Главная      Учебники - Разные     Лекции (разные) - часть 34

 

Поиск            

 

Организация доступа в Internet по существующим сетям кабельного телевидения

 

             

Организация доступа в Internet по существующим сетям кабельного телевидения

Организация доступа в Internet по существующим сетям кабельного телевидения (Диплом)

Содержание

Стр.

1. Введение...........................................................................................................3

2. Общие данные систем доступа в Internet ........................…..............……...4

3. Требования, предъявляемые к оборудованию доступа в Internet .....……..9

3.1 Архитектуры передачи upstream данных............................……….9

3.2 Стандарты модемов...........................................................…...........12

3.3 Стек протоколов Docsis……….........................................…...........13

3.4 Подуровень Maс………........................................................….........15

3.5 Организация защиты………..............................................…..........16

3.6 Голос по кабелю..................………....................................…..........17

3.7 Требования стандартов (сводная таблица)………......….........…...20

4. Планирование сети………...................................................................….......20

4.1 Анализ производителей модемов........................................…....…21

4.2 Устройство и функции кабельного модема……..............……......26

4.3 Устройство сети....................................................................…........28

4.4 Настройка сети……………………………………………………..32

4.5 Программное обеспечение...................................................…........33

5. Расчет затрат и экономической эффективности планируемой сети……...42

6. Безопасность жизнедеятельности…………………………………………...46

7. Заключение........................................... ...............................................…..…..62

8. Библиографический список……………………............................................63

9. Приложение 1

Технические характеристики некоторых кабельных модемов…………..64

10. Приложение 2

Перспективы и проблемы применения КТВ для доступа в Internet……..71

10.1 Преимущества кабельных модемов. ......................................…...71

10.2 Проблемы кабельных модемов . .......................................……....73 10.3 Применение кабельных модемов. ..................................…….......74

10.4 Кабельные модемы в России. …..............................................…..78

1.Введение

Идея использования существующих линий связи для передачи цифровых сигналов не нова. Именно так работает обычный модем, который передает информацию по телефонной линии. Но возможности такой связи ограниченны, и это заставляет провайдеров Internet искать новые пути к домам своих клиентов. Если посмотреть, сколько кабелей подходит к каждой отдельной квартире, то можно заметить, что их обычно три: силовой (220 В), телефонный и телевизионный. Силовую сеть использовать трудно (хотя в этой области есть уже определённые наработки). Возможности телефонной линии постепенно исчерпываются. Остается телевизионный кабель. Но как его использовать?

Передавать данные по телевизионным каналам - хорошая идея, но для полноценной работы в Internet необходима обратная связь между пользователем и головной станцией (где находится телевизионное оборудование, а так же оборудование для выхода в Internet), которая в обычных условиях отсутствует, но при соответствующей аппаратной модификации эта проблема разрешима. Однако телевизионные сигналы распространяются не только по воздуху, но и через кабельную сеть. Кабельное телевидение может быть хорошей средой для передачи цифровой информации. Эта идея и лежит в основе технологии кабельных модемов. Целью данной работы является исследование технологии доступа в интернет с помощью существующих сетей кабельного телевидения, а так же планирование сети в отдельно взятом микрорайоне, на базе этой технологии. Цель работы предполагает решение следующих задач:

- анализ существующих на данный момент разработок в этой области;

- изучение архитектуры устройств, предназначенных для оказания подобного рода услуг, так называемых, «Кабельных модемов»;

- изучение стандартов этих устройств;

- анализ характеристики модемов некоторых производителей;

- анализ компонентов, необходимых для создания сети на базе этой технологии;

- планирование и настройка сети в жилом микрорайоне;

- выделение преимуществ и недостатков этой технологии, а также методов продвижения исследуемой технологии на российский рынок.

Данная работа проводилась по предложению и в сотрудничестве с ООО “Телесеть-Сервис”. Предлагаемая модель сети уже запущена в эксплуатацию и имеет коммерческий успех.

2.Общие данные систем доступа в интернет.

Альтернативные технологии

ISDN [6]

Одной, из получивших распространение, технологий высокоскоростного доступа в интернет, является технология ISDN, которая предоставляет доступ в интернет при помощи телефонных сетей.

ISDN доставляет информацию от цифрового коммутатора через два типа пользовательских интерфейсов: Basic Rate Interface (BRI) и Primary Rate Interface (PRI) . Каждый из интерфейсов состоит из нескольких каналов со скоростью 64Kb/s, или каналов B. Каналы В связаны в одни данные и образуют канал D. По определению, каналы B являются 64Kb/s соединениями и могут использоваться для коммутируемого соединений данных и голоса. Канал D определен для пакетно-комммутируемого вызова, установки и сигнализации соединений, доступный всем пользователям ISDN.

Это действительно перспективная технология, но основным препятствием для её развития на Урале служит, отсутствие в нашем регионе АТС поддерживающих эту технологию, а так же высокая цена подобного оборудования.

ADSL [12]

Другим конкурентом технологии CATV является технология ADSL. ADSL обеспечивает скорости передачи данных до 8 Мбит/с по направлению к пользователю(downstream) и до 1 Мбит/с в обратном направлении(upstream). Конкретные значения скоростей передачи данных сильно зависят от расстояния между пользователем и телефонной станцией. Полоса пропускания 8 Мбит/с обеспечивается пользователям, находящимся на расстоянии до 2,7 км от телефонной станции; расстояниям 2,7-3,5 км соответствует предел в 6 Мбит/с; если же пользователь удален от телефонной станции на 3,5-5,5 км, он должен довольствоваться скоростью в 1,5 Мбит/с. На расстоянии свыше 5,5 км связь по ADSL не гарантируется. Не так давно московская компания Plus Communications провела испытания оборудования для ADSL от фирмы 3Com. На физической линии длиной 4 км была зафиксирована скорость 2 Мбит/с по направлению от провайдера к клиенту и 1 Мбит/с - в противоположном направлении.

Для передачи данных по технологии ADSL используется диапазон частот, находящийся выше полосы частот, отведенной для передачи голоса, поэтому данные и обычный телефонный трафик можно передавать по одной и той же линии. Для этого, правда, с каждой стороны приходится устанавливать так называемый частотный разделитель (POTS splitter). Он обеспечивает передачу низкочастотного голосового сигнала на оборудование ТфОП (со стороны клиента - на телефонный аппарат, со стороны телефонной станции - на коммутатор), а высокочастотного сигнала передачи данных - на оборудование ADSL.

Стандарт на ADSL (T1.413) был утвержден ANSI еще в 1995 г., однако данная технология до сих пор не получила широкого распространения. Причина этого в значительной степени связана со сложностью установки устройств ADSL; они требуют серьезной настройки на конкретную абонентскую линию (как правило, с участием технического сотрудника компании - оператора сети). Кроме того, нужно отдельно устанавливать частотный разделитель; нередко приходится частично менять телефонную кабельную проводку. Всё это в конечном итоге привело к слишком большой цене подключения, поэтому трудно ожидать, что услуга доступа к Internet по ADSL станет массовой.

Технология доступа с помощью КТВ(CATV) [3,4,5]

Для начала рассмотрим сущность и основные особенности кабельного телевидения. Станция кабельного телевидения получает и обрабатывает различные сигналы радиопередач, спутниковых программ и передач местных телевизионных студий. Теле сигналы - это электромагнитные импульсы, или
волны, и они занимают отведенное им место в частотном спектре. Для распространения теле сигналов необходим некоторый носитель, по которому они проходят от станции к телевизорам клиентов. Сигналы обычного телевидения могут передаваться по воздуху на разных частотах и распространяться по системам кабельного телевидения, в которых используются специальные кабели - коаксиальные или оптоволоконные.


Каждый телевизионный сигнал передается по кабелю на своей частоте (набор таких несущих частот и создает спектр телевизионных каналов), поэтому кабельное телевидение имеет свой собственный частотный спектр. Таким образом, можно смотреть телепрограммы даже там, где невозможно принимать сигнал через эфир. Головная станция кабельного телевидения получает различные телепрограммы из эфира, при необходимости преобразовывает их (конвертирует), суммирует, усиливает и подает в кабельную магистраль. Обычно магистралей бывает несколько (2-4). Это зависит от количества домов в микрорайоне, а так же от места расположения головной станции. Чтобы поддерживать нужный уровень сигнала в магистрали, через определенное расстояние (порядка 300 метров) ставятся магистральные усилители. Через специальные ответвители сигнал из магистрали попадает на домовую разводку, где окончательно усиливается и подается к абонентам.
Большая кабельная магистраль обычно проходит через весь микрорайон. Кабельные отводы, которые имеют меньший диаметр, передают сигналы из магистрали в локальную кабельную сеть, «пронизывающую» жилые и
производственные здания. Когда клиент хочет подключиться к кабельному телевидению, работники станции прокладывают в его дом кабель от ближайшего отвода и подключают к телевизору. Если телевизор не может
принять все каналы из-за несовместимости кабелей или кодировки сигналов, то между кабельной сетью и телевизором устанавливается специальный конвертор. Такая организация сети, называемая «древовидной с отростками», позволяет наиболее эффективно и экономично передавать весь набор телепередач от станции к клиентам.

Для организации доступа в интернет посредством существующих сетей кабельного телевидения необходимы специальные устройства – кабельные модемы. Кабельные модемы располагаются на отводе кабельной магистрали и выполняют функции различных устройств: модема, шифратора-дешифратора информации, маршрутизатора, сетевого адаптера, SNMP-агента и даже концентратора Ethernet. Однако такое устройство все равно остается модемом, поскольку, прежде всего оно модулирует и демодулирует сигналы.
Обычно передача и прием информации с помощью кабельного модема осуществляется разными способами. При передаче информации от станции к кабельному модему (downstream) цифровые данные модулируются
стандартной для телевизионных сигналов частотой (6 МГц), на которую накладывается несущая частота (от 42 до 750 МГц).


Рис. 1. Устройства для обеспечения доступа в интернет посредством сетей кабельного телевидения.

Такой сигнал передается кабельной системе вместе с сигналами кабельного телевидения и не мешает телепередачам. Есть несколько схем модуляции, но наиболее популярны из них две - QPSK
(обеспечивает скорость передачи 10 Мбит/с) и QAM64 (до 36 Мбит/с).
Обратный сигнал от модема к станции (upstream) передавать сложнее. Это связано с тем, что в обычной дуплексной кабельной сети обратный сигнал (Upstream) может передаваться на частотах от 5 до 40 МГц. Такому сигналу могут помешать радиошумы и радиопередачи, а также неподключенная антенна или плохое соединение коаксиальных кабелей. Поскольку кабельная сеть имеет древовидную форму, все шумы из всех ответвлений собираются вместе и препятствуют распространению обратного сигнала. Большинство производителей планирует использовать QPSK или аналогичную схему модуляции для передачи в прямом направлении, поскольку этот метод лучше подходит для сильно зашумленной окружающей среды, чем высокочастотные методы модуляции. Недостаток же QPSK очевиден - более низкая скорость передачи, чем при использовании схемы модуляции QAM. Если кабельная сеть не может передать обратный сигнал, (это случается из-за плохих проводов и качества соединений), то это можно сделать с помощью сети ГТС или ISDN.

Кабельный модем работает как приемник и передатчик телевизионных сигналов. Импульсы от станции по коаксиальному кабелю поступают в кабельный модем, который передает их компьютеру или в локальную сеть.
Есть несколько методов подключения модема к компьютеру. Самый распространенный из них - технология Ethernet 10BaseT. В этом случае модем имеет встроенный адаптер Ethernet, который подключается к локальной сети или компьютеру. Естественно, на персональном компьютере также должен быть установлен адаптер Ethernet и программное обеспечение, обслуживающее протокол TCP/IP. Установка кабельного модема внутри
компьютера, возможно, обошлась бы дешевле, но для этого необходимо разработать набор плат для всех существующих платформ.

Эра компьютерных интерактивных служб (КИС) [16] на базе сетей кабельного телевидения (КТВ) началась в конце 1996 года, когда в коммерческую эксплуатацию были запущены сразу три службы крупнейших в США операторов КТВ - TCI, Time Warner и Continental Cablevision. Первые КИС были открыты в Канаде в декабре 1995 года и в Австралии летом 1996 года, но грандиозная эпопея по массовому внедрению данной технологии началась в сентябре 1996 года. На сегодняшний день из 300 тыс. работающих в мире кабельных модемов две трети установлены в США и Канаде. Из 300 тыс. абонентов КИС 85% пользуются услугами двухсторонних сетей (с обратным каналом), а остальные - односторонними (обратным каналом служит телефонная линия). На сегодняшний день крупнейшей в мире КИС является @Home компании @Home Network. Учредителями этого предприятия являются крупнейший оператор КТВ в США - корпорация TCI, которая в настоящее время имеет 17 млн. подписчиков по всей стране и инвестиционная компания Kleiner Perkins Caufield & Byers. Совладельцами и с операторами службы являются еще семь американских и канадских компаний, в том числе четвертый и пятый по величине операторы КТВ в США, компании Comcast и Cox Communications. По состоянию на 1 мая 1999 года @Home имела более 160 тыс. подписчиков. Потенциально же услугами этой КИС могут воспользоваться 6-7 млн. абонентов КТВ. На втором месте (64 тыс. пользователей) находится КИС Road Runner.

3. Требования, предъявляемые к оборудованию доступа в Internet

3.1 Архитектуры передачи upstream данных [2, 13]


Существует две архитектуры передачи upstream данных это симметричная и асимметричная архитектуры.

В случае симметричной архитектуры оба сигнала - прямой и обратный передаются по одному кабелю. Чтобы разделить прямой и обратный сигналы, их необходимо передавать в различных диапазонах частот. Из-за этого
прямая и обратная передачи происходят с разными скоростями. Стандартная симметричная архитектура имеет и другие недостатки, которые будут рассмотрены ниже. Поэтому некоторые фирмы, выпускающие кабельные
модемы, используют для своих устройств асимметричную архитектуру кабельной сети, которая в свою очередь имеет ряд недостатков, во первых - скорость upstream канала оставляет желать лучшего, во вторых - в связи возможным введением поминутной оплаты телефонных линий, данная архитектура может оказаться не рентабельной, именно последний аргумент сильно склоняет в сторону симметричной архитектуры. В случае несимметричной архитектуры обратный канал предоставляется с помощью других сетей, зачастую ГТС. Обе системы - симметричная и асимметричная могут хорошо дополнять друг друга. В скором времени асимметричная архитектура будет постепенно вытеснена симметричной архитектурой. Рассмотрим вопрос о том, какой архитектуре можно отдать предпочтение.

Передача информации по кабельным сетям может использоваться для различных целей. В промышленности, где кабельная сеть создается самим предприятием для пересылки информации, разумно использовать
симметричную архитектуру, поскольку в этом случае скорость обратной и прямой передачи одинакова. Для существующих модемов она составляет примерно 10 Мбит/с (LANcity), т. е. сопоставима со скоростью передачи в Ethernet.
Существующая кабельная сеть, к которой можно подключить
домашний компьютер, предназначена для телевизионных сигналов и не позволяет передавать обратный сигнал с достаточно высокой скоростью. Обычно пользователи домашнего компьютера используют связь с Internet для доступа к WWW и телеконференциям, а для этого требуется передача большего количества данных от станции к пользователю, а не наоборот. Чтобы получать графические, звуковые и видео файлы из Internet, требуются большие скорости передачи от станции к клиенту. Выполнение же URL-запросов или передача электронной почты не порождают большого потока данных от пользователя к станции.
Тем не менее, для подключения домашнего компьютера к Internet тоже нужно использовать симметричную архитектуру, модернизация кабельных сетей для организации обратного канала не так уж дорога, и в конечном итоге составит лишь сто долларов США на клиента (в достаточно больших сетях(50> абонентов)), как уже было упомянуто выше, в пользу этой архитектуры говорит, прежде всего, тот факт что, с Июля 2001 работникам

ГТС вводится повременная оплата предоставляемых ими услуг.

На рис. 2, 3 изображена симметричная и асимметричная архитектуры передачи данных. [3]


Рис. 2. Симметричная архитектура

upstream

Рис. 3. Асимметричная архитектура.

3.2 Стандарты модемов [7, 8]

Двумя основными стандартами на кабельные модемы являются MCNS/ DOCSIS и DVB/DAVIC. Однако если первый, американский, стандарт пользуется безоговорочной поддержкой американских производителей и операторов, то второй, европейский, стандарт сталкивается с все более жесткой конкуренцией европейского аналога DOCSIS — так называемого EuroDOCSIS (основное различие между американской и европейской версией DOCSIS связано с разной шириной телевизионных каналов в США и Европе и затрагивает только физический уровень).

Изначально эти стандарты были рассчитаны на поддержку разных приложений. Если Совет по цифровому аудио и видео (Digital Audio Visual Council, DAVIC) разрабатывал стандарт для предоставления интерактивных услуг на базе телевизионных приставок, то американские кабельные операторы (Multiservice Cable Operator, MCO), объединившиеся в MCNS, ориентировались, прежде всего, на предоставление в качестве дополнительной услуги передачи данных по кабелю.

Отсюда и их основные отличия. Стандарт DVB/DAVIC опирается на использование фиксированных ячеек ATM и стандартных для ATM методов обеспечения качества услуг. Поддержка передачи данных, в частности TCP/IP, обеспечивается с помощью AAL5. Стандарт DOCSIS предусматривает использование стандартных кадров Ethernet и поэтому лучше всего подходит для передачи пакетных данных.

При сравнении конкурирующие группы производителей часто прибегают к одному и тому же трюку, а именно — сопоставляют последнюю версию своего стандарта с предыдущей версией соперничающего с ним. Так, например, сторонники DVB/DAVIC напирают на поддержку качества обслуживания, хотя схожие возможности были включены в версию 1.1; а сторонники DOCSIS говорят об отсутствии в DVB/DAVIC защиты информации, хотя соответствующие средства были определены уже в DVB/DAVIC 1.4.

Конечно же, объективные различия между стандартами существуют. Например, для обратного канала DVB/DAVIC предусматривает только модуляцию QPSK, тогда как DOCSIS — еще и 16-QAM. В результате первый поддерживает меньшую максимальную пропускную способность при доступе абонентов. Однако максимальная скорость в 10,24 Мбит/с в случае 16-QAM редко когда достижима на практике вследствие зашумленности каналов и конкуренции за доступ.

Вообще, продолжать сравнение двух стандартов можно было бы довольно долго, но дело не в реальных достоинствах конкурентов, а в широте поддержки, которой они пользуются, так что, по-видимому, DVB/DAVIC уготована та же судьба, что и Token Ring, 100VGAnyLAN и ATM в локальных сетях. Впрочем, хотя и нельзя говорить непосредственно об объединении двух стандартов, разрабатываемый OpenCable стандарт для телевизионных приставок опирается на DOCSIS, но включает и компоненты DAVIC.

Помимо двух названных есть и еще один, международный, стандарт IEEE 802.14. Однако из-за долгого отсутствия прогресса в разработке он не получил сколько-нибудь заметной поддержки, и сейчас соответствующая рабочая группа при участии компаний Broadcom и Terayon работает над физическим уровнем следующего поколения с высокой — до 30 Мбит/с — скоростью передачи данных в обратном направлении (от кабельного модема к станции). Иногда этот еще не появившийся стандарт неофициально называют DOCSIS 1.2.

3.3 Стек протоколов DOCSIS [14, 7]

Ввиду доминирующего положения на рынке оборудования на базе DOCSIS мы кратко рассмотрим именно эту спецификацию (сокращение DOCSIS переводится как спецификация интерфейса сервиса передачи данных по кабелю — Data Over Cable Service Interface Specification, а употребляемое взаимозаменяемо с ним MCNS как мультимедийная система на базе кабельной сети — Multimedia Cable-Network System). Вообще говоря, стандарт включает 12 документов, определяющих интерфейс между кабельным модемом и конечным оборудованием, интерфейс между оконечной системой (Cable Modem Termination System, CMTS) и внешней сетью, радиочастотный интерфейс, интерфейс для обратного телефонного соединения, защиту и интерфейс с системой управления.

Как написано в стандарте DOCSIS, главная функция оконечной системы и обслуживаемой ею кабельных модемов состоит в прозрачной передаче трафика TCP/IP между конечным оборудованием подписчика и распределительным узлом. Под словосочетанием «прозрачной передаче» подразумевается то что, ни пользователь, ни ПО работающее в операционной системе не подозревают, что к компьютеру подключен кабельный модем (если не принимать во внимание того, что модем стоит рядом с компьютером, и его можно банально увидеть), они лишь пользуются стандартным TCP/IP интерфейсом, предоставленным им операционной системой. Таким образом, кабельные модемы могут поддерживать все стандартные приложения на базе TCP/IP.


Рис. 4. Стек протоколов DOCSIS в сравнении с моделью OSI.

Канальный уровень делится на три подуровня, а именно: стандартный подуровень контроля канала LLC в соответствии с IEEE802.2(более поздняя модификация IEEE802.14), подуровень защиты канального уровня и зависящий от направления передачи подуровень контроля доступа к среде передачи. Спецификация физического уровня также зависит от направления передачи и различается выделенными диапазонами частот и применяемыми методами модуляции, а также форматами пакетов.

3.4 Подуровень MAC [10]

Системы передачи на базе кабельных модемов имеют несимметричную архитектуру: одна оконечная станция может обслуживать сотни и даже тысячи кабельных модемов. Это, конечно же, связано с особенностями топологии сетей КТВ.

Все кабельные модемы слушают передачу конечной станции на своем канале и принимают кадры, предназначенные им самим или подключенным к ним конечным устройствам. Таким образом, при передаче в прямом направлении какая-либо конкуренция за среду передачи отсутствует, и здесь возникает лишь одна серьезная проблема — защита информации, так как передача осуществляется путем широковещания.

Другое дело, когда нескольким модемам требуется передать запрос, данные и т. д. оконечной станции. В этом случае ввиду разделяемой среды передачи они неизбежно вынуждены конкурировать друг с другом за доступ к ней. Однако конкуренция может возникнуть только при запросе со стороны модема о выделении ему подканала (интервала времени) для передачи (вообще говоря, конкуренция может возникнуть также, когда требуется передать короткое сообщение, для которого модем решит не запрашивать выделение интервала времени).

Для обеспечения множественного доступа с разделением по времени (Time Division Multiple Access, TDMA) обратный канал делится на интервалы времени (кванты или слоты). По своему назначению эти интервалы делятся на три вида — зарезервированные (reserved), коллизионные (contention) и ранжирующие (ranging).

Любой кабельный модем может попытаться передать запрос или данные в коллизионные интервалы времени. В случае если два или более модемов предпримут такую попытку одновременно, то пакеты наложатся друг на друга и будут испорчены, о чем головная станция немедленно сообщит им по широковещательному каналу. После этого каждый из модемов попробует повторить попытку через случайный интервал времени. Разрешение конфликтов осуществляется в соответствии с усеченным бинарным экспоненциальным алгоритмом отката.

Обычно коллизионные интервалы времени используются для отправки коротких запросов о выделении зарезервированных интервалов времени для передачи данных. При получении такого запроса головная станция предоставляет свободные зарезервированные интервалы времени в соответствии с алгоритмом выделения пропускной способности. Данный алгоритм не определяется стандартом и реализуется производителем в соответствии с его предпочтениями. После резервирования за ним интервала кабельный модем может беспрепятственно передавать в отведенное ему время свои данные.

Ранжирующие слоты служат целям синхронизации часов и согласования уровня сигнала. Первая задача возникает в связи с тем, что протяженность кабелей может значительно отличаться, из-за чего разница в задержке поступления сигналов от разных кабельных модемов может достигнуть нескольких миллисекунд. В результате сигнал может выходить за предписанный ему временной интервал и накладываться на соседний сигнал.

Чтобы компенсировать различия в задержке при передаче сигналов, и используются ранжирующие слоты. Обычно это три последовательных интервала времени. По требованию оконечной системы кабельный модем передает сигнал в среднем из трех интервале (два соседних интервала образуют «защитный интервал» для предотвращения конфликтов с другим трафиком). CMTS измеряет задержку и сообщает модему, на какую величину он должен сдвинуть свои часы вперед или назад.

Второе назначение состоит в согласовании уровней мощностей сигнала, чтобы все поступающие на оконечную систему сигналы имели один уровень. В противном случае CMTS не сможет выявить коллизию сильно различающихся по мощности сигналов.

3.5 Организация защиты [10]

Операторам кабельных сетей приходилось принимать защитные меры и ранее при предоставлении таких услуг, как «платный просмотр». Однако высокоскоростная передача данных ставит намного более серьезные проблемы с точки зрения защиты.

Главная из них связана с широковещательной природой сетей КТВ: любая передача по сети может быть без труда подслушана. Поэтому трафик следует в первую очередь защитить от перехвата. Для этого уже в самой первой версии стандарта DOCSIS 1.0 было предусмотрено шифрование передаваемых данных. Применяемый в DOCSIS базовый интерфейс обеспечения конфиденциальности (Baseline Privacy Interface, BPI) поддерживает шифрование в соответствии с режимом сцепления шифруемых блоков (Cipher Block Chaining, CBC) стандарта DES с 56-разрядным ключом, а также обмен ключами с применением 768-разрядного шифрования RSA.

Однако BPI и DOCSIS 1.0 не обеспечивали защиты от двойников, поэтому в DOCSIS 1.1 была включена расширенная версия BPI. BPI+, так она называется, поддерживает аутентификацию с помощью сертификатов. Кабельный модем должен предоставить сертификат, удостоверяющий, что MAC-адрес и открытый ключ RSA действительно принадлежат ему.

Обеспечивая конфиденциальность передачи и идентификацию подписчиков, BPI и BPI+ не в состоянии защитить, например, от атак типа «отказ в обслуживании», когда какой-либо злонамеренный пользователь забивает шумом или мусором весь обратный канал.

3.6 Голос по кабелю [5,11]

Как и другие конкурирующие технологии, такие, как DSL, благодаря высоким поддерживаемым скоростям кабельные модемы открывают потенциальную возможность для оказания голосовых услуг. Однако для их предоставления с надлежащим качеством операторам и производителям предстоит преодолеть ряд проблем. Часть из них является общей для всех альтернативных технологий передачи речи по пакетным сетям, часть же специфична для сети КТВ.

Одна из таких специфических проблем характерна не только для передачи голоса, но и вообще для передачи данных с помощью кабельных модемов — это однонаправленная широковещательная природа сети КТВ. Однако если в случае передачи данных ввиду несимметричности доступа в Internet ее можно обойти посредством организации обратного канала по телефонной линии, то для оказания голосовых услуг преобразование сети КТВ в двунаправленную среду передачи посредством замены усилителей является обязательным условием.

Типичной проблемой для пакетных сетей является большая (и варьирующаяся) задержка при передаче пакетов. Эта задержка складывается из задержки на выборку, задержки на оцифровку и задержки на передачу по сети. В кабельных сетях к этой сумме добавляется еще задержка на опрос. Она связана с особенностями передачи пакетов кабельными модемами. Чтобы отправить голосовые пакеты, агенту приходится ждать, пока, оконечная станция опросит всех остальных агентов о наличии у них пакетов для передачи. Поэтому, в целях минимизации задержки, оборудование с поддержкой голосовых услуг должно уметь прогнозировать момент следующего опроса и подготавливать к этому времени голосовые пакеты.

Появившаяся в 1999 г. версия DOCSIS за номером 1.1 предусматривает меры по обеспечению QoS и предоставлению приоритета определенным видам трафика. Однако она не решает всех технических вопросов, связанных с оказанием голосовых услуг на базе кабельных модемов. Чтобы восполнить имеющиеся пробелы, консорциум американских кабельных операторов разработал спецификацию протокола сигнализации вызовов по сети (Network-Based Call Signaling, NCS). Она базируется на существующем протоколе управления шлюзом между различными средами (Media Gateway Control Protocol, MGCP), поэтому ее иногда называют также MGCP NCS. Кроме того, NCS предусматривает дополнительные меры защиты, помимо принятых в DOCSIS 1.0 и 1.1 для обеспечения конфиденциальности разговоров, в частности использование IPSec.

Таблица 1

3.7 Требования стандартов [7, 8]

Свойства

DOCSIS 1.x

Euro-DOCSIS

DVR-RC

Скорость приема

64-QAM: 27 Mbps 256-QAM: 42 Mbps ITU J83 Annex B FEC 6Mhz Channelization

64-QAM: 38 Mbps 256-QAM: 52 Mbps ITU J83 Annex A FEC 8Mhz Channelization

64-QAM: 38 Mbps 256-QAM: 52 Mbps ITU J83 Annex A FEC 8Mhz Channelization, OOB

Скорость передачи

.320, .640, 1.280, 2.560 и 5.120 Mbps QPSK и .640, 1.280, 2.560, 5.120, 10.24 Mbps 16-QAM 5-42Mhz

320, .640, 1.280, 2.560 и 5.120 Mbps QPSK и .640, 1.280, 2.560, 5.120, 10.24 Mbps 16-QAM 5-65Mhz

1.544 Mbps; 3.088 Mbps Differential QPSK 5-65Mhz

Производительность

>80% эффективности, при смешанной передаче голоса и данных, на скоростях до 10.24 Mbps в 3.2 Mhz

>80% эффективности, при смешанной передаче голоса и данных, на скоростях до 10.24 Mbps в 3.2 Mhz

50-72% эффективности, на скорости 3,088 Mbps в 2 Mhz

Службы

Internet Access, Interactive Set-top Box, Voice over IP

Internet Access, Interactive Set-top Box, Voice over IP

Internet Access, Interactive Set-top Box

Коммерческое использование

Уже

Уже

DAVIC 1.2, теперь DVR-RC, придет в конце 2000 года?

Базовые протоколы

Variable Length, Native IP with QoS

Variable Length, Native IP with QoS

ATM Cell transport, with IP adaptation layer translation

Безопасность

Baseline Privacy/Plus 56 bit DES CBC

Baseline Privacy/Plus 56 bit DES CBC

Никакой, возможно сделают позже.

4. Планирование сети

4.1Анализ производителей модемов [2]

Hybrid Networks

кабельные модемы компании Hybrid Network марки Series 2000 используют HFC сеть, чтобы передавать данные клиентам, и предполагают, что upstream данные передаются с помощью, телефонного кабеля (асимметричная архитектура).

Downstream передаётся со скоростью 10 Mbps на 2Mhz канале, вместо обычного 6Mhz канала. Модем Hybrid Networks использует алгоритм оптимизации IP пакетов, чтобы свести на нет риск замедления upstream при большой производительности downstream.Это позволяет 10 Mbps для downstream интерполировать к 56.6 Kbps для upstream.

С двухсторонним использованием кабеля (симметричная архитектура (понадобится лишь небольшой модуль апгрейда)), при помощи QPSK можно увеличить скорость upstream с 56.6 Kbps до 5Mbps

Модем Hybrid Networks, имеет большие преимущества при использовании асимметричной архитектуры.

Схемы Series 2000 минимизируют потребность в заводской модернизации. Hybrid Networks заявляет, что при использовании их схем модуляции в большом бизнесе можно преобразовать инфраструктуру бизнес компьютеров до кабельных модемов их компании, и увеличить тем самым будущий рост и усовершенствование компании (не точный перевод)

Один многопользовательский кабельный модем router компании Hybrid Networks может обслуживать целых двадцать компьютеров, что означает малую цену услуги на абонента. На базе Series 2000 вполне можно организовать безопасную сеть кокой либо не очень большой компании, причем любой сотрудник сможет получить доступ к этой сети прямо из дома используя модем Series 2000.

Motorola

Компания Motorola также приложила усилия, чтобы создать кабельный модем, который назвала Cybersurfer этот модем - часть программы Motorola Cable Data. Программа Motorola Cable Data была разработана для предоставления быстродействующих коммуникаций для on-line услуг, таких как: доступ в Интернет, телеконференции и других услуг для домашнего и делового использования.

CyberSURFER, как и многие другие модемы оснащен 10 Base T Ethernet соединением. При помощи Ethernet wiring hub интерфейса, один CyberSURFER может давать IP адреса сразу нескольким персональным компьютерам. Передатчик RF и приемник в CyberSURFER обеспечивают соединение через HFC сеть.

Данные от абонента(upstream) передаются на скорости 768 kbps по 600 кГц каналу. downstream - 30 Mbps канал, который использует 6 MHz диапазон и обеспечивает максимум 10 Mbps производительность каждому абоненту.

Системы модуляции использованные в CyberSURFER - DQPSK для upstream, и 64 QAM для downstream.

Phasecom

SpeedDemon Phasecom как и большинство других модемов использует Ethernet 10Base T

Интерфейс, для соединения с HFC. Модем использует QAM модуляцию для downstream и QPSK модуляцию для upstream. В SpeedDemon применена Time Division Multiple access (TDMA) технология, с помощью которой достигается скорость в 30 Mbps downstream, и 2.56 Mbps для upstream.Модем требует ширину диапазона в 6 MHz для downstream и 2 MHz upstream. Этот модем был разработан для использования в малых офисах и для домашних компьютеров. Также модем может функционировать как мост, таким образом, позволяя нескольким пользователям получить соединение, использовав лишь один клиентский модем.

BayNetwork LANcity(последнее - подразделение BayNetwork)

компания BayNetworks имеет широкий диапазон изделий, которые включают кабельные модемы, аппаратные маршрутизаторы switchи. Их кабельные модемы обеспечивают 10 Mbps для downstream и достаточно большой upstream. Эти скорости могут стабильно поддерживаться на расстоянии до 200 миль, без каких либо потерь данных. Модемы компании BayNetwork LANcity поддерживают технологию plug and play(в операционных системах windows98 и старше не требуют установки каких либо специальных драйверов, а могут потребовать лишь перезагрузки, для того чтобы операционная система "увидела" их), они используют SNMP-агента и имеют встроенную Operations Support Systems / Business Support System (OSS/BSS). Предпринимая подобный шаг, компания BayNetworks пыталась обеспечить низкую цену на установку и обслуживание их изделий.

Кабельный модем LANcity поддерживает до 16 пользователей.

3COM [1]

Системные и коммуникационные возможности .Поддерживает различные стандартные сетевые протоколы, включая , IPX, AppleTalk и NETBEUI.Поддерживает любые приложения, взаимодействующие с поддерживаемыми уровнями TCP или UDP

Физические интерфейсы
Компьютер: RJ-45 (10BASE-T) и USB
Абонентская линия кабельного телевидения: разъем F-типа, гнездо
Питание: от внешнего источника постоянного тока (в комплекте)
Светодиодные индикаторы: питание, установка соединения, передача данных, многофункциональный индикатор для функций, заданных оператором (FCN)

Входящая связь
Диапазон частот: 91-857 МГц
Полоса частот канала: 6 МГц
Модуляция: 64 QAM или 256 QAM
Скорость передачи: 5.056 млн. символов/с или 5.361 млн. символов/с
Скорость передачи информации: 23.96 Мбит/с или 30.8 Мбит/с
Рабочий диапазон приемника: от +15 до -15 дБмВ
Номинальный уровень входного сигнала: +0 дБмВ
Импеданс: 75 Ом (номинальное значение)
Коррекция ошибок: ITU J.83-B по MCNS-RFI
Частота ошибок с учетом коррекции (BER): 10-8 при отношении сигнал/шум 23.5 дБ для 64 QAM, 10-8 при отношении сигнал/шум 30.0 дБ для 256 QAM

Исходящая связь
Диапазон частот: 5-42 МГц
Полоса частот канала: 200-3200 Кгц
Модуляция: QPSK или 16 QAM
Скорость передачи символов: 160-2560 тыс. символов/c
Скорость передачи информации: 128 - 9000 Кбит/с
Диапазон сигналов передатчика: От +8 до +58 дБмВ
Импеданс: номинал 75 Ом
Коррекция ошибок: Код Рида-Соломона
Частота ошибок с учетом коррекции (BER): 10-8 при отношении сигнал/шум 16 дБ

Соответствие стандартам
Электромагнитное излучение FCC Part 15, Class B EU EMC Directive VCCI
Безопасность UL CSA TUV
Стандарты DOCSIS SP-CMCI SP-CMTRI SP-OSSI P-RFI SP-BPI

Технические тесты (источник журнал CMPC)

Одновременная передача данных в двух направлениях

Производит. (Mbit/s)

Скорость

Com21

3.547

0.887

Nortel

2.130

0.532


3Com Int

0.975

0.244

3Com Ext

0.973

0.243

Toshiba

0.819

0.205

Рис.5 График теста на скорость и производительность различных

модемов при передаче данных в двух направлениях

Downstream

Производит. (Mbit/s)

Скорость

Nortel

5.795

1.449

Com21

5.749

1.437

3Com Ext

5.743

1.436

3Com Int

5.680

1.420


Toshiba

2.525

0.631

Рис.6 График теста на скорость и производительность различных

модемов при передаче данных в прямом направлении

FTP-HTTP

Производит.(Mbit/s)

Скорость

Nortel

3.545

20.317

3Com Ext

2.712

27.774

3Com Int

2.708

27.870

Com21

2.640

28.652

Toshiba

1.912

13.278


Рис.7 График теста на скорость и производительность различных

модемов при использовании FTP и HTTP протоколов

Upstream

Производит.(Mbit/s)

Скорость

Com21

2.625

0.656

Nortel

0.534

0.133

3Com Int

0.492

0.123

3Com Ext

0.491

0.123

Toshiba

0.383

0.095


Рис.8 График теста на скорость и производительность различных

модемов при передаче данных в обратном направлении

Как можно видеть из приведённых графиков по параметрам Upstream, Downstream, а также по двунаправленной передачи данных модемы компании BayNetwork (LANcity) уступают модемам других производителей, но по более важному параметру – скорости при использовании FTP-HTTP протоколов модемы этой фирмы намного опережают своих конкурентов, невысокая цена этих модемов (около 260 долларов США), а так же головного оборудования (порядка 1600 долларов США(HUB на 250 абонентов)), наличие огромного числа сервисных функций, а так же высокая интегрированность этой фирмы на Российский рынок, склоняют к использованию модемов именно этой фирмы.

4.2 Устройство и функции кабельного модема. [ 5]

Основной функцией кабельных модемов является передача данных по сети КТВ. Подключение кабельного модема осуществляется обычно через разделитель. Разделитель, в соответствии со своим названием, делит сигнал между телевизором и кабельным модемом. К одному из выходов разделителя и подключается кабельный модем. Несмотря на многочисленные отличия в


Рис. 9. Устройство кабельного модема

конструкции, все модемы имеют одну и ту же базовую архитектуру

К разделителю (фактически — телевизионной антенне) модем подключается через тюнер. Обычно тюнер имеет встроенный диплексор для приема и передачи сигналов. Принятый сигнал подается на демодулятор. Данный блок выполняет функции преобразования сигнала из аналоговой в цифровую форму, демодуляции QAM-64/256, синхронизации кадров MPEG и коррекции ошибок в соответствии с кодом Рида-Соломона.

Его двойником является пакетный модулятор; он соответствующим образом модулирует сигнал для его последующей передачи на оконечную станцию и выполняет все те же операции, но в обратной последовательности. Исходящий сигнал пропускается через задающий усилитель для обеспечения требуемой мощности сигнала. Часто и демодулятор, и модулятор реализуются в виде одной микросхемы.

Блок контроля доступа к среде передачи (Media Access Conrol, MAC) служит, с одной стороны, начальной точкой для исходящего пути, а с другой — конечной точкой для входящего пути. Ввиду сложности применяемых алгоритмов реализация функций уровня MAC требует применения микропроцессоров. Для этого используются микропроцессоры PowerPC компании Motorola или другие RISC-процессоры.

После обработки в блоке MAC данные передаются на компьютер через интерфейс. Помимо Ethernet на 10 Мбит/с это может быть также USB, PCI (в случае встроенного модема) и др.

4.3 Устройство сети [13]

Топология сети кабельного телевидения имеет древовидную (графа без циклов) структуру. В узлах дерева (не листьях), т. е. на головных станциях операторов, располагаются оконечные системы кабельных модемов (Cable Modem Termination System, CMTS), а на его листьях, т. е. в доме или на квартире у подписчиков, находятся собственно кабельные модемы. Связывающая их инфраструктура представляет собой коаксиальную или гибридную (Hybrid Fiber-Coaxial, HFC) сеть.


ма

УМ

ЧР


УД


HUB


ТВ

ТВ

РС РС

Рис. 10 Общая топология сети

ГС КТВ- Головная станция кабельного телевидения

ГС INTERNET- Головное оборудование передачи данных включает в себя:

- Головной модем

- Транслятор

- Маршрутизатор

- WEB, Mail серверы

ОМ- Ответвитель магистральный

УМ- Усилитель магистральный

УД- Усилитель домовой

ЧР- Частотный разделитель

LCP- Кабельный модем

УАР- Оконечное устройство для подключения абонентов кабельного телевидения

РС- Рабочая станция абонента компьютерной сети

ТВ- телевизионные приемники абонентов кабельной сети

На рисунке 10 показан только один сегмент сети. Остальные сегменты подключаются к магистрали аналогично через магистральные ответвители.

С противоположной стороны кабельные модемы подключаются к оборудованию в помещении заказчика(HUBу). Таким оборудованием является обычно одиночный ПК. Вообще говоря, кабельные модемы позволяют обеспечить доступ в Internet и для небольшой домашней сети. Наиболее популярным интерфейсом для подключения ПК является Ethernet на 10 Мбит/с.

Оконечная система на головной станции передает поступающие от кабельных модемов запросы на маршрутизатор IP. От него же она получает данные для передачи абонентским устройствам. Такая передача осуществляется в широковещательной рассылке, и каждый из модемов извлекает предназначенные для него данные. При передаче данные объединяются с телевизионными сигналами.

CMTS(HUB) и маршрутизатор составляют минимальную сетевую конфигурацию для передачи данных на головной станции; вместе они называются распределительным концентратором (Distribution Hub). Кроме того, на головной станции могут располагаться кэширующие серверы для ускорения предоставления информационного наполнения и снижения нагрузки на магистральные каналы доступа.

Разрабатываемую сеть планируется развернуть в микрорайоне Заречный.

Сеть КТВ охватывает в микрорайоне 5 тыс. квартир. Она имеет три ветки, каждая – протяженностью до 3 км. Максимальное число магистральных усилителей на одной ветке – 7, расстояние между ними – около 350 м. Используется магистральный кабель разных типов: PK-75-17, PK-75-19, PK-75-24, Sat-703, RG-11 и др.

В сети используются магистральные и домовые усилители преимущественно серии 300 (соответственно УМ-311 и УД-311). Еще до начала эксплуатации сети большинство ее магистральных усилителей поддерживало обратный канал. Напротив, почти все домовые усилители его не обеспечивали, поскольку для трансляции программ КТВ он был не нужен. Сейчас производится постепенная реконструкция сети и устанавливаются усилители фирмы Hirshman (800 MГц) с обратным каналом.

Для организации интрасети на инфраструктуре КТВ (как замечалось выше) были выбраны кабельные модемы серии LANcity компании Bay Networks. Для передачи данных используются два телевизионных канала на несущих 227 MГц (прямой канал) и 24 MГц (обратный канал). В каждом их них задействуется полоса 6 МГц.

Модемы LANcity обеспечивают быстродействие в обоих направлениях до 10 Мбит/с, т.е. являются симметричными. Аппаратная часть системы передачи данных по сети КТВ включает в себя головное оборудование и хотя бы один пользовательский модем.

Головное оборудование состоит из головного модема (LCb) и транслятора (LCt). Головной модем рассчитан на обслуживание 2000 пользователей и подключается к маршрутизатору или компьютеру по интерфейсу AUI, а к транслятору – при помощи коаксиального кабеля. Этот модем может использоваться и как пользовательский корпоративный модем. Настройка режима его работы (в качестве головного или пользовательского модема) осуществляется при помощи программного обеспечения.

Транслятор служит для связи головного модема с сетью КТВ. Он включает в себя усилитель и конвертор частот прямого и обратного каналов. Головное оборудование передачи данных подключается параллельно ГС кабельного телевидения до первого магистрального усилителя. (рис. 10)

Необходимо также специальное ПО, одной из функций которого является формирование конфигурационных файлов для пользовательских модемов. В состав ПО входит также SNMP-менеджер, поскольку по этому протоколу осуществляется управление оборудованием и его диагностика. ПО поддержки SNMP входит в комплект поставки.

В настоящее время один пользовательский модем LCP компании Bay Networks способен обслуживать до 16 пользователей. Подключение абонентов осуществляется следующим образом: непосредственно после выхода домового усилителя устанавливается разветвитель на две ветки, одна из которых уходит на домовую телевизионную разводку, а вторая - на кабельный модем. (рис. 10) При помощи витой пары к последнему подключен концентратор. Далее домовая разводка системы передачи данных осуществляется при помощи витой пары или коаксиального кабеля. При этом учитываются ограничения на дальность связи, которые накладывает протокол Ethernet.

Как правило, устанавливается один кабельный модем на многоквартирный дом или группу близлежащих домов. Во втором случае промежуток между домами преодолевается "по воздуху" – с помощью коаксиального кабеля. Другими словами, в доме (нескольких домах) строится локальная сеть (ЛС) Ethernet, а кабельный модем служит коллективным устройством доступа в сеть КТВ, которая, в свою очередь, позволяет решить проблему "последней мили". Для предоставления услуг доступа в Internet необходимо проложить магистраль до первичного провайдера. В качестве первичного провайдера выступает компания УралРелком, которая выделяет 10Мб канал для доступа в Internet.

На начальном этапе предлагается установить сервер на основе windowsNT, который будет выполнять функции Web- сервера,Mail-сервера и первичного концентратора, подключить к нему головной кабельный модем, сетевую карту, и установить соответствующее программное обеспечение. Далее потребуется компьютер – маршрутизатор для которого на начальном этапе достаточно конфигурации 486/32mb озу,2 сетевые карты, без винчестера и монитора. На период инсталляции Freesco(см. ниже) можно взять монитор с windowsNT сервера, дальнейшая работа маршрутизатора будет осуществляться с дискеты. Маршрутизатор предлагается соединить с winNT сервером при помощи «витой пары» (одна сетевая карта на маршрутизаторе и сетевая карта на winNT сервере необходимы именно для этой цели, вторая же сетевая карта на маршрутизаторе предназначена для подключения к более крупному провайдеру). Далее будет необходимо соединить головной кабельный модем с телевизионной сетью. Для организации обратного канала необходимо настроить усилители обратного сигнала. После чего остаётся подключение компьютеров пользователей к сети КТВ при помощи кабельных модемов. Минимальные требования к компьютеру пользователя это процессор не ниже 486, 4Мб ОЗУ, любой монитор и установленная Ethernet карта. Если на компьютере пользователя установлена O.С. windows9x/windowsNT/windows2000, то необходимо будет сконфигурировать лишь tcp/ip настройки OS (так как предполагается использование модемов компании BayNetworks, которые обладают интерфейсом plug and play и модем будет найден сразу после включения и перезагрузки). В случае же систем на базе Linux а так же dos, ещё перед этим некоторые временные затраты вызовет настройка драйверов, хотя и в этих O.С. работа с кабельным модемом возможна, более того в последних версиях пакетов уже включена поддержка кабельных модемов, и перекомпиляция ядра будет произведена автоматически.

4.4 Настройка сети

1. Сборка схемы на столе, без использования кабельных усилителей. Необходимо добиться загрузки головного и пользовательского модемов, понять принцип работы оборудования.

2. Добавление к схеме кабельного усилителя. Этот этап позволяет понять, как влияют параметры прямого и обратного каналов на работу кабельных модемов.

3. Установка головного оборудования на линию и подключение пользовательского модема непосредственно после первого магистрального усилителя.

4. Настройка линии сети КТВ в соответствии с требованиями, выявленными на втором этапе.

5. Установка кабельного модема на выбранном участке линии, тестирование, подстройка в зависимости от условий работы.

Первый этап занял у нас около трех дней, поскольку пришлось повозиться с программным обеспечением, поставляемым вместе с оборудованием. Данное ПО рассчитано на Windows 95 и включает в себя утилиту формирования конфигурационных файлов для пользовательских модемов, серверы DHCP и TFTP. Оказалось, что ПО работает только если не пытаться изменять параметры системы вручную. Впоследствии мы отказались от использования этого ПО и перевели обслуживание модемов на Windows NT (о чем говорилось выше).

Второй этап не принес особых неожиданностей, однако пропускать его нельзя. В противном случае будет очень сложно понять, что нужно сделать с усилителями на линии. Успешно завершив этот этап, можно представить последовательность усилителей на линии как один усилитель, у которого требуется правильно отрегулировать параметры работы.

Третий этап, по моему мнению, самый сложный. Дело в том, что для кабельных модемов допуски по уровням сигналов в прямом и обратном каналах лежат в достаточно широком диапазоне, но для реальной линии необходимо найти нужный баланс значений ослабления сигнала с помощью аттенюаторов. У нас основные проблемы были связаны с наличием помех в телевизионных каналах, а также с плохой работой головного модема при низком номинале ослабления сигналов в обратном канале. Этот процесс отнимает довольно много времени, так как изменения в настройках требуют тестирования на протяжении нескольких дней.

Сложности, возникшие на четвертом этапе, были связаны с отсутствием измерительного оборудования и методики регулировки обратного канала (для целей КТВ он используется нечасто). Для регулировки обратного канала пришлось собрать генератор, работающий на частоте 27 MГц (тот минимум, который может измерить наше оборудование). Напомню, модемы у нас работают на частоте 24 (+-3) MГц, что внесло дополнительные погрешности в измерения.

Пятый этап обычно не представляет сложности при правильном выполнении предыдущих действий. Кроме того, если модем загрузился хотя бы один раз, на его дисплее можно увидеть параметры прямого и обратного каналов кабельной линии и произвести необходимую регулировку.

Весь процесс тестирования занял у нас около полугода. Однако можно сказать, что он продолжается до сих пор: коммерческая эксплуатация позволяет проверить надежность сети, а кроме того, обеспечивает круглосуточный мониторинг ее состояния со стороны пользователей, чего невозможно добиться с помощью одного пользовательского модема.

Следует признать, что оборудование работает достаточно надежно. Модемы выдерживают изменение уровней сигнала в кабельной сети на 4–6 дБ. В тех случаях, когда связь все-таки прерывается, модемы перезагружаются автоматически. Этот процесс осуществляется практически незаметно для абонентов: цикл загрузки пользовательского модема составляет около 30 с, после чего связь восстанавливается.

4.5 Программное обеспечение [5]

WEB-серверы

В настоящее время существует огромное количество всевозможных web-серверов, для всевозможных операционных систем, и с различными возможностями, сводные характеристики некоторых из них приведены в Таблице 2

Таблица 2

+ да, - нет

Apache 1.1.3

Internet Connection Secure Server 4.1

Lotus Domino 4.5a

Luckman's Web Commander 1.0

Microsoft Internet Information Server 3.0

Netscape Enterprise Server 2.01

Netscape FastTrack Server 2.01

Novell Web Server 3.0

WebSite Professional 1.1

WebStar 2.0.2

Цена, рекомендуемая изготовителем, долл.

Бесплатно

295

995 (редакция для одного процессора)

249

Бесплатно

(при использовании windows nt)

1 295

295

Поставляется вместе с IntranetWare

499

799

Виртуальные серверы

+

+

+

+

+

+

+

+

+

-

Автоматическое перенаправление URL/Несколько портов

+ +

+ +

+ -

+ +

+ +

+ +

+ +

- -

+ +

- -

Масштабирование на несколько процессоров

+

+

+

-

+

+

+

-

+

-

Браузер

-

-

+

+

+

+

+

+

+

+

Перенаправление URL на другие серверы

+

+

+

-

+

+

+

+

+

+

Работает как промежуточный сервер

+

+

-

-

-

-

-

-

-

-

Встроенный процессор поиска

-

-

+

+

+

+

-

+

+

-

Отключение индексации каталогов

+

+

+

+

+

+

+

+

+

+

Агент SNMP

-

-

-

-

+

+

-

-

-

-

Авторские инструменты HTML/Утилита построения навигационных карт

- -

- -

- +

+ +

+ +

+ -

+ -

- -

+ +

+ +

Инструменты управления узлами Web

-

-

+

+

+

+

-

-

+

+

HTTP 1.1 Put

+

-

+

+

+

+

+

-

+

+

Настройка и управление

Управление Web-сервером:

С консоли сервера/Web-браузера

+ +

- +

+ -*

+ -

+ +

- +

+ +

+ -

+ -

+ +

Утилита контроля производительности отслеживает:

Текущие соединения

+

+

-

+

+

+

-

+

+

+

Запросы CGI и другие API-запросы

+

+

-

+

+

+

-

-

+

+

Байты переданные/принятые

+ +

+ +

- -

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Файлы конфигурации сохраняются в Реестре/каталоге

N/A 1 +

N/A1 -

- +

+ +

+ -

+ +

+ +

N/A1 -

+ -

N/A1 +

Протоколирование

Стандартный формат регистрационного журнала CERN/NCSA

+ +

+ +

+ +

- +

+ +

+ +

+ +

+ +

+ +

- +

Инструменты составления отчетов

-

+

-

+

+

+

+

-

+

-

Регистрация попыток доступа/обращений к страницам

- -

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Настраиваемые файлы регистрации

+

+

+

-

-

+

+

-

+

+

Регистрация в базах данных ODBC/SQL

- -

- -

- -

- -

+ +

- -

- -

- -

+ +

- -

Записи в журнале выполняются CGI-сценариями

+

+

+

-

+

+

+

-

+

+

Записи с идентификацией браузера

+

-

+

-

-

+

+

-

+

+

Безопасность

Пароль/Опознание по методу запрос-ответ

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ -

+ +

+ +

Совместимость с SSL v.3

-

-

-

-

+

+

+

+

-

-

Управление доступом средствами ОС

-

+

-

-

+

-

-

+

-

-

Управление доступом средствами сервера

+

+

+

+

-

+

+

+

+

+

Контроль за доступом по имени домена/IP-адресу

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Контроль за доступом к документам

+

+

+

-

-

+

+

+

+

+

Контроль за доступом к фрагментам документов

-

+

+

-

+

-

-

-

+

-

Создание личных сертификатов

-

+

+

+

-

-

+

+

-

-

Сценарии и "мастера" для создания сертификатов

+

+

+

+

+

+

+

+

+

-

Разработка прикладных программ

CGI/WinCGI

+ N/A 1

+ N/A1

+ +

+ +

+ +

+ +

+ +

+ N/A1

+ +

+ N/A1

Java/JavaScript на стороне сервера

- -

- -

- -

- -

+ +

+ +

+ +

- -

+ -

+ -

ISAPI/NSAPI

- -

- +

- -

+ -

+ -

- +

- +

- -

+ -

- -

Прочие API

Нет

ISAPI

ICAPI, Notes API

Нет

Active Server Pages, ActiveX, ADO

Session Management, Database access

Session Management, Database access

Нет

WSAPI

W*API

Средства SSI (Server Side Includes)

+

+

-

+

+

+

+

+

+

+

Техническое обслуживание и сопровождение

Оперативная техническая помощь/Бесплатные консультации по телефону

+ NA2

+ +

+ +

+ -

+ +

+ +

+ +

+ +

+ +

+ -

* Пользователь управляет сервером Lotus Domino с клиентского ПК.
N/A 1 - неприменимо. Данная характеристика свойственна лишь программам на базе Windows.
N/A 2 - неприменимо. Пакет Apache не содержит средств телефонии.

Проанализировав эту таблицу можно сделать вывод, что наименьшим отношением цена/качество обладает Microsoft IIS, именно эта программа рекомендуется для будущей сети.

Mail-серверы

Современные требования, предъявляемые к ПО электронной почты, не ограничиваются только необходимостью обеспечения передачи сообщений. Электронная почта должна обеспечить выполнение одновременно несколько функций, или другими словами, она должна быть многокомпонентным программным продуктом.

Проведем сравнения возможностей и характеристик программных продуктов Lotus Domino 4.6, Microsoft Exchange 5.0, Novell Groupwise 4.x и Netscape. В первую очередь, современная почта должна быть многофункциональной и надежной. Лучшую надежность можно получить при использовании технологии “клиент-сервер”. Многофункциональность обеспечивается наличием встроенных в продукт таких характеристик, как планирование мероприятий (органайзер), ведение дискуссий или хотя бы общих папок, возможность работы с библиотеками документов и “прозрачный” режим работы из Internet через Web-browser. В таблице 3 приведены о наличии этих характеристик в сравниваемых продуктах.

Таблица 3. Характеристики программ современной электронной почты

Lotus Domino 4.6

Microsoft Exchange 5.0

Novell Groupwise 4.x или 5

Netscape Mail 3.0

Архитектура клиент-сервер

+

+

-

+

Календарное планирование

+

+

-

Отдельный сервер

Ведение дискуссий (общие папки)

+

+

Только в 5ой версии

Отдельный Collabra сервер

Ведение библиотек документов

+

+

+

Отдельный Enterprise сервер

Автоматическое получение Web-страниц на сервере

+

-

-

-

На основе этой таблицы, а так же многочисленных заявлениях экспертов в различных компьютерных журналах посвящённых этой проблеме, можно сделать вывод, что Lotus Domino является наиболее функциональной программой в этом роде, она не только ни в чем не уступает своему основному конкуренту MS Exchange, но и по значительному числу параметров превосходит его. Исходя из этого выбираем для планируемой сети Lotus Domino.

Маршрутизатор

В настоящее время существует огромное количество всевозможных маршрутизаторов, как аппаратных, так и программных, из всего этого многообразия хотелось бы особое внимание уделить пакету программ Freesco(www.freesco.org), преимущества этого пакета состоят в том, что во- первых это операционная система (на базе ядра Linux) была разработана исключительно для маршрутизирования, а как следствие легкость в настройке и малые системные требования, во вторых это свойственная системам на базе Linux надёжность в сетевой сфере, в- третьих это поддержка данной OS кабельных модемов. Сам по себе пакет программ является абсолютно бесплатным, а его полная готовая к работе версия занимает одну 1.44 mb дискету. Именно Freesco и выбираем в качестве маршрутизатора для будущей сети.

Обеспечение авторификации [14]

Как дополнительное расширение будущей сети предлагается усовершенствовать её при помощи возможности авторификации пользователей сети, из-за аппаратной сложности реализации подобных алгоритмов предлагается использовать специальное программное обеспечение, а именно, алгоритма “доказательств с нулевым знанием”(ZKP)

Метод ZKP основан на том, что проверяющий знает всегда только половину информации. Конечно, при таком условии нельзя быть уверенным в том, что человек тот за кого он себя выдает. Но проверяющий каждый раз может спросить любую часть информации, причем несколько раз.

Рассмотрим данный метод на примере графов. Граф – конечная совокупность точек, называемых вершинами; некоторые из них соединены друг с другом линиями, называемыми ребрами графа. Простейший вид графа – это города соединенные дорогами на карте.

У некоторых графов есть гамильтонов цикл – это способ соединения всех вершин графа одной кривой, проходящий по его ребрам и не проходящий через одну вершину дважды. Допустим, проверяющему показали гамильтонов цикл графа, но он не знает от какой точки к какой идти, если проверяющий убедился в том, что у проверяемого нужный граф, то он не видит гамильтонов цикл, так как у графа изменились координаты точек.

Каждый вопрос будет понижать шансы на случайный ответ. Сначала, вероятность угадать, равна 1/2, потом 1/4 и через сто вопросов вероятность упадет до 1/2100 . Если человек не знает правильного графа и гамильтонова цикла, то ему будет практически невозможно ответить на все вопросы ни разу не ошибавшись, а проверка заканчивается при первой же ошибке.

Как происходит проверка? Допустим, некоторый компьютер (А) устанавливает подлинность представления удалённого компьютера (Б). У компьютера Б есть граф, для которого ему известен гамильтонов цикл.

Сначала компьютер Б посылает граф, который получился из проверочного случайным переименованием вершин. Компьютер А случайным образом выбирает, какую информацию он хочет проверить, совпадение этого графа с тем, что у него есть, или известность компьютеру Б гамильтонова цикла для этого графа. Предположим, что компьютер б хочет убедиться в совпадении этого графа с тем, что есть у него и посылает об этом сообщение компьютеру Б, компьютер Б в свою очередь посылает компьютеру А информацию о том, каким образом надо переименовать вершины графа, чтобы получился исходный. Если подобное преобразование действительно переведет граф в исходный, то компьютер А считает, что на этот вопрос он получил правильный ответ и продолжает проверку.

Далее компьютер Б снова посылает граф, на этот раз, переименовав вершины по-другому (случайным образом). Пусть в этот раз компьютер А выбрал, что хочет узнать гамильтонов цикл, тогда компьютер Б посылает последовательность имен вершин, которая в измененном графе действительно является гамильтоновым циклом. Таким образом, после некоторого числа подобных шагов, компьютер А убеждается, что компьютер Б действительно тот, за которого себя выдаёт, отметим, что при этом компьютер А не сможет сам представится компьютером Б, ведь он так и не узнал гамильтонова цикла для исходного графа, а гамильтонов цикл найти для граф с десятью вершинами уже не просто, а если у графа 100 вершин то это уже почти невозможно. А если вершин 1000, то подбор гамильтонова цикла на современном компьютере займет несколько сотен лет.

Как же генерируются проверочные графы? Пусть в начале есть граф на 1000 вершин, где n-ая вершина соединена с n+1, а 1000 с 1, теперь случайным образом переименуем вершины, и запомним теперь для этого графа гамильтонов цикл далее для каждой пары вершин с вероятностью 34% будем соединять ребром, в конце данной процедуры получим граф, для которого мы знаем цикл и в то же время, найти его кем-то другим не представляется возможным.

Чтобы показать вам всю сложность нахождения гамильтонова цикла рассмотрим граф из семи точек, приведенный на рисунке ниже. Если попытаться самому придумать гамильтонов цикл, то на это уйдет от 30 минут до нескольких часов.

Рис. 11 Гамильтонов цикл

На рисунке показан граф с 7 вершинами; сплошные линии - гамильтонов цикл для данного графа пунктир ребра, по которым не прошла кривая гамильтонова цикла. При возможной реализации проекта, можно будет написать подобное программное обеспечение.

6. Расчет затрат и экономической эффективности планируемой сети.

Расчет доходной части на календарный год.

Приток денежных средств на реализацию проекта –это банковский кредит 25000$ под 12% годовых на 3 года.

Таблица 6.1

Количество клиентов в конце года

50

Сумма ежемесячных выплат клиента

33$

Сумма годовых выплат одного клиента

396$

Сумма годовых выплат всех клиентов

19800$

Следует понимать, что приведенные расчеты весьма приблизительны. Например, очень сложно предугадать, средние ежемесячные выплаты клиента.

Расходы по организации проекта

Расходы по организации и реализации программы доступа в интернет по сетям КТВ складываются из следующих крупных блоков:

- В ыплата процента по кредиту и самого кредита;

- Помесячная плата внешнему провайдеру;

- Приобретение оборудования;

- Прокладывание кабеля к внешнему провайдеру;

- Приобретение программного обеспечения;

- Настройка сети;

- Расходы на рекламу, информирование клиентов и т.п.;

- Зарплата сотрудников отдела.

Помесячная плата внешнему провайдеру.

Так как планируется относительно небольшая сеть то необходим внешний провайдер, например в качестве внешнего провайдера может выступать организация УралРелком100 Мбитный канал по витой паре, в этой организации, обходится примерно в 800 долларов ежемесячно.

Оборудование.

Приобретение оборудования представляет собой один из наиболее дорогостоящих элементов этого проекта. Набор и количество техники определяется в основном степенью масштабности сети. Для реализации этого проекта необходимы – сервер winNt, маршрутизатор Linux, а так же клиентные модемы. Несколько клиентов заключили договора на доступ в интернет, им устанавливается клиентские модемы. Сервер winNt и маршрутизатор устанавливаются в помещении организации предоставляющей услуги кабельного телевидения.

Прокладывание кабеля к внешнему провайдеру

Для того чтобы соединить маршрутизатор с внешним провайдером потребуется примерно 2 км кабеля TПП-096, комплект грозо защиты APС, так же некоторые расходы вызовет монтирование кабеля.

Компьютерное программное обеспечение.

Является одним из важнейших элементов проекта. Для сервера winNT в качестве операционной системы – Windows2000 advanced server edition; в качестве mail-сервера – Lotus domino corporation edition; в качестве web-сервера microsoft IIS – являющийся частью windows2000; на маршрутизаторе – операционная система – FreeSco.

Настройка сети

Некоторые расходы вызовет необходимость настройки ПО головной станции, а так же настройка для работы у клиентов.

Расходы на рекламу.

Необходимо расклеить объявления на домах подключённых к сети, так же можно разослать письма абонентам сети.

Фонд оплаты труда сотрудников.

Поддержание работаспособности подобной сети требует высокой квалификации программистов и операторов сети соответственно заработная плата, новым сотрудникам тоже должна быть высока, так же необходимо будет повысить заработную плату существующим сотрудникам, в связи с большей нагрузкой.

Расчет расходной части на первый год. Таблица 6.2

Консультации и обучение сотрудников

500$

Процент за кредит

Ежегодная выплата кредита

Помесячная плата внешнему провайдеру

3000$

8500$

800$*12

WinNT сервер

1200$

Головной модем

1500$

Маршрутизатор

500$

Прокладка кабеля

1540$

Windows 2000 advanced server edition

1500$

Lotus domino corporation edition

1200$

Настройка сети

200$

Расходы на рекламму

50$

Фонд оплаты труда (2 человека)

480$*12

ИТОГО

35050$

В эту таблицу не включены пользовательские модемы, так как их оплата производится клиентом при подключении.

Расчет экономических показателей на первый год.

Доходы в первый год составят 19800$.

Расходы в первый год составят 35050$, значит убыток составит 15250$.

Расчет экономических показателей на второй год.

Таблица 6.3

Консультации и обучение сотрудников

0$

Процент за кредит

Ежегодная выплата кредита

Помесячная плата внешнему провайдеру

3000$

8500$

800$*12

WinNT сервер

0$

Головной модем

0$

Маршрутизатор

0$

Прокладка кабеля

0$

Windows 2000 advanced server edition

0$

Lotus domino corporation edition

0$

Настройка сети

200$

Расходы на рекламму

50$

Фонд оплаты труда (2 человека)

480$*12

ИТОГО

27110$

При условии стабильности экономического и политического состояния страны, во второй год при возросших доходах (за счет роста количества клиентов, роста абонентской платы и введения дополнительных услуг) (приблизительно 46100$), расходы будут существенно меньше и составят 27110$.

Получим прибыль в 18990 долларов.

Налог на прибыль(30%) составит 5697$.

Чистая прибыль составит 13293$.

Расходная часть за третий год эксплуатации в основном будет складываться из выплаты кредита и проценту по кредиту, а так же помесячной выплаты внешнему провайдеру и составит 26630$.

Доходная часть, за счет увеличения числа клиентов составит 58100$. Прибыль составит 31470$.

Налог на прибыль (30%) составит 9441$.

Чистая прибыль составит 22029$. Таблица 6.4


1 Год 2Год 3Год


Расход 35050$ 27110$ 26630$


Доход 19800$ 46100$ 58100$

Чистая прибыль -15250$ 13293$ 22029$


Итого: Чистая прибыль за 3 года 20072$


При условии стабильности экономического и политического состояния страны, на третий год эксплуатации, за счет роста количества клиентов, увеличения абонентской платы, дополнительных услуг, доходная часть значительно превысит расходную.

В связи с выше изложенным можно считать, что проект по внедрению доступа в INTERNET по сетям кабельного телевидения окупиться ко второму кварталу третьего года эксплуатации.

6 . Безопасность жизнедеятельности

Содержание.

6.Безопасность жизнедеятельности.

6.1 Характеристика рабочего места.

6.2 Безопасность труда.

6.2.1 Защита от шума.

6.2.2 Защита от электромагнитных излучений.

6.2.3 Защита от ионизирующих излучений.

6.2.4 Защита от воздействия электростатического поля.

6.3 Условия труда.

6.3.1 Производственный микроклимат.

6.3.2 Производственное освещение.

6.3.3 Технические меры защиты от поражения электрическим током.

6.3.4 Защитное заземление компьютерного оборудования.

6.4 Эргономика рабочего места.

6.4.1 Работа с дисплеем.

6.4.2 Рабочее место.

6.5 Пожарная безопасность.

6.6 Чрезвычайные ситуации.

6.7 Выводы.

6.1. Характеристика рабочего места.

Во время работы на компьютерах операторам приходится постоянно находится перед ПЭВМ. Работа на ПЭВМ характеризуется воздействием на организм человека следующих вредных факторов:

- повышенное значение напряжения электрического тока;

- рентгеновское излучение, возникающее при торможении электронного луча на внутренней поверхности кинескопа монитора;

- синий люминофор экрана монитора имеет частичное излучение в ультрафиолетовой области спектра;

- электромагнитные колебания низкой частоты, связанные с работой схем развёртки электронно-лучевой трубки монитора;

- электромагнитные поля (эффект отражения);

- повышенный уровень шума;

- электромагнитное излучение (радиочастоты);

- электростатическое поле.

Для обеспечения, наилучших условий для эффективной и безопасной работы нужно создать такие условия труда, которые будут комфортными и максимально уменьшающими воздействие данных вредных факторов. Необходимо, чтобы перечисленные вредные факторы согласовывались с установленными правилами и нормами.