леммы 2.4 получаем, что

Пусть – изоморфизм . Обозначим

По лемме 2.5 , а по определению

Следовательно,

3) Очевидно, достаточно показать, что для любых двух конгруэнции и на алгебре имеет место равенство

Покажем вналале, что


Обозначим . Тогда, согласно определению 2.1. на алгебре существует такая конгруэнция , что выполняются следующие свойства:

а) если , то

б) для любого элемента ,

в) если

то

Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда


и

Покажем, что – конгруэнция на . Пусть

для . Тогда

и

Так как – конгруэнция, то для любой -арной операции имеем

Очевидно, что

и

Следовательно,


Очевидно, что для любой пары

Значит,

Итак, по лемме 2.3, – конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, то есть централизует . Пусть

Тогда

Так как , и , то . Следовательно, удовлетворяет определению 2.1.

Если , то

значит,


Пусть, наконец, имеет место (1) и

Тогда

Так как и , то , следовательно, . Из (2) следует, что , а по условию . Значит, и поэтому

Тем самым показано, что конгруэнция удовлетворяет определению 2.1, то есть централизует .

Докажем обратное включение. Пусть

Тогда на алгебре определена конгруэнция

удовлетворяющая определению 2.1. Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда

и , .


Аналогично, как и выше, нетрудно показать, что – конгруэнция на алгебре . Заметим, что из доказанного включения в одну сторону следует, что . Покажем поэтому, что централизует .

Так как

то

то есть удовлетворяет условию 1) определения 2.1.

Если , то

следовательно,

Пусть имеет место (3) и .

Так как

то


Из (4) следует, что , следовательно,

то есть

На основании леммы 2.2 заключаем, что

Следовательно, .

А так как , то , то есть

4) Обозначим . Пусть

и удовлоетворяет определению 2.1.

Определим бинарное отношение на следующим образом

тогда и только тогда, когда


Аналогично, как и выше, нетрудно показать, что – конгруэнция, удовлетворяющая определению 2.1.

Это и означает, что

Теорема доказана.

Как следствия, из доказанной теоремы получаем аналогичные свойства централизаторов в группах и мультикольцах.

3. Формационные свойства нильпотентных алгебр

Как уже отмечалось, все алгебры считаются принадлежащими некоторому фиксированному мальцевскому многообразию и используются стандартные обозначения и определения из[1].

Напомним, что для и – конгруэнции на алгебре – говорят, что централизует (записывается: ), если на существует такая конгруэнция , что:

1) из всегда следует

2) для любого элемента всегда выполняется

3) если , то


Очевидно, что для любой конгруэнции на алгебре конгруэнция централизует . В этом случае .

Заметим, что если и – конгруэнции на группе и , то для нормальных подгрупп и группы и любых элементов , имеют место следующие соотношения:

Тогда

и в силу транзитивности из этих соотношений следует, что

По определению 2.1 получаем, что

Следующее определение центральности принадлежит Смиту .

Определение 3.1. , если существует такая , что для любого ,


Докажем, что определение 2.1. эквивалентно определению 3.1. означает условие 1) из определения 2.1. И наоборот, условие 1) означает, что .

Пусть и – конгруэнции, удовлетворяющие определению 2.1. Из условия 2) следует, что для любого элемента ,

Докажем обратное включение.

Пусть . Так как , то из условия 2) следует, что

В силу транзитивности имеем

и, значит, в силу условия 3) . Итак

Покажем, что из определения 3.1. следуют условия 2) и 3) определения 2.1. Если , то


Это означает .

Для получаем, что

откуда .

Согласно работе

Определение 3.2. Алгебра называется нильпотентной , если существует такой ряд конгруэнции

называемый центральным , что

Лемма 3.1. Любая подалгебра нильпотентной алгебры нильпотентна.

Доказательство:

Пусть – подалгебра нильпотентной алгебры . Так как обладает центральным рядом

то для любого на алгебре существует конгруэнция удовлетворяющая определению 2.1. А именно, из


всегда следует

и

1) для любого элемента

всегда выполняется

2) если

и

то

Заметим, что в дальнейшем, для сокращения записи, будем учитывать тот факт, что


тогда и только тогда, когда

Построим следующий ряд конгруэнции на алгебре :

где

Покажем, что этот ряд является центральным. Для этого на алгебре для любого определим бинарное отношение следующим образом:

тогда и только тогда, когда

Покажем, что – конгруэнция на алгебре . Пусть


Тогда

и для любой -арной операции имеем

Следовательно,

Итак, – подалгебра алгебры .

Очевидно, что для любого элемента имеет место

Таким образом, согласно лемме 2.3, – конгруэнция на алгебре .

Пусть

Тогда и так как , то

Если , то и, значит,


т.е.

Пусть, наконец,

Тогда

и так как

Следовательно,

Итак, конгруэнция удовлетворяет определению 2.1. для любого . Лемма доказана.

Лемма 3.2. Пусть и – конгруэнции на алгебре ,


и – изоморфизм, определенный на алгебре .

Тогда для любого элемента отображение

определяет изоморфизм алгебры на алгебру , при котором

Доказательство:

Очевидно, что – изоморфизм алгебры на алгебру , при котором конгруэнции и изоморфны соответственно конгруэнциям и .

Так как , то существует конгруэнция на алгебре , удовлетворяющая определению 2.1. Изоморфизм алебры на алгебру индуцирует в свою очередь изоморфизм алгебры на алгебру такой, что

для любых элементов , .

Но тогда легко проверить, что – конгруэнция на алгебре изоморфная конгруэнции . Это и означает, что

Лемма доказана.

Лемма 3.3. Фактор-алгебра нильпотентной алгебры нильпотентна.

Доказательство:

Пусть

центральный ряд алгебры . Покажем, что для любой конгруэнции на алгебре ряд

является центральным, т.е.

для любого . В силу известных теорем об изоморфизмах для алгебр (см., например, теоремы II.3.7, II.3.11 ) и леммы 3.2., достаточно показать, что

Пусть – конгруэнция на алгебре , удовлетворяющая определению 2.1. Определим бинарное отношение на алгебре следующим образом

тогда и только тогда, когда найдутся такие элементы , что


и

Непосредственной проверкой убеждаемся, что – конгруэнция на алгебре .

Таким образом осталось показать, что удовлетворяет определению 2.1.

Пусть

тогда из соотношения

следует, что

Так как


то . Итак,

Пусть . Тогда для некоторого элемента , и .

Таким образом,

следовательно,

Так как , то это означает, что

Пусть

где

Покажем, что . В силу определения найдутся , что


и

При этом имеют место следующие соотношения:

Следовательно,

Но тогда по определению 3.2.

А так как , то

Теперь из того, что


следует, что

Лемма доказана.

Доказательство следующего результата осуществляется простой проверкой.

Лемма 3.4. Пусть – конгруэнция на алгебре , . Пологая

тогда и только тогда, когда для любого , получаем конгруэнцию на алгебре .

Лемма 3.5. Прямое произведение конечного числа нильпотентных алгебр нильпотентно.

Доказательство:

Очевидно, достаточно показать, что если , и – нильпотентные алгебры, то – нильпотентная алгебра.

Пусть

центральные ряды алгебр и соответственно. Если , то, уплотнив первый ряд повторяющимися членами, получим центральный ряд алгебры длины . Таким образом, можно считать, что эти ряды имеют одинаковую длину, равную .

Построим теперь ряд конгруэнции на алгебре следующим образом:

где тогда и только тогда, когда , , .

Покажем, что последний ряд является центральным, т.е. для произвольного . Так как

то на алгебрах и соответственно заданы конгруэнци и , удовлетворяющие определению 2.1.

Определим бинарное отношение на алгебре следующим образом:

и только тогда, когда

и


Легко непосредственной проверкой убедиться, что – конгруэнция на алгебре . Осталось показать, что удовлетворяет определению 2.1.

Пусть имеет место

Тогда согласно введенному определению

и

откуда следует, что

т.е.

Пусть

Это означает


Но тогда

и

Следовательно,

Пусть имеет место

Это означает, что

и

Значит, и , т.е. . Лемма, доказана.

Как известно, наследственной формацией называется класс алгебр, замкнутых относительно фактор-алгебр, подпрямых произведений и относительно подалгебр.

Результаты, полученные в леммах 3.1, 3.3, 3.5 можно сформулировать в виде следующей теоремы.

Теорема 7 Класс всех нильпотентных алгебр мальцевского многообразия является наследственной формацией.

Определение 3.3. -арная группа называется нильпотентной , если она обладает таким нормальным рядом

что

и

для любого .

Так как конгруэнции на -арных группах попарно перестановочны (смотри, например, ), то это дает возможность использовать полученные результаты в исследовании таких групп.

Лемма 3.6. Пусть -арная группа. и – нормальные подгруппы группы и .

Тогда , где и конгруэнции, индуцированные соответственно подгруппами и на группе .

Доказательство:

Подгруппы и индуцируют на группе конгруэнции и , определяемые следующим образом:


-арная операция.

Определим на бинарное отношение следующим образом:

тогда и только тогда, когда существуют такие последовательности элементов и из и соответственно, что

Покажем, что – подалгебра алгебры . Для сокращения записи будем в дальнейшем опускать -арный оператор .

Пусть

Так как , то

Так как , то


Поэтому в силу того, что ,

Итак, – подалгебра алгебры .

Пусть – нейтральная последовательность группы , а, следовательно, и группы . Тогда из определения бинарного отношения следует, что

Тем самым доказало, что – конгруэнция на .

Тo, что удовлетворяет определению 2.1, очевидно. Лемма доказана.

Лемма 3.7. Пусть – нильпотентная -арная группа. Тогда удовлетворяет определению 2.1.

Доказательство:

Так как для любого , то индуцирует конгруэнцию на . Таким образом обладает рядом конгруэнции, который в силу леммы 3.6 будет являться центральным. Лемма доказана.

В частности, для произвольной бинарной группы отсюда следует, что нильпотентна тогда и только тогда, когда, удовлетворяет определению 3.2. В этом случае теорема 3.2 просто констатируе тот факт, что класс всех нильпотентных групп образует наследственную формацию.


4. Классы абелевых алгебр и их свойства

Как уже было отмечено в параграфе 3, алгебра называется нильпотентной , если существует такой ряд конгруэнций

называемый центральным, что

для любого .

Определение 4.1. В случае, если для нильпотентной алгебры в центральном ряде , то есть если для нее , то алгебра называется, абелевой .

Лемма 4.1. Любая подалгебра абелевой алгебры абелева.

Доказательство:

Пусть подалгебра абелевой алгебры .

Так как по определению , то на существует такая конгруэнция , что:

1) из

всегда следует

2) для любого элемента


всегда выполняется

3) если

то

Рассмотрим конгруэнцию

Действительно, если

для , то

и для любой -арной опеации имеем

Но поскольку подалгебра алгебры , получаем


Значит, подалгебра алгебры .

Очевидно, что для любого элемента имеет место

Таким образом, конгруэнция ня алгебре .

Пусть

тогда

то Если , то

и, значит,

т.е.

Пусть, наконец,


Тогда

и значит .

Итак, конгруэнция удовлетворяет определению 2.1. Лемма доказана.

Лемма 4.2. Фактор-алгебра абелевой алгебры абелева.

Доказательство:

Пусть алгебра – абелева, то есть . Покажем, что для любой конгруэнции на выполняется

Пусть – конгруэнция на алгебре , удовлетворяющая определению 2.1.

Определим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда найдуться такие элементы , , , , что


и

Непосредственной проверкой убеждаемся, что – конгруэнция на алгебре .

Таким образом осталось показать, что удовлетворяет определению 2.1. Пусть

тогда

Пусть

Тогда , и по определению 2.1

При этом и . Согласно нашим обозначениям получаем, что

Пусть


Тогда найдутся , что

и

При этом

Следовательно,

Но тогда по определению 3.1. . А так как , то

Теперь из того, что


следует, что

Лемма доказана.

Лемма 4.3. Прямое произведение конечного числа абелевых алгебр абелево.

Доказательство:

Очевидно, достаточно показать, что если , и – абелевы алгебры, то – абелева алгебра.

Пусть и . Это означает, что на алгебрах и заданы cоответсвенно конгруэнции и удовлетворяющие определению 2.1.

Определим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда

и

Непосредственной проверкой убеждаемся, что – конгруэнция на алгебре .

Таким образом осталось показать, что удовлетворяет определению 2.1.

Пусть

тогда

Пусть . Это означает, что и . Но тогда

и

Следовательно,

Пусть

тогда


и

Это означает, что и . Таким образом

Лемма доказана.

Результаты, полученные в леммах 4.1, 4.2, 4.3 можно теперь сформулировать в виде следующей теоремы.

Теорема 8 Класс всех абелевых алгебр мальцевского многообразия является наследственной формацией.

Пусть – конгруэнция на алгебре . – подалгебра алгебры , и . Тогда введем новое обозначение

Лемма 4.4. Пусть определено множество . Тогда – конгруэнция на ,

Доказательство:

Так как , то для любого элемента всегда найдется такой элемент , что . Следовательно,


где .

Таким образом .

Пусть теперь , . Тогда

где . Следовательно, для любой -арной операции получаем

Теперь, поскольку , то по лемме 3.2 – конгруэнция на .

Пусть . Тогда, очевидно,

т.е. . Так как

то

Покажем теперь, что . Допустим противное. Тогда найдется такая пара , что и . Из определения следует, что существует такая пара , что


Так как

то применяя мальцевский оператор получаем

Из леммы 2.2. теперь следует, что .

Итак, . Лемма доказана.

Подалгебра алгебры называется нормальной в , если является смежным классом по некоторой конгруэнции алгебры .

Лемма 4.5. Любая подалгебра абелевой алгебры является нормальной.

Доказательство:

Пусть – подалгебра абелевой алгебры . Так как , то по лемме 4.4. на существует такая конгруэнция , что

Лемма доказана.


Заключение

Таким образом, в данной работе мы подробно с доказательствами на основании результатов работ [3] и [4] изложили теорию централизаторов конгруэнции универсальных алгебр и рассматрели формационные свойства нильпотентных алгебр работы[2], на основании результатов 3 ввели понятие абелевой алгебры. Используя методы исследования работы [1] доказали следующий основной результат: класс всех универсальных абелевых алгебр из мальцевского многообразия образует наследственную формацию.


Список литературы

Скорняков, Л.А., Элементы общей алгебры. – М.: Наука, 1983. – 272 с.

Шеметков Л.А., Скиба А.Н., Формации алгебраических систем. – М.: Наука, 1989. – 256 с.

Smith J.D. Mal'cev Varieties // Lect. Notes Math. 1976. V.554.

Русаков С.А., Алгебраические -арные системы. Минск, 1987. – 120 с.

Кон П., Универсальная алгебра. М.:Мир, 1968.–351 с.

Ходалевич А.Д., Свойства централизаторов конгруэнции универсальных алгебр // Вопросы алгебры. – 1996.–Вып.10 с. 144–152

Ходалевич А.Д. Формационные свойства нильпотентных алгебр // Вопросы алгебры. – 1992. – Вып.7.–с. 76–85