Главная      Учебники - Разные     Лекции (разные) - часть 34

 

Поиск            

 

Прилад прийому та обробки метеорологічних даних

 

             

Прилад прийому та обробки метеорологічних даних

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “обчислювальна техніка та програмування”

Затверджую :

Завідуючий кафедрою “ОТП”

______________ xxxxx.

“___”________________ 2005р

Прилад прийому та обробки метеорологічних даних

Опис програми

Лист затвердження

xxxxxxx99092-00-13 ЛЗ

Розробники:

Керівник проекту:

проф. xxxx

“___”_________2005р

Виконавець:

xxxxx.

“___”_________2005р

Харків 2005


ЗАТВЕРДЖЕНО

xxxxx 99092-13 ЛЗ

Прилад прийому та обробки метеорологічних даних

Опис програми

xxxxxxx 99092-00-13

Листів 10

Харків 2005


Анотація

У дипломному проекті виконана розробка приладу прийому і обробки інформації, який є однією з головних частин метеорологічного комплексу.

У ході виконання розробки приладу реалізовані протокол обміну даними між модулями збору інформації та приладом прийому за допомогою високочастотного радіозв’язку; протокол передачі отриманих даних до персонального комп’ютера для їх зручного використання та подальшої спеціалізованої обробки. Керуюча програма для персонального комп’ютера реалізує графічний інтерфейс та ряд функцій при роботі користувача з метеокомплексом.

До складу конструкторської документації входять пояснювальна записка, принципові та функціональні схеми приладу та окремих його вузлів. У програмну документацію включені текст, опис та алгоритми керуючої програми.

Аннотация

В дипломном проекте выполнена разработка прибора приема и обработки информации, который является одной из основных частей метеорологического комплекса.

В ходе выполнения разработки прибора реализованы протокол обмена данными между модулями сбора информации и прибором приема с помощью высокочастотной радиосвязи; протокол передачи полученных данных персональному компьютеру для их удобного использования и дальнейшей специализированной обработки. Управляющая программа для персонального компьютера реализует графический интерфейс и ряд функций при работе пользователя с метеокомплексом.

В состав конструкторской документации входят пояснительная записка, принципиальные и функциональные схемы прибора и отдельных его узлов. В программную документацию включены пояснительная записка, текст, описание и алгоритмы управляющей программы.

Annotation

In the degree work the development of receive-processing information device is implemented, which is the main part of weather-station.

During the device developing, data exchange protocol between gathering module and receive device with high-frequency wireless are relised; the recived data transmission protocol to personal computer for sufficient using and specialized handling are relised. The control program for personal computer realizes graphical interface and other functions during the operator’s work.

The explanatory note, principal and functional device circuits, part-device circuits are part of constructor documentation. The explanatory note, control-program sources, control-program description, algorithms, are included to program documentation.


Зміст

1 Функціонально-логічні аспекти програми

1.1 Функціональне призначення програми

1.2 Опис логічної структури програми

1.3 Структура програми з описом її складових частин. Головний поток програми

2 Технічно-функціональні аспекти програми

2.1 Використані технічні та програмні засоби

2.2 Виклик та завантаження програми

2.3 Вхідні дані для програми

2.4 Вихідні дані

2.5 Приклад функціонування програми


Вступ

У різних галузях народного господарства досить часто виникає необхідність мати певне уявлення про характеристику погодних умов на певній, досить невеликій ділянці місцевості, це може бути використано у статистичних, інформативних, синоптичних цілях.

При цьому головними вимогами, що висуваються до цієї інформаціі про погодні умови є:

оперативність збору, а отже доцільність інформації;

мінізація технічних та матеріальних засобів для її отримання;

зручнічть у використанні та мобільність технічних засобів збору інформації;

точність інформації, що надходить, тощо.

Тому для реалізації всих цих вимог потрібен комплекс збору метеорологічних даних, далі – комплекс, до складу якого належіть прилад, що розроблюється – „прилад прийому метеорологічних даних”, далі – прилад.

Звичайні метеорологічні станції не завжди можуть бути корисними: по-перше, збирання метеорологічних даних (тих або інших метеопоказників) є узагальнюючим; по-друге, вони є стаціонарними, тобто розташовані на певних ділянках місцевості; по третє, не всі ділянки земної поверхні знаходяться у зонах дії метеорологічних станцій.

Серед галузей використання комплексу можна насамперед виділити наступні:

- сільське господарство – необхідна швидка та точна інформація щодо температури, вологості повітря та ін. для термінового проведення (або відкладення проведення) сільськогосподарських робіт – пахота, засівання, збір врожаю, тощо;

- проведення розважальних та тренувальних заходів (наприклад: авіашоу, стрибки з парашутами, великі фестивалі та концерти на відкритому повітрі) – інформація щодо стану та зміну стану нижніх шарів атмосфери може бути край важливою, та може слугувати підставою для перенесення або скасування цих заходів;

- санатарно-курортні заклади та пляжі;

- дослідження стану нижніх шарів атмосфери на певній, віддаленій від зони дії метеостанцій, ділянці місцевості.

Тому прилад, що розроблюється має відповідати наступним вимогам та реалізовувати наступні дії:

- отримувати дані, що були щойно виміряні, від модулей збору метеорологічної інформації, далі – модулі, за допомогою радіозв’язку;

- передавати отримані дані до персонального комп’ютера для іх подальшого зручного зберігання, моніторінгу та обробки;

- забезпечувати зв’язок між модулями копмлексу на відстані до 5 кілометрів;

- задовільняти існуючим „оматорським” стандартам радіозв’язку.

Для функціонування радіозв’язку між приладом та модулями комплексу було обрано частоту 315 МГц, оскільки вибір частоти передачі даних понад 500 МГц може призвезти до перешкоди збоку сотового зв’язку, передача даних на більш низькій частоті (менше 200 МГц) може перешкоджати робіті радіомовленевого зв’язку (рації, інші переговорні пристрої).

Обрана частота передачі (300-400 МГц) належіть до діапазону „оматорських” частот, передача даних у радіусі до 5 кілометрів не потребує реєстрації у Укрчастотнагляді та інших подібних державних установах, та може використовуватись без додаткових документів та відповідних ліцензій.


1. Функціонально-логічні аспекти програми

1.1 Функціональне призначення програми

Дана програма є спеціалізованим програмним виробом та призначена для надання користувачеві можливості керування метеорологічним комплексом за допомогою стаціонарного або переносного персонального комп’ютера (ноутбука).

Програма виконує наступні функціональні дії:

приймання даних, що надходять з lpt-порту ПК;

аналіз даних які були щойно прийняті;

обчислення метеопоказників, на основі даних, отриманих від приладу збору метеорологічних даних;

зручну індикацію оброблених даних;

можливість роботи з метеокомплексом у різних режимах;

можливість підключення нових модулів збору інформації під час роботи програми;

зручне збереження оброблених даних;

імітацію входних сигналів від модуля збору інформації;

можливість підстройки різних параметрів прийому під час роботи програми.

1.2 Опис логічної структури програми

Дана програма, як і будь-яка інша java-програма состоїть з класів.

Усі класи поділені на пакети за ії функціональним призаченням. Виділено три основні пакети:

ui – містить класи для графічного відображення (user interface);

util – допоміжні та утилітарні класи для роботи програми;

obj – класи-структури даних для логічного та зручного оперування даними.

Ім’я головного класу, класу, у якому розташована функція main – ui.MainFrame. Оскільки в ньому є функція main він є головним класом, який запускає програму та є її головним інтерфейсом – викликає інші програмні модулі. Також він відповідає за початкову ініціалізацію параметрів lpt-порта, та запускає окремий поток для зчитування інформації на входах lpt-потра.

ui.UserSettingsDialog – діалог для надання користувачеві можливості настройки параметрів роботи програми.

util.Helper – класс для зберігання статичних утілітарних методів та глобальних констант програми.

util.Receiver – клас-поток, відповідає за прийом даних від lpt-порту;

util.Tranceiver – відповідає за передачу вихідних даних;

util.BadEvent – клас-обробчик стандартних помилок, що можуть виникнути під час роботи програми;

obj.Module – сруктура даних, що відображає роботу (інкапсулює у собі набір властивостей та методів) модуля прийому;

obj.WeatherData – структура даних, що відображає набір метеоданих, та містить методи по роботі з ними.

1.3 Структура програми з описом її складових частин. Головний поток програми

В java немає таких пойнять як “запис” у pascal, або “структура” в C, тут використовується найбільш широке, зручніше та узагальнююче пойняття –клас.

Для найкращого розуміння роботи та взаємодії класів, розглянемо графічну схему зв’язку класів – UML-діаграму класів (рис. 1.3.1).



Рис. 1.3.1 UML-діаграма класів програми.

Головним класом програми є клас MainFrame, який догружатиме у процесі роботи усі інші класи. Розглянемо його роботу, починаючи з методу main.

Розглянемо головний робочий цикл програми, головний поток.

Конструкція JFrame frame = getMainFrame(); використовується для запобігання запуску на данному ПК ще одної аналогічної програми, що зашкодить її нормальній роботі.

При наступному визові

frame = getMainFrame();

frame.show();

Ще одно вікно не відкриється. Ми будемо працювати з тим же самим вікном.

Такий шаблон у програмуванні носить назву Singletone, тобто завжди у пам’яті ПК зберігається лише один екземпляр класу, що реалізує цей шаблон, повторне звернення до нього поверне той самий екземпляр.

завантажується конструктор класу;

завантажується необхідний драйвер для роботи з портами вводу/виводу com.sun.comm.Win32Driver.

відбувається перевірка наявності на ПК портів вводу/виводу, серед списку необхідних відбувається пошук необхідного нам lpt-порта, якщо такого в системі не знайдено, програма видає помилку та припиняє свою роботу;

утворюються два потоки на читання/запис у lpt-порт. У даному випадку потоками можна вважати специфічні вказівники на області пам’яті (регістри), яки відповідають зміст даних у lpt-порті;

проводиться ініціалізація утилітарних класів, що відповідають за прийом та передачу даних Receiver та Transmitter, при цьому слід зауавжити, що клас Receiver запускається у окремому потоку, що забезпечує безперервний опит стану lpt-порта;

задаються розміри вхідних та вихідних програмних буферів для запису/зчитування даних;

установлюється програма-володар порта, яка займає порт на весь час роботи з ним;

відбувається графічна ініціалізація програми;

Початкова ініціалізація на цьому закінчується. Після цього відбувається робота користувача з графічними елементами програми (кнопками, пунктами меню і т.п.).

а) Користувач натискає кнопку „Список активних модулей”. Визивається функція readModulesFromFile(). При цьому відбувається наступний порядок дій:

- очищується модель списку модулей;

- завантажується з файту Modules.properties список активних модулей, який користувач задав перед початком функціонування програми. Слід зазначити, що список модулей можна змінювати й під час роботи програми, слід тільки натиснути указану кнопку;

- заповнюється модель списку модулей.

б) Користувач нажимає кнопку „опитати модуль”, задавши попередньо значення номеру опитуємого модуля. Викликається метод askModule(Integer moduleNumber). При цьому відбувається наступний порядок дій:

утворюється новий екземпляр класу Module, йому передається вказаний номер модуля;

номер модуля конвертується у бітову послідовність;

за допомогою одиничного екземпляра класа Transmitter, метод sendBytes відбувається відправка бітової послідовності на порт, при цьому передані дані потрапляють у поток, що був проініційований раніше, який відповідає за передачу даних на порт;

після цього встановлюється пограмна затримка (що за умовчанням дорівнює 10 мілісекундам та може бути змінена користувачем під час роботи програми);

опрошується вхідний буфер порта, якщо значення не змінилося – викликається помилка „даний модуль не дає відповіді” у цьому випадку модуль може бути опитаний повторно. Якщо вхідний буфер не дорівнює константі довжини вхідного буфера, викликається помилка „помилка при отримані відповіді”, якщо помилок немає – робимо аналіз прийнятого пакету;

у вказаного об’єкта-модуля утворюється ініціюється поле weatherData, при цьому робиться перевірка переданого та прийнятого номерів модуля, якщо номери не співпадають, генерується помилка: „неспівпадіння номерів модуля”, робити аналіз прийнятих даних немає сенсу;

робиться перекодування прийнятої бітової послідовності у цілі числа та перевірка контрольної суми, якщо прийнята та щойно прорахована контрольні суми не співпадають – генерується помилка „помилка контрольної суми”;

за алгоритмами, що описані у методах класу WeatherData робиться перерахунок прийнятої перекодованої інформації з бітової послідовності у реальні показники;

на інформаційній панелі відображується отриманий результат.

в) Користувач натискає кнопку „опитати всі модулі”. Викликається метод askAllModules(). При цьому відбувається наступний порядок дій:

- циклічно опитується кожний модуль, за алгоритмом, наведаним у пункті “б”;

- якщо при опиті модуля виникають певні помилки – накопичуються у буфер, модуль набуває признак „недійсний”;

- відображується інформація про всі модулі з признаком „дійсний”;

- відображується інформація про помилки, що виникли під час опиту усіх модулей з указаням номеру модуля та тексту помилки.


2. Технічно-функціональні аспекти програми

2.1 Використані технічні та програмні засоби

Для розробки даної програми була використана інтегрована середа розробки (IDE –Integrated development environment ) Borland Jbuilder Х.

Версія java-машини: 1.4.2_01-b06.

Програма була розроблена та протестована на IBM-сумісному комп’ютері з тактовою частотою процесора 2,5 ГГц, обє’мом оперативної пам’яті 512Мв.

Також була використана стандартна java-бібліотека для роботи з портами вводу/виводу java community api (JCA) версії 2.0.

2.2 Виклик та завантаження програми

Для завантаження даної програми необхідно мати встановлену на комп’ютер java-машину, версією не нижче 1.4.2.

Програма може бути завантажена як за допомогою bat-файлу, в який у якості параметру будуть передані шлях до файлу javaw.exe та змінна classpath (шлях до файлу *.class – головного файлу даної програми – класу, в якому знаходиться функція main), а також прописані шляхи до всіх бібліотек, які є необхідними для функціонування програми.

Наприклад, для зручного запуску програми необхідно утворити такий bat-файл:

..\..\..\jre\bin\javaw -classpath "E:\comm\comm\classes;E:\comm\lib\comm.jar” dip.ui.MainFrame, де:

..\..\..\jre\bin\javaw – шлях до java-машини;

E:\comm\comm\classes – шлях до *.class-файлів – робочих файлів програми;

dip.ui.MainFrame – головний клас з методом main.

2.3 Вхідні дані для програми

Вхідними даними для програми є спеціалізовані дані, що надходять з модулю прийому метеорологічних даних.

Вхідні дані – послідовнітсь біт, що надходить з певною швидкістю з lpt-порта ПК, які утворюють собою інформаційний пакет певної структури.

Також програма читає вхідну інформацію з текстових файлів, які містять інформацію про внутрішні адреси та опис модулів збору даних, а також тестові послідовності, що імітують сигнали-відповіді від lpt-порту для можливості тестування тестових фрагментів інформації.

2.4 Вихідні дані

Вихідні дані програми – інформація, отримана від модуля збору метеорологічних даних, при наявності помилок – повідомлення з інформацією про помилку. Вихідні дані можуть бути представлені у вигляді текстового файлу, або графічним відображенням.

Вихідні дані також можуть бути представлені у вигляді серіалізованих об’єктів, для їх подальшої обробки та використання.

2.5 Приклад функціонування програми

Після запуску програми на екрані з’являється головне вікно яке містить всі необхідні компоненти для роботи з програмою. Головне вікно програми має вигляд (рис 2.5.1)



Рис. 2.5.1. Головне вікно програми.

Після натиснення кнопки „Список активних модулів”, з файлу Modules.properties завантажується список модулів, з якими програма вестиме роботу (рис. 2.5.2). При цьому слід зауважити, що завантажувати нові модулі для роботи можна й під час роботи програми, варто знову натиснути кнопку “Список активних модулів”, програма зробить перечитку файлу та відображення нових (якщо відбулися певні зміни) модулів.

Список модулів являє собою особистий номер (код модуля), який співпадає з внутрішнім кодом самого модуля збору метеорологічних даних, та опис самого модуля (будь-яка текстова інформація); у данному випадку – місце розташування модуля, для більш зругного його використання.



Рис. 2.5.1. Список активних модулів.

Далі користувач тисне „Опитати модуль”, попередньо вказавши номер модуля, у правому полі, який він бажає опитати.

Далі програма робить опит вказаного модуля, при цьому можливі наступні види помилок:

модуль, що опитується не існує в списку модулів;

вказаний модуль не дає відповіді;

не співпадає номер модуля (номер модуля що був відправлений, не співпадає з прийнятим номером модуля);

помилка у контрольній сумі (виникла помилка при передачі).

Якщо все гаразд – (не виникло жодної помилки) – отримуємо на екрані результат опитування модуля (рис 2.5.2).


Рис. 2.5.2. Результат опитування модуля №2.


Також можна опитати усі активні модулі натиснувши на кнопку “Опитати всі модулі”, при цьому отримаємо інформаціюпо всіх модулях, зазначених у списку, якщо результати опитування певного модуля не присутні на інформаційній панелі – треба дивитися список помилок (рис 2.5.3).


Рис. 2.5.3. Результат опиту усіх модулів зі списка модулів.


Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “Обчислювальна техніка та програмування”

ЗАТВЕРДЖУЮ

Завідуючий кафедрою ОТП

__________ (xxxxxxx.)

“____”___________ 2005 р.

Прилад прийому та обробки метеорологічних даних

Пояснювальна записка

XXXXXX.099092.00 ПЗ

Консультанти:

Науково-дослудна робота:

___________доц. xxxxxxxx

Економічна частина:

___________доц. xxxxxxxxx.

Охорона праці і навколишнього середовища

___________ст.викл. xxxxxxx

Розробники проекту:

Керівник

________ (xxxxxxxІ)

“____” __________ 2005 р.

Виконавець

______ (xxxxxx.)

“____” ___________2005 р.

Харків 2005


Зміст

Вступ

1 Огляд існуючих технічних аналогів

2 Структурна схема приладу та її опис

2.1 Структурна схема і призначення окремих функціональних блоків

2.2 Робота пристрою за структурною схемою

2.2.1 Прилад збору метеорологічних даних

2.2.2 Обмін інформацією між вузлами метеорологічного комплекса

3 Вибір апаратних засобів

3.1 Вибір та характеристики прийомо-передавального пристрою

3.2 Вибір та характеристики мікроконтролера

4 Розобка протоколу передачі даних

4.1 Трьохрівневий сигнал обміну даними

4.2 Передача даних через lpt-порт ПК

4.2.1 Характеристики lpt-порта

4.2.2 Вибір режиму обміну даними через lpt-порт

4.2.3 Розробка інтерфейсу передачі даних через lpt-порт

5 Розробка модулю попередньої обробки сигналу

5.1 Обробка прийнятого сигналу

5.2 Підготовка сигналу для передачі

6 Розрахунок антеного модуля для прийомо-передавального пристрою

7 Розробка конструкторського виконання приладу

7.1 Розміщення мікросхем усередені приладу

7.2 Забезпечення живлення приладу

7.3 Зовнішній вигляд приладу

7.4 Розрахунок ударостійкості

8 Техніко-економічне обгрунтування розробки

8.1 Опис виробу

8.2 Дослідження і аналіз ринків збуту

8.2.1 Сегментація ринку по споживачах

8.2.2 Параметрична сегментація ринку

8.2.3 Аналіз конкурентноздатності

8.3 Розрахунок затрат на розробку виробу (передвиробничі затрати)

8.4 Розрахунок договірної ціни виробу

8.5 Розрахунок річних витрат споживача

8.6 Розрахунок інтегрального показника конкурентноздатності

8.7 Аналіз стратегії маркетингу

8.7.1 Схема розповсюдження виробів

8.7.2 Організація реклами

8.7.3 Прогнозування об’єму продаж

8.8 Визначення беззбитковості виробництва

Висновки

Перелік посилань


Вступ

У різних галузях народного господарства досить часто виникає необхідність мати певне уявлення про характеристику погодних умов на певній, досить невеликій ділянці місцевості, це може бути використано у статистичних, інформативних, синоптичних цілях.

При цьому головними вимогами, що висуваються до цієї інформаціі про погодні умови є:

- оперативність збору, а отже доцільність інформації;

- мінізація технічних та матеріальних засобів для її отримання;

- зручнічть у використанні та мобільність технічних засобів збору інфор-мації;

- точність інформації, що надходить, тощо.

Тому для реалізації всих цих вимог потрібен комплекс збору метеорологічних даних, далі – комплекс, до складу якого належіть прилад, що розроблюється – „прилад прийому метеорологічних даних”, далі – прилад.

Звичайні метеорологічні станції не завжди можуть бути корисними: по-перше, збирання метеорологічних даних (тих або інших метеопоказників) є узагальнюючим; по-друге, вони є стаціонарними, тобто розташовані на певних ділянках місцевості; по третє, не всі ділянки земної поверхні знаходяться у зонах дії метеорологічних станцій.

Серед галузей використання комплексу можна насамперед виділити наступні:

- сільське господарство – необхідна швидка та точна інформація щодо температури, вологості повітря та ін. для термінового проведення (або відкладення проведення) сільськогосподарських робіт – пахота, засівання, збір врожаю, тощо;

- проведення розважальних та тренувальних заходів (наприклад: авіашоу, стрибки з парашутами, великі фестивалі та концерти на відкритому повітрі) – інформація щодо стану та зміну стану нижніх шарів атмосфери може бути край важливою, та може слугувати підставою для перенесення або скасування цих заходів;

- санатарно-курортні заклади та пляжі;

- дослідження стану нижніх шарів атмосфери на певній, віддаленій від зони дії метеостанцій, ділянці місцевості.

Тому прилад, що розроблюється має відповідати наступним вимогам та реалізовувати наступні дії:

- отримувати дані, що були щойно виміряні, від модулей збору метеорологічної інформації, далі – модулі, за допомогою радіозв’язку;

- передавати отримані дані до персонального комп’ютера для іх подальшого зручного зберігання, моніторінгу та обробки;

- забезпечувати зв’язок між модулями копмлексу на відстані до 5 кілометрів;

- задовільняти існуючим „оматорським” стандартам радіозв’язку.

Для функціонування радіозв’язку між приладом та модулями комплексу було обрано частоту 315 МГц, оскільки вибір частоти передачі даних понад 500 МГц може призвезти до перешкоди збоку сотового зв’язку, передача даних на більш низькій частоті (менше 200 МГц) може перешкоджати робіті радіомовленевого зв’язку (рації, інші переговорні пристрої).

Обрана частота передачі (500-700 МГц) належіть до діапазону „оматорських” частот, передача даних у радіусі до 5 кілометрів не потребує реєстрації у Укрчастотнагляді та інших подібних державних установах, та може використовуватись без додаткових документів та відповідних ліцензій.


1. Огляд існуючих технічних аналогів

Розглянемо декілька технічних розробок, що несуть сособою мету збору та збереження певних метеопоказників.

1. Система „ІОН”, російського виробника „ООО Прома” (2001р). Метеорологічний комплекс являє собою прилад збору метеопоказників, у який вбудовані певний набір датчиків, та мікроконтролер з досить великим об’ємом внутрішньої пам’яті для збереження результатів вимірювання.

Його структурну схему можна уомвно представити так (рис. 1.1):


Рисунок 1.1. Система збору метеорологічних даних „ІОН” російського виробника „ООО Прома”.

Алгоритм роботи даного пристрою можна представити так:

- задається план вимірів за допомогою текстового файла та при підключенні пристрою до Пкзаноситься план вимірів;

- людина (оператор) пересувається з пристроєм до точки заміру та натискаючи кнопку „Пуск” робить запит до датчиків на вимірювання відповідних показників;

- щойно виміряні дані зберігаються у внутрішній пам’яті мікроконтролера пристрою;

- робиться замір у наступній контрольній точці, і так доти, доки не буде виконаний план, внесений у началі маршруту;

- після завершення маршруту, дані, що буди збережені, переносяться до персонального комп’ютера для їх подальшої обробки.

Недоліки такої системи є очевидними: неможливість працювати у реальному часі даних, необхідність пересування з приладом по контрольних точках, жорстка прив’язка до плану вимірів, незручність користування та .ін.

2. Стандартна система моніторінгу за погодою. У стандартної метеорологічної станції є також недоліки у роботі: збирання метеорологічних даних (тих або інших метеопоказників) є узагальнюючим; по-друге, вони є стаціонарними, тобто розташовані на певних ділянках місцевості; по третє, не всі ділянки земної поверхні знаходяться у зонах дії метеорологічних станцій, витрата великої кількості коштів при експлуатації, через залучення великої кількості працівників-метеорологів.

Ці системи не можуть бути застосованими у тих випадках, коли необхідна можливість збору інформації у реальному часі, для збору метеопоказників може залучатися лише одна особа, є необхідність збору метеоінформації у місцях, що не входять до зони дії стаціонарних метеостан-цій, можливість легкого та швидкого оперування з отриманими даними.

Для вирішення усіх цих проблем необхідна розробка нового метеокомплекса.


2. Структурна схема приладу та її опис

2.1 Структурна схема і призначення окремих функціональних блоків

Можна запропонувати наступну структурну схему приладу (рис. 2.1.1):


Рисунок. 2.1.1. Структурна схема приладу

Головні функціональні блоки схеми – прийомо-передавальний пристрій та модуль попередньої обробки прийнятого сигналу.

Прийомо-передавальний пристрій – пристрій, що здійснює радіо передачу запиту до модуля збору метеоінформації та прийом інфорамціції, що надійшла від блоку датчиків модуля.

Модуль попередрьої обробки – здійснює попередню обробку прийнятого сигналу від прийомо-передавального пристрою для подальшої передачі інформації на lpt-порт ПК.

2.2 Робота пристрою за структурною схемою

2.2.1 Прилад збору метеорологічних даних

Розглянемо структурну схему приладу збору метеорологічних даних (рис. 2.2.1.1)



Рисунок. 2.2.1.1. Структурна схема приладу збору метеорологічної інформації.

Прийомо-передавальний пристрій – здійснює зв’язок між приладом прийому метео-рологічних даних та модулем збору метеоінформації.

Мікроконтролер – відповідає за керування роботою прийомо-передавального пристрою та блоку датчиків у складі модуля збору інформації.

Блок датчиків – конкретний набір датчиків, що здійснюють вимірюють певні метеорологічні показники.

Для аналізу роботи приладу за структурною схемою, розглянемо цикл передачі інформації, який проходить у процесі роботи метеорологічного комплексу.

2.2.2 Обмін інформацією між окремими вузлами метеорологічного комплекса

Обмін інформацією між окремеми вузлами метеорологічного комплекса можно наведено на рис. 2.2.2.1.

Умовно цикл обміну інформацією між модулем збору, приладом прийому інформації, та керуючою програмою ПК можна представити через структурну схему комплексу збору метеорологічних даних (рис. 4.1.1)

Розглянемо цикл обміну інформації

керуюча програма передає на lpt-порт код модулю, що буде опитаний (лінія 1);

з порта інформація поступає на блок попередньої обробки інформації (лінія 2);

звідки код модуля поступає на прийомо-передавальний пристрій для запиту до модуля збору (лінія 3);

прийомо-передавальноий пристрій приладу прийому інформації передає прийомо-передавальному пристрою модуля збору метеорологічних даних код модуля (лінія 4);

далі іде передача коду для аналіза мікроконтролером переданого коду (лінія 5) мікроконтролер власний код (код модуля) з отриманим, якщо не співпадає – цикл завершується, якщо співпадає – цикл триває;

мікроконтролер передає запит до блоку датчиків для отримання корисної інформації (лінія 6);

блок датчиків отримавши повідомленя, робить замір погодних показників та повертає корисну інформацію до мікроконтролера (лінія 7);

мікроконтролер, зберігши інформацію у власному буфері, передає її до прийомо-передавального пристрою (лінія 8);

модуль збору (прийомо-передавальний пристрій) передає інформацію до модулю прийому метеорологічних даних (лінія 9);

прийомо-передавальний пристрій передає інформацію модулю попередньої обробки сигналу для її подальшої передачі у ПК (лінія 10);

модуль попередньої обробки робить необхідні перетворення та передає відповідну інформацію на lpt-порт (лінія 11);

керуюча програма робить зчитування інформації з lpt-порту та робить подальшу обробку прийнятої інформації (лінія 12).


Прилад прийому метеорологічних даних

Модуль збору метеорологічних даних

Рисунок. 2.2.2.1. Обмін інформацією між вузлами метеорологічного комплекса.


3. Вибір апаратних засобів

3.1 Вибір та характеристики прийомо-передавального пристрою

Для передачі даних між модулями збору та прийому метеоінформації через радіоканал потрібно вибрати радіо прийомо-передавальний пристрій, який задовільняв би наступним вимогам:

- низька ціна;

- досить малі габаритні розміри;

- забезпечувати високу частоту передачі даних – понад 500 МГц;

- мати можливість зовнішнього живлення до 5В, та 30 mA у режимі передачі;

- забезпечувати прийом/передачу даних у напівдуплексному режимі.

Оскільки у технічному завданні маємо 1 канал радіозв’язку для прийому та передачі, використаємо напівдуплексний режим передачі даних.

Виходячи із частотних вимог передачі даних, оберемо частоту 700 МГц для прийому та передачі даних.

Оберемо прийомо-передавальний пристрій швейцарської фірми Xemics XE1201A, бо він має низьку ціну (близько 5% від запланованої суми витрат), має відносно невеликі габаритні розміри (25х25 мм), та задовільняє іншим вищезгаданим вимогам.

Характеристики прийомо-передавального пристрою:

- напруга живлення 2,4В;

- ток живлення в режимах прийом/передача до 6/8 мА;

- потужність передавача 20 мВт;

- температурний діапазон роботи -40 + 850 С;

- частотний діапазон передачі даних 400 – 700 МГц;

- швидкість передачі даних – до 64 Кбіт/С.


3.2 Вибір мікроконтролера

Для здійснення попередньої обробки інформації, прийнятої від датчиків оберемо мікроконтролер РІС16С54, бо він має досить низьку ціну, досить поширений на ринку, та здатен забезпечувати всі необхідні функції для роботи модуля збору інформації.

Мікроконтролер має вісімнадцять ніжок. Усі регістри мікросхеми 8-бітні.


4. Розобка протоколу передачі даних

4.1 Трьохрівневий сигнал обміну даними

Для реалізації циклу обміну даними у метеорологічному комплексі запропонуємо троьрівневий сигнал, тобто такий сигнал, у которому є можливим виділити за амплітудою три логічних рівня: логічний рівень „0”, логічний рівень „1” та логічний рівень „синхронізація”.

Умовно такий сигнал можна зобразити так (рис. 4.1.1):


Рисунок 4.1.1. Трьохрівневий сигнал, що використовуватиметься при передачі даних.

Uсинхр. – рівень напруги синхронізуючого сигналу;

U1 – рівень напруги логічної одиниці;

U0 – рівень напруги логічного нуля.

Як бачимо з рисунка, сигнал, що передається має три логічних рівня, тобто після інформаційного сигналу („0” або „1”), відразу йде сигнал-підтвердження високого рівня. У момент приходу синхронізуючого сигналу можна знімати попередній інформаційний рівень.


4.2 Передача даних через lpt-порт ПК

4.2.1 Характеристики LPT-порту

Оскільки виходячи із технічного завдання прийом-передача інформації повинна здійснюватись через LPT-порт ПК, модуль прийому інформації повинен задовільняти його фізичним та електричним інтерфейсам.

Адаптер паралельного інтерфейсу являє собою набір регістрів, розташованих у просторі введення/виводу. Регістри порту адресуються щодо базової адреси порту, стандартними значеннями якого є 3BCh, 378h і 278h. Порт може використати лінію запиту апаратного переривання, зазвичай IRQ5 або IRQ7. Порт має зовнішню 8-бітну шину даних, 5-бітну шину сигналів стану й 4-бітну шину керуючих сигналів. При передачі даних використовуватимемо адресу 378h (lpt1).

Стандарт на паралельний інтерфейс IEEE 1284, прийнятий у 1994 році, визначає терміни SPP, EPP, і ECP. Стандарт визначає п'ять режимів обміну даними, метод узгодження режиму, фізичний і електричний інтерфейси. Згідно IEEE 1284, можливі наступні режими обміну даними через паралельний порт:

До передавачів пред'являються наступні вимоги:

- рівні сигналів без нагрузки не повинні виходити за рівні -0,5 ... +5,5В;

- рівні сигналов при струмі нагрузки 14 мА мають бути не нижчими +2,4

- швидкість наростання (спаду) імпульса має знаходитись в межах 0,05-0,4 В/нс.

Вимоги до приймачів:

- припустимі амплітудні раівні сигналів -2,0 + 7,0 В (що витримуються без руйнувань та помилок у роботі);

- пороги спрацьовування мають бути не вище 2,0 В (VIH) для високого рівня та не нижче 0,8 В (VIL) для низького;

- вхідна ємкість не повинна перевищувати 50 пФ.

Стандарт IEEE 1284 визначає три типи використовуваних рознімань. Типи А(DB-25) і В (Centronics-36) використовуються у традиційних кабелях підключення принтера, тип С - нове малогабаритне 36-контактне рознімання.

При розробці будемо використовувати стандартне А(DB-25) рознімання.

4.2.2 Вибір режиму прийому-передачі через lpt-порт

Розглянемо основні (найбільш поширені) режими роботи lpt-порта.

- Compatibility Mode - однонаправлений (вивід) за протоколом Centronics. Цей режим відповідає стандартному (традиційному) порту SPP.

- Nibble Mode - ввід байта у два цикли (по 4 біта), використовуючи для прийому лінії стану.

- Byte Mode – ввід цілого байта, використовуючи для прийому лінії даних.

- ЕРР (Enhanced Parallel Port) Mode – двонаправлений обмін даними, при якому керуючі сигнали інтерфейсу генеруються апаратно під час циклу звернення до порта (читання або запису в порт).

- ECP (Extended Capability Port) Mode - двонаправлений обмін даними з можливістю апаратного стискання даних за методом RLE (Run Length En-coding) та використання FIFO-буферів та DMA. Керуючі сигнали інтерфейсу генеруються апаратно.

Розглянемо вимоги, що висуваються до прийому та передачі даних через lpt-порт:

- двонаправлений обмін даними;

- найбільша поширеність та апаратна реалізація у сучасних ПК функцій, що застосовуватимуться під час прийому та передачі;

- керуючі сигнали мають генеруватися як програмно, так й апаратно.

- цикли читання й запису можуть чергуватися в довільному порядку або йти блоками.

Для задоволення всих цих вимог стандартні режими обміну є неприйнятними, тому запропонуємо власний режим (протокол) обміну.

4.2.3 Розробка інтерфейсу передачі даних через lpt-порт

Стандартний порт має при 8-ми бітних регістри, розташованих на сусідніх адресах вводу/виводу, починаючи з базової адреси порту BASE.

Data Register(DR) – регістр даних. Дані, записані у цей регістр, виводяться на лінії інтерфейсу. Дані, зчитані з цього регістра, в залежності від схемотехніки адаптера відповідають або раніше записаним даним, або сигналам на тих же лініях.

Status Register (SR) — регістр стану, що представляє собою 5-бітний порт уведення сигналів стану принтера (біти SR.4-SR.7). Біт SR.7 інвертується — низькому рівню сигналу відповідає одиничне значенню біта в регістрі, і навпаки.

Control Register (CR) — регістр керування. Як і регістр даних, цей 4-бітний порт виводу допускає запис і читання (біти 0-3), але його вихідний буфер звичайно, має тип відкритий колектор. Це дозволяє більш коректно використовувати лінії даного регістра як вхідні при програмуванні їхній у високий рівень. Біти 0, 1, 3 інвертуються — одиничному значенню в регістрі відповідає низький рівень сигналу, і навпаки.

Будемо розглядати стандартне рознімання порту DB-25S (розетка).

Для розробки протоколу обміну даними будемо використовувати такі клеми:

DR0 (Data 0) – працює на вивід інформації. У режимі виводу – передає номер модулю, від якого будуть запрошені дані (контакт номер 2 у DB-25S).

DR1 (Data 1) – працює на вивід інформації. У режимі виводу – передає номер модулю, від якого будуть запрошені дані (контакт номер 3 у DB-25S).

CR2 (Init#) – працює на вивід інформації. Використовується для синхронізації під час запису до порту (контакт номер 16 у DB-25S).

CR3 (Select Input#) – працює на вивід інформації. Використовуєтся для задання напрямку виводу (запис або читання), також служить для задання режиму роботи прийомо-передавального пристрою – RX/TX – інвертований сигнал (контакт номер 17 у DB-25S).

SR7 (Busy) – працює на ввід інформації. Використовується для прийому даних від зовнішнього пристрою. Інвертований сигнал (контакт номер 11 у DB-25S).

SR5 (Paper Out) – працює на ввід інформації. Використовується для синхронізації під час читання інформації з порту (контакт номер 12 у DB-25S).

Умовно графічну схему обміну даними через lpt-порт можна зобразити так (рис. 4.2.3.1 ):

дані

дані

синхронізація

до ППП

дані

синхронізація


Рисунок 4.2.3.1. Виводи lpt-порта при роботі з приладом.

Алгоритм циклу читання даних за допомогою lpt-порта можна представити так:

1. Програмно встановлюється низький рівень сигналу Select Input# (CR3), тим самим переключаючи порт у режим читання даних, цей же сигнал й передається на вхід прийомо-передавальний пристрою RX/TX, переключаючи його у режим прийому даних.

2. На вхід Busy (SR7) від блоку попередньої обробки сигналу надходять дані. Порт чекає на підтверждення від переферійного пристрою.

3. Від блоку попередньої обробки сигналу на вхід Paper Out (SR5) надхо-дить синхронізуючий сигнал (високий рівень).

4. Знімаються дані з SR7.

5. Програмно встановлюється низікий рівень сигналу Paper Out (SR5) для готовності прийому наступного біту інформації.

Алгоритм запису даних до lpt-порту можна представити так:

1. Програмно встановлюється високий рівень сигналу Select Input# (CR3), тим самим переключаючи порт у режим запису даних, цей же сигнал й передається на вхід прийомо-передавального пристрою RX/TX, переключаючи його у режим передачі даних.

2. До lpt-порту програмно записується байт 00000001, що символізує передачу „0”, або 00000010, що символізує передачу „1”, тим самим з’являються відповідні сигнали на виходах DR0 або DR1.

3. Програмно встановлюється високий рівень сигналу CR3 (Select Input#) для підтвердження посилки наступного біту інформації.

4. Дається програмна затримка (10 мкс) – для витримування рівня сигналу CR3.

5. Програмно встановлюється низький рівень сигналу CR3 (Select Input#) для кінця підтвердження.

5 Розробка модулю попередньої обробки сигналу

5.1 Обробка прийнятого сигналу

Модуль збору метеорологічних даних має наступну структуру (рис. 5.1.1):


Рисунок. 5.1.1 Структура модулю збору інформації

Мікроконтролер модуля збору інформації передає дані, які щойно були зчитані з блоку датчиків, та збережені у власному буфері мікроконтролера.

Розглянемо форму сигналу на виході прийомо-передавального пристрою приладу прийому інформації, який був отриманий від модуля збору інформації (рис. 5.1.2).

Тривалість інформаційного рівня сигналу становить 40 мкс, тривалість синхронізуючого сигналу становить 10 мкс.

За умови таких тривалостей сигналу, можлива передача інформації зі швидкістю до 20 000 біт/сек.

Стає очевиндим необхідність мати модуль, який би розпізнавав інформаційні та синхронізуючі сигнали та розділяв би їх на дві складові (рис. 5.1.2).


Рисунок 5.1.2 Модуль попередньої обробки прийнятого сигналу.

Слід також зважати на те, що модуль збору може знаходитись на будь якій відстані від модулю прийому інформації, тому амплітуди сигналу, що надходитимуть на вхід модуя попередньої обробки є нефіксованими, та залежитимуть від відстані між двома прийомо-передавальними пристроями.



Рисунок 5.1.3. Форма сигналу на виході прийомо-передавального пристрою приладу прийому.

Рівні вхідних інформаційних та синхронізуючого сигналів отримуємо у процентному співвідношені від постійної утворюючої сигналу, що прийшов на вхід.

Для вирішення цих вимог запропонуємо наступну схему (рис. 5.1.4):

Оскільки передається сигнал зі швидкістю 20 000 біт/сек, у якості логічних компонентів можуть слугувати будь-які мікросхеми ТТЛ-логіки низької потужності та з часом переключення не більшим 2000 нс.

У якості мікросхем DD1, DD2, DD3, наприклад мікропотужний чотирьохканальний аналоговий компаратор TLC339 (мінімальна напруга живлення – +1,5 В, вхідний ток 0,005 нА, час переключення 1700 нс).


VD1

Рисунок 5.1.4. Обробка прийнятого сигналу для передачі до lpt-порта.

У якості мікросхем DD4, DD5 – наприклад, мікросхема 74ALS86, що являє собою 4 двохвходових логічних елементи “виключаюче або” (напруга живлення – +3,6В, час переключення 30 нс). У якості мікросхеми DD6, наприклад, мікросхему 74SN7432, що являє собою 4 двохвходових логічних елементи “або” (напруга живлення – +3,6В, час переключення 30 нс).

Зробимо розрахунок параметрів схеми, використаємо формули:

(1)

де R, C – параетри RC-ланцюга;

τ – час падіння напруги на конденсаторі.

Оскільки в даній схемі виділяємо лише три різні рівні сигналів, приймемо τ > 20. Тобто рівень падіння напруги на виході конденсатора не повинен перевищувати 5%

Приймемо загальний опір ланцюга R = R1 + R2 + R3 + R4 = 10 КОм (вважа-ючи при цьому, що ток, що протікає у ланцюгу дорівнює 0,36 mА).

Обчислимо ємкість конденсатора:

С = τ/R = 50 ∙ 10-6 ∙ 20 / 104 = 10-7 (Ф).

Приймемо амплітуди спрацьовування логічних рівнів сигналів:

логічний рівень „0” – 0,7 В;

логічний рівень „1” – 2,0 В;

логічний рівень „синхронізація” – 3,0 В.

Обчислимо R1 , R2 , R3 , R4, прийнявши вхідну напругу 3,6 В, ток ланцюга 0,36 mA.

R4 = 0,7 / 0,00036 = 1,9 Ком;

R3 = 2,0 / 0,00036 – 1,9 ∙ 103 = 3,6 Ком;

R2 = 3,0 / 0,00036 – 1,9 ∙ 103 – 3,6 ∙ 103 = 2,7 Ком;

R1 = 10 – 1,9 – 3,6 – 2,7 = 1,8 Ком.

Таким чином маємо на одному виході схеми інформаційний рівень сигналу – “0” або “1”, на іншому – сигнал синхронізації.

5.2 Підготовка сигналу для передачі

На вході прийомо-передавального пристрою прилада мусимо мати аналогічний трьох-рівневий сигнал для можливості передачі як інформаційної частини сигналу, так й синхронізуючої послідовності (рис. 5.2.1):



Рисунок 5.2.1 Модуль обробки сигналу для передачі.

На виході модулю обробки сигналу для передачі мусимо отримати форму сигналу, аналогічну до форми сигналу (рис. 5.1.2).

Для цього необхідне програмне чергування передачі сигналів данних та сигналів синхронізації керуючої програми ПК.

Наприклад, при передачі логічної „1” на вихід lpt-порта треба записати байт даних „00000010”, для передачі логічного нуля треба записати байт „00000001”, при цьому слід передавати біт синхронізації після кожного запису байта даних.

Для вирішення цих вимог запропонуємо наступну схему (рис. 5.2.2):

У якості мікросхеми AD1 можна запропонувати мікросхему тройного аналогового мультиплексора IW4053B (напруга живлення +3,6В, вхідний ток до 10 mA, робочий діапазон температур від -60 до +1500 С).

Зробимо розрахунок параметрів дільника напруги. При цьому, що ток, що протікає у ланцюгу приймемо 0,36 mА, напруга 3,6В.

Приймемо

R = R1 + R2 + R3 + R4 =10 КОм.

R4 = 0,7 / 0,0005 = 1,4 Ком;

R3 = 2,0 / 0,0005 – 1,4 ∙ 103 = 2,6 Ком;

R2 = 3,0 / 0,0005 – 2,6 ∙ 103 – 1,4 ∙ 103 = 2,0 Ком;

R1 = 10 – 1,4 – 2,6 – 2,0 = 4 Ком.

Таким чином передаючи на вхід модуля три сигнали, отримуємо один трьохрівневий сигнал.


Рисунок 5.2.2 Модуль обробки сигналу для передачі.

U1 – рівень напруги, що дорівнює рівню напруги сигналу “синхро-нізація” (3 В);

U2 – рівень напруги, що дорівнює рівню напруги сигналу “логічна 1” (2 В);

U3 – рівень напруги, що дорівнює рівню напруги сигналу “логічний 0” (0,7 В);


6. Розрахунок антеного модуля для прийомо-передавального пристрою

Зробимо розрахунок антеного модуля для прийомо-передавального пристрою.

В якості антени використаємо несиметричний вертикальний чвертьхвильовий зазамлений вібратор (штирьова антена).

Маючи внутрішню опорну частоту прийомо-передавального пристрою, виділяючи різні гармоніки, застосовуючи резонансні контури з відповідним посиленням можна отримати різні частоти.

Наприклад, маючи опорну частоту прийомо-передавального пристрою 20 МГц, виділяючи п’яту та сьому гармоніки можна отримати частоту f0 = 20 ∙ 106 ∙ 5 ∙ 7 = 700 МГц.

Розрахуємо довжину хвилі сигналу:


(1)

де: λ0 – довжина хвилі,

с – швидкість хвилі,

f0 – частота передачі.

Знаходимо λ0 = 0,43 (м).

Оскільки використовується чвертьхвильовий вібратор, визначемо висоту вібратора:

h = 0,25 λ0 (2)

Знаходимо h= 0,1075 (м).

Діючу висоту вібратора визначимо за формулою:

hд = 0,64h (3)

Знаходимо hд = 0,0688 (м).

Визначимо також показники ємкості та індуктивності на вході антени:


(4)

де: w – частота на виході LC-контуру,

L – індуктивність катушки,

С – ємкість конденсатора.

Маємо:

w = 2πf (5)

Знаходимо w = 4,4 109 .

Підберемо L, C так, щоб вони задовільняли формулі (4).

При С = 10 пФ, знайдемо:

Гн. (6)

Обчислимо параметри катушки індуктивності, використаємо формулу:

(7)

де: N – кількість вітків катушки,

L – індуктивність катушки у мкГн,

R – радіус вітка катушки у дюймах,

Н – висота катушки.

Обчислимо:

Звідки взявши висоту катушки 0,1 дюйма, а радіус катушки 0,025 дюйма, обчислимо кількість вітків:


(8)

Знайдемо амплітуду сили тока, та силу тока в пучності:


(9)

Для чвертьволнового вібратора опір випромінювання, віднесений до пучності тока складає RΣп 37Ом.

Візьмемо опір втрачень у антені Rп = 7Ом.

Від прийомо-передавального пристрою до антени підводиться потужність Pa = 10мВт.

Обчислимо:


(10)

Знайдемо КПД антени:


(11)

Обчислимо: ηa =0,84.

Знайдемо максимальну напруженість електричного поля на відстані 5 кілометрів від антени:

(12)

де: r – відстань від антени для вимірювання;

Е – напруженність електричного поля.

Обчислимо:

Е = 60∙0,03/5000 = 0,36 мВт/м.

Що перевищує показники чутливості приймача, та є достатнім для передачі сигналу.


7. Розробка конструкторського виконання приладу

7.1 Розміщення мікросхем усередені приладу

Оскільки основні мікросхеми приладу мають невеликий розмір, та схожі електричні параметри, їх можна розмістити на одній печатній платі, що кріпитиметься чорирьма штирами до корпусу.

Запропонуємо пласмасове виконання корпсу приладу.

Розглянемо розміри елементів мікросхем приладу, щодо їх розміщення на печатній платі.

- прийомо-передавальний пристрійXE1201A – 25х25х5 мм;

- мультиплексор IW4053B – 19х7,5х5 мм;

- компаратор TLC339 – 19х7,5х5 мм;

- мікросхема “виключаюче або” 74ALS86 19х7,5х5 мм;

- мікросхема “або” SN7432 19х7,5х5 мм;

- стандартне рознімання lpt-порту DB-25S 40х7 мм.

Для розміщення мікрохем використаємо печатну плату розміром 45х60 мм. Представимо розміщення елементів на печатній платі у масштабі 1:1 (рис. 7.1.1):


Рисунок 7.1.1. Умовне розміщення основних мікросхем приладу на печатній платі.

- XE1201A (1) – прийомо-передавальний пристрій;

- IW4053B (2) – обробка сигналу для передачі;

- TLC339 (3), 74ALS86 (4), SN7432 (5) – обробка прийнятого сигналу.

7.2 Забезпечення живлення приладу

Для забезпечення живлення приладу використовуватимемо підзаряджувані акумулятори.

Наприклад запропонуємо нікельметалгідридний акумулятор:

вихідна напруга 1,2В;

ємкіть укумулятора 800 mA/ч;

розміри 16х16х8 мм.

Якщо послідовно включити три таких акумулятори, отримаємо вихідну напругу живлення 3,6 В, що буде достатньо для подання живлення на будь-яку з обраних мікросхем.

Розглянемо основні елементи, які будуть включені у корпус приладу:

- головна печатна плата приладу(2);

- блок живлення приладу(1);

- вихідне рознімання приладу DB-25S(3);

- закріплення антени(4).

Зобразимо усі основні блоки приладу у масштабі 1:1 (рис. 7.2.1):

Як бічимо, для розміщення основних блоків приладу у корпусі, достатньо використати корпус, розміром 108х50х20 мм.



Рисунок 7.2.1. Розміщення основних блоків приладу у корпусі.

7.3 Зовнішній вигляд приладу

Усі елементи приладу будуть розміщені у пластмасовому корпусі, розміром 105х50х20 мм, оскільки штирьова антена має довжину 107,5 мм, її доцільно було б розмістити “вздовж” корпуса, зовнішній вигляд приладу матиме такий вигляд (рис. 7.3.1).

Для якомога кращого прийому та передачі даних, антена має бути розташована горизонтально до земної поверхні. Тому запропонуємо два види розташування приладу під час роботи з ним. У вигляді “зачіпки” (рис. 7.3.2 (а)), та у вигляді стойки (рис. 7.3.2 (а)).



Рисунок 7.3.1. Зовнішній вигляд приладу.


Рисунок 7.3.2(а,б). Розташування та закріплання приладу під час роботи з ним.

7.4 Розрахунок ударостійкості

Зробимо необхідні розрахунки, щодо ударостійкості приладу при падінні з певної висоти.

Візьмемо початкові умови:

висота падіння приладу h = 1м;

пружність поверхні при падінні h0п = 1 мм;

пружність корпусу приладу h = 2мм;

початкова швидкість падіння v0 = 0 м/с;

будемо вважати, що пришвидшення a0 під час „тормозного шляху” приладу при падінні є рівномірним.

Довжина „тормозного шляху” приладу дорівнює суммі пружності поверхні та корпусу приладу

h0 = h0п + h (1)

Швидкість приладу при падінні становитиме

v = v0 + gt = 10t (2)

Шлях при падінні визначаємо за формулою:

(3)

Отже час падіння визначаємо як:

(4)

Швидкість тіла у момент падіння

(5)

Визначимо прискорення приладу у момент падіння (деформацію корпусу приладу та поверхні падіння приймаємо рівномірній у часі):

Отже ударостійкість приладу має складати a = 1,33 104 , або 1,33 103 g.

Сумарну вагу головної мікросхеми приладу, що кріпитиметься на штирьові опори корпусу приймемо 50 г.

, або (6)

Візьмемо чотири штирьові опори для фіксації мікросхеми усередені копруса.

Оскільки максимальне навантаження на закріплення мікросхеми становитиме при горизонтальному навантаженні на штирьові опори, тобто при горизонтальному падінні мікросхеми (рис. 7.1).


Рисунок 7.1 Закріплення плати до корпуса.

s – довжина штиру;

d – діаметр штиру;

F – сила, що діє на штир при падінні.

Зробимо розрахунок діаметру капронового штиру, який витримає нагрузку при падінні:

Для капрону максимальна припустима напруга складатиме 30 Мпа.


(7)

σmax – максимальна напруга, Па;

Мх – момент при падінні Н∙м.

Для циліндричного штиру маємо:


(8)

Момент при падінні:


(9)

Тобто


(10)

Звідки:


Отже для закріплення головної плати на корпусі використаємо 4 капронові штири діаметром 4,5 мм.


8. Техніко-економічне обгрунтування розробки

8.1 Опис виробу

Апаратний продукт “прилад прийому та обробки метеорологічних даних”, розроблений в даному проекті (далі – прилад), є складовою частиною комплексу збирання та обробки метеорологічних даних (далі – комплекс) і потрібен для прийому та обробки метеорологічних данних від окремих збираючих модулів комплекса та їх подальшої обробки.

Продукт представляє собою конструктивно закінчений вироб, що підключається для передачі даних в ПК через паралельний порт.

Середня нароботка на відмову приладу становить не менше 8 000 годин.

Розробка вказаного апаратного продукту завершується створенням і передачею замовнику принципової схеми пристрою та супроводжувальної документації.

8.2 Дослідження і аналіз ринків збуту

8.2.1 Сегментація ринку по споживачах

Вироб орієнтований на наступні категорії споживачів:

Сегментація ринку по споживачах наведена у таблиці 8.1.

Таблиця 8.1 – Сегментація ринку за категоріями споживачів.

Області використання (сегменти) Код сегмента
Спеціалізовані метеорологічні установи А
Сільське господарство Б
Інші оргаізації В

Результати аналіза ємності сегментів ринку збуту наведені у таблиці 8.2.

Таблиця 8.2 – Ємність сегментів ринку

Область використання, Код сегмента Кількість об’єктів, що використовують вироб, шт. Передбачуване число продажів одному об’єкту, шт. Передбачувана ємність сегмента, шт.
А 10 5 50
Б 50 1 50
В 30 1 30
УСЬОГО 130

Передбачувана підсумкова ємність, можливо, зросте у зв'язку з розширенням ринку збуту за рахунок зарубіжних споживачів (збільшення частки експорту), так як ціна продукції, що виробляється в Україні значно нижче, ніж у зарубіжних конкурентів.

Основними вимогами споживачів є простота і зручність використання, надійність, мінімальна вартість продукту.

8.2.2 Параметрична сегментація ринку

Для проведення параметричної сегментації ринку оцінимо по п’ятибальній шкалі основні параметри виробу за ступенем важливості з точки зору споживачів. Параметрична сегментація ринку наведена в таблиці 8.3.

Таблиця 8.3 – Параметрична сегментація ринку

Параметри виробу Оцінка параметрів по сегментах Підсумкова оцінка параметра Відсоток до загального підсумку
А Б В
Вартість 5 5 5 15 26,78
Простота використання 4 5 5 14 25
Надійність 5 5 4 14 25
Швидкість обробки даних 5 4 4 13 23.21
РАЗОМ 23 24 23 56 100

Виходячи з даних таблиці 2.2.1, можна зробити висновок про те, що такі фактори як вартість і простота використання є найбільш важливими, а сегмент A та Б (спеціалізовані метеорологічні установи, сільське господарство) ринку висувають найбільш високі вимоги до сукупності якісних параметрів виробу, що розроблюється.

8.2.3 Аналіз конкурентоздатності

За наявними в розроблювачів відомостями розроблений прилад має аналоги, але існуючі розробки поступаються йому за деякими показниками.

Для аналізу конкурентоздатності виробу розрахуємо узагальнений показник технічного рівня (якості) віробу, що проектується. Для цього порівняємо абсолютні значення його параметрів з параметрами системи збору та обробки метеорологічних даних „Іон”.

Відносні одиничні показники Qi визначаємо за формулами:

Qi = Pi / Pia або Qi = Pia / Pi ,

де Pia і Pi – абсолютні значення i-го показника пристрою-аналога і пристрою, що проектується.

Перша формула вибирається якщо збільшення показника означає поліпшення якості виробу, а друга формула якщо навпаки.

Узагальнений показник технічного рівня (якості) виробу, що проектується, розраховуємо за формулою:

Qt = S (Qi × Mi ),

де Mi – коефіцієнт вагомості i-го показника

Результати розрахунків зводимо у таблицю 8.4.


Таблиця 8.4 – Розрахунок узагальненого показника технічного рівня віробу

Технічні параметри Одиниця вимірювання Абсолютне значення параметрів Qi Mi Qi × Mi
Виріб Аналог
Імовірність безвідмовної роботи % 90 85 1,06 0,1 0,106
Тактова частота мікроконтролера МГц 4 1 4,0 0,1 0,4
Максимальний радіус дії між модулем та приладом км 5 3 1,66 0,5 0,83
Маса г 200 220 1,1 0,15 0,165
Споживана потужність Вт 4 5 1,25 0,15 0,187
РАЗОМ 1 1,688

Qt = 1,688

Оскільки 1,688 > 1, то технічний рівень виробу, що проектується, вище за рівень аналога. Отже розробка і виробництво даного пристрою є доцільною і перспективною.

8.3 Розрахунок затрат на розробку виробу (передвиробничі затрати)

Ці затрати включають витрати, пов’язані з маркетинговими дослідженнями, конструкторською, технологічною, організаційною підготовками виробництва та інші витрати по освоєнню нового виробу.

Розрахунок витрат на основну заробітну плату розробників наводиться в таблиці 8.5 (пайова участь керівника приймається у розмірі 20% від посадового окладу).

Таблиця 8.5 – Розрахунок витрат на основну заробітну плату

Посада Оклад, грн./міс. Число місяців Пайова участь, % Сума, грн.
Керівник теми 850 4 20 680
Інженер 500 4 100 2000
РАЗОМ 2680

Розрахунок матеріальних передвиробничих витрат наводиться у таблиці 8.6.

Таблиця 8.6 – Розрахунок вартості матеріалів для розробки

Найменування матеріалів Норма витрати, шт. Ціна за 1шт, грн. Сума, грн.
Ватман, лист A1 6 2 12
Папір, лист А4 500 0,04 20
Карандаш 2 1,5 3
Ластик 1 1,5 1,5
Папка для паперів 1 5 5
Файл 10 0,15 1,5
РАЗОМ 43

За цими видами затрат складається кошторис. Розрахунки за ним для виробу, що проектується, зводимо у таблицю 8.7.

Таблиця 8.7 – Кошторис затрат на розробку виробу

№ п.п. Статті затрат (витрат) Сума, грн
1. Основна заробітна плата розробників 2680
2. Доплати та надбавки до основної заробітної плати (10% від п.1) 268
3.

Відрахування на соціальні заходи у тому числі:

а) відрахування на медичне страхування (2,9% від п.1+п.2)

б) пенсійний фонд (32% від п.1+п.2)

в) відрахування у фонд зайнятості (2,1% від п.1+п.2)

г) страхування по травматизму (0,84% від п.1+п.2)

85,5

943,36

61,91

23,58

4.

Інші прямі витрати:

а) на пошук інформації (в т.ч. у мережі Internet)

б) матеріальні витрати

50

43

5. Накладні витрати (75% від п.1) 2010
УСЬОГО: умовно-постійні затрати 6165,35

8.4 Розрахунок договірної ціни виробу

Для розрахунку договірної ціни виробу, що проектується, складається калькуляція його собівартості.

Розрахунок вартості сировини та матеріалів наведено у таблиці 8.8.

Таблиця 8.8 – Розрахунок вартості сировини та матеріалів

Найменування Марка, розмір Одиниця вимірювання Норма витрати на виріб Ціна за одиницю, грн Сума, грн
Плата Гетінакс (150´100) шт 1 5 5
Припій ПОС-60 гр 20 0,05 1
Захисне покриття Лак епоксидний мл 80 0,1 8
УСЬОГО 14

Розрахунок вартості покупних напівфабрикатів та комплектуючих виробів наведено у таблиці 8.9.

Таблиця 8.10 – Розрахунок вартості покупних напівфабрикатів та комплектуючих виробів

Найменування Стандарт Кількість, шт Ціна за одиницю, грн Сума, грн
Мікросхема XE1201A 1 30 30
Мікросхема IW4053B 1 2 2
Мікросхема TLC139 1 3 3
Мікросхема 74ASL86 1 1 1
Мікросхема SN7432 1 1 1
Конденсатор 805 NPO Ni 100нФ 8 0,5 4
Конденсатор 805 NPO Ni 2,5 пФ 6 0,5 3
Конденсатор 805 NPO Ni 10 нФ 4 0,5 2
Резистор ОМЛТ 15 0,2 3
Діод BFQ67 1 0,5 0,5
Діод BC808 1 0,5 0,5
Корпус 1 5 5
Антена 1 2 2
Кварц 4 Мгц 1 5 5
Катушка індуктивності 0805SC-xxx-X 8 0,8 6,4
Кріпіжний елемент 10 0,1 1
Рознімання DB-25F 1 4 4
УСЬОГО 111,5

Розрахунок заробітної плати виробничих робітників наведено у табл. 8.11.

Таблиця 8.11 – Розрахунок заробітної плати виробничих робітників

Найменування робіт та операцій Норма часу на операцію, нормо-год Роздяд роботи Погодинна тарифна ставка і-го розряда, грн. Основна заробітна плата, грн.
Свердлування 0,5 2 3,3 1,65
Розведення плати 1 4 4,5 4,5
Розташування елементів на платі 0,5 2 3,3 1,65
Пайка 0,5 3 4,05 2,03
Нанесення захисного шару 0,5 2 3,3 1,65
УСЬОГО 11,48

Розрахунок договірної ціни виробу наведено у таблиці 8.12.

Таблиця 8.12 – Розрахунок договірної ціни виробу

№ п.п. Статті затрат (витрат) Сума, грн
1. Основні матеріали 14
2. Транспортні витрати на них (20% від п.1) 2,8
3. Покупні та комплектуючі вироби 111,5
4. Транспортні витрати на них (15% від п.3) 16,725
5. Основна заробітна плата (ОЗП) 11,48
6. Доплати та надбавки до основної заробітної плати (30% від ОЗП) 3,44
7. Відрахування на соціальні заходи (37,5% від п.5+п.6) 5,6
8. Витрати на утримання та експлуатацію обладнання (75% від ОЗП) 8,61
9. Загальновиробничі витрати (90% від п.5) 10,33
10. Втрати через брак (0,5% від п.1+…+п.9) 0,92
11. Інші виробничі витрати (10% від п.1+…+п.10) 17,52
12. Виробнича собівартість (п.1+…+п.11) 198,7
13. Адміністративні витрати (100% від п.5) 11,48
14. Витрати на збут продукції (5% від п.12+п.13) 9,96
15. Прибуток (45% від п.12+…+п.14) 95,28
16. Оптова ціна (п.12+п.15) 282,98
17. Налог на додану вартість (НДС) (20% від п.16) 56,6
18. Відпускна (договірна) ціна (п.16+п.17) 339,58

8.5 Розрахунок річних витрат споживача

Річні експлуатаційні витрати включають витрати на заробітну плату обслуговуючого персоналу, витрати на поточний ремонт та інші витрати. Розрахунок цих витрат проводиться по виробу-аналогу та по виробу, що проектується.

Розрахунок заробітної плати персоналу, обслуговуючого виріб-аналог та виріб, що проектується, наведено у таблиці 8.13.

Таблиця 8.13 – Розрахунок заробітної плати обслуговуючого персоналу

Вид обслуговування Професія Ок-лад, грн Коефіцієнт зайнятості робітника Кількість персоналу, чол Річна зарплата, грн.
аналог проект аналог проект
Налагодження Інженер-налагоджувальник 600 0,1 1 1 720 720
Експлуатація Оператор з експлуатації 450 0,5 1 1 225 225
УСЬОГО 945 945

Доплати та надбавки приймаємо в розмірі 12% від основної зарплати:

Аналог: ЗДоп = 0,12 × 945 = 113,4 (грн)

Проект: ЗДоп = 0,12 × 945 = 113,4 (грн)

Відрахування на соцзабезпечення становлять 50% від основної зарплати:

Аналог: ЗСоц = 0,5 × 945 = 472,5 (грн)

Проект: ЗСоц = 0,5 × 945 = 472,5 (грн)

Річна сума амортизаційних відрахувань визначається за відповідними нормами амортизації (в дипломі становлять 10%) від первинної вартості виробу, що включає договірну ціну виробу та затрати на транспортування (в дипломі становлять 5% від договірної ціни).

Первинна вартість виробу – це капітальні витрати для споживача (К).

Аналог: К = 350 + 0,05 × 350 = 367,5 (грн)

Проект: К = 339,58 + 0,05 × 339,58 = 356,55 (грн)

Річна сума амортизаційних відрахувань становить:

Аналог: UАморт = 0,1 × 367,5 = 36,75 (грн)

Проект: UАморт = 0,1 × 356,55 = 35,65 (грн)

Витрати на поточний ремонт виробів включають вартість вузлів, мікросхем, радіодеталей, які виходять з ладу на протязі року, а також вартість монтажних та демонтажних робіт, пов’язаних з їх заміною. У дипломному проекті витрати на поточний ремонт приймаються укрупнено у розмірі 5% від суми капітальних витрат.

Аналог: Uрем = 0,05 × 367,5 = 18,37 (грн)

Проект: Uрем = 0,05 × 356,55 = 17,82 (грн)

Результати розрахунків річних витрат споживача зводимо у таблицю 8.14.

Таблиця 8.14 – Річні експлуатаційні витрати споживача.

Статті експлуатаційних витрат Річні експлуатаційні витрати, грн
Аналог Проект
Основна зарплата обслуговуючого персоналу 945 945
Доплати та надбавки до основної зарплати 113,4 113,4
Відрахування на соціальне забезпечення 472,5 472,5
Капітальні витрати (К) 367,5 356,55
Амортизаційні відрахування 36,75 35,65
Витрати на поточний ремонт 18,37 17,82
Витрати на матеріали та інші витрати (1% від К) 3,67 3,56
УСЬОГО: Uекс 1956,69 1943,21

Розрахуємо ціну споживача.

Ціна споживача (Цспож ) – це витрати споживача за термін служби виробів, що порівнюються, які включають капітальні витрати (К) та сумарні експлуатаційні витрати (Uекс ).

Ціна споживача розраховується за формулою:

Цспож = К + Uекс × Т,

де Т – передбачуваний термін служби виробів, що порівнюються, років.

Аналог: Цспож = 367,5+ 1956,69× 10 = 19934,4 (грн)

Проект: Цспож = 356,55+ 1943,21× 10 = 19778,65 (грн)

8.6 Розрахунок інтегрального показника конкурентоздатності

Кількісною мірою конкурентоздатності може виступати інтегральний показник конкурентоздатності (Qкон ), який визначається груповими показниками конкурентоздатності виробів:

Qкон = Qнп × Qт / Qе ,

де Qнп – груповий показник за нормативними параметрами (жорсткими);

Qт – порівняльна конкурентоздатність виробу за його технічним рівнем (див. табл. 2.3.1);

Qе – груповий показник конкурентоздатності за економічними показниками.

Груповий показник за нормативними (жорсткими) параметрами може приймати два значення:

нуль, якщо виріб не відповідає обов’язковим для даного ринку нормам та стандартам (частота та напруга живлення, рівні вхідних та вихідних сигналів та ін.);

одиниця, якщо виріб відповідає вищезазначеним нормам.

В нашому випадку Qнп = 1.

Конкурентоздатність за економічними показниками Qе визначається відношенням ціни споживача виробу, що проектується, до ціни споживача виробу-аналога:

Qе = Цспож.пр / Цспож.ан = 19778,65 / 19934,4 = 0,984

Інтегральний показник конкурентоздатності дорівнює: Qкон = 1 ×1,688 / 0,984 = 1,715

Так як 1,715> 1, то виріб, що проектується, цілком конкурентоздатний.

8.7 Аналіз стратегії маркетингу

Стратегія маркетингу, є одним з основних розділів техніко-економічного обгрунтування виробу, що розробляється. Зміст цього розділу дозволяє визначити основні напрями діяльності при збуті товару.

8.7.1 Схема розповсюдження виробів

Даний виріб буде постачатися безпосередньо споживачам, що припускає стимулювання продажу і організацію реклами.

Стимулювання продажу виконується за допомогою таких методів:

гарантійне обслуговування на протязі двох років;

безкоштовні консультації з експлуатації виробу;

безкоштовні пуско-налагоджувальні роботи.

8.7.2 Організація реклами

Даний продукт розроблявся на замовлення окремої організації для власних потреб і первинно не призначався для масового виробництва, але після опробування його в дії була висунута пропозиція по розповсюдженню його іншим споживачам.

Враховуючи специфіку продукту, що розробляється, реклама повинназдійснюватись серед потенційних споживачів продукту. Їм демонструються основні можливості та характеристики цього виробу.

Реклама продукту буде розповсюджуватисячерез електронну пошту, власну Інтернет-сторінку підприємства та шляхом публікації у спеціальних інформаційних виданнях (каталогах).

Рекламна компанія буде тривати 3 роки.

Розсилка електронних листів потенційним споживачам (приблизно 30) буде здійснюватись раз на квартал. Вартість 1 Мб переданої інформації – 0,5 грн. Об’єм листа – 750 Кб.

Витрати на електронну рекламу за весь період складуть – 135 грн.

Вартість розміщення однієї сторінки у каталозі “ProSoft” – 500 грн. Каталог виходить два рази на рік.

Витрати на рекламу в каталогах за весь період складуть – 3000 грн.

Кошти, витрачені на рекламну компанію за весь період складуть – 3135 грн.

8.7.3 Прогнозування об’єму продаж

Так як підприємство зацікавлено у стабільності випуску продукту, то треба спрогнозувати мінімальний (Nmin ), максимальний (Nmax ) та найбільш імовірний (Nнайб.ім ) об’єм продаж.

Припустимо, що:

Nmin = 100 шт.

Nmax = 140 шт.

Nнайб.ім = 120 шт.

Очікуване значення об’єму продаж можна розрахувати за формулою:

Nоч = (Nmax + 4 × Nнайб.ім + Nmin ) / 6

Nоч = (140 + 4 × 120 + 100) / 6 = 120 (шт)

Дисперсія об’єму продаж розраховується за формулою:

D = (Nmax – Nmin ) / 6

D = (140 – 100) / 6 = 6,66

Очікуваний об’єм продаж може бути реалізований на протязі 2-3 років.

8.8 Визначення беззбитковості виробництва

Для визначення беззбитковості виробництва слід використовувати формулу:

Nбез = С / (Ц – А),

де С – загальна сума умовно-постійних витрат, пов’язаних з маркетинговими дослідженнями, розробкою та освоєнням виробу, що проектується, та реклами, грн. (див. п. 3);

Ц – відпускна (договірна) ціна виробу, грн.;

А – сума умовно-змінних витрат у собівартості виробу, що проектується, грн. (сума п.1+…+п.10 в калькуляції собівартості виробу).

Розрахуємо точку беззбитковості:

Nбез = 6165,35 / (339,58 – 169,18) = 37,96 » 36,18 (шт.)

Тобто, треба продати 36 виробів і тільки після цього підприємство перестане бути збитковим і почне отримувати прибуток.

Виходячи з цього побудуємо графік беззбитковості, який наведений на рис. 8.1.


Рисунок 8.1 – Графік беззбитковості.

Таблиця 8.15 – Аналіз впливу різних варіантів цін на досягнення беззбитковості виробництва.

Ціна, грн Відсоток рентабельності Сума на покриття умовно-змінних витрат

Сума на покриття умовно-постійних витрат,

гр.1 – гр.3

Кількість виробів, необхідних для відшкодування всієї суми умовно-постійних витрат,

С / гр.4

250 20 50 200 31
350 30 105 245 26
450 40 180 270 23
339,58 50 163,79 163,79 36
250 40 100 150 42
350 30 105 245 26
450 20 90 360 18

Таблиця 8.16 – Залежність прибутку від ціни та можливого збуту.

Ціна одиниці, грн Прибуток на виріб, грн Можливий збут, шт Кількість виробів при якій досягається беззбитковість, шт

Кількість виробів, які будуть приносити прибуток,

гр.3 – гр.4

Сума прибутку, грн

гр.2 ´ гр.5

250 70 140
300 84 130
339,58 95,28 120 36 120 11433,3
350 98 115
400 112 110
450 126 100

Висновки

У даній роботі був розроблений прилад прийому метеорологічних даних, який є складовою частиною метеорологічного комплексу.

Технічні рішення, що були запропоновані при розробці, повністю задовільняють вимогам, які висувалися до приладу прийому інформації та метеокомплексу вцілому.

Були розроблені та апаратно реалізовані протоколи обміну даними між окремими модулями метеорологічного комплексу. Запропоноване конструкторське виконання приладу дозволяє твердити про його зручність та надійність у використанні.

Проведений техніко-економічний аналіз розробки дозволяє зробити висновок про доцільність розробки і продажу продукту “прилад прийому та обробки метеорологічних даних” на ринку. Розрахована ємність ринку та передбачуваний обсяг продажів носять умовний характер і можуть бути розширені за рахунок модернізації і просування товару на нові сегменти ринку.


Перелік посилань

1. www.gaw.ru.

2. www.xemics.com.

3. www.microhip.ru.

4. www.adn.com.

5. www.proma.narod.ru.

6. www.pic.com.

7. www.ixbt.com

8. Скороделов В.В. «Особенности проектирования МКУ и архитектура микро-контроллеров PIC» - Харків, 1999. – 234с.

9. ДСТУ 3008-95 . Документация. Отчеты в сфере науки и техники. Структура и правила оформления. К. “Госстандарт Украины”.

10. Яземський О.С. “Основи економічного аналізу” К.: 1998


МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “обчислювальна техніка та програмування”

Затверджую :

Завідуючий кафедрою “ОТП”

______________ xxxxxxx.

“___”________________ 2005р

Прилад прийому та обробки метеорологічних даних

Пояснювальна записка

Лист затвердження

XXXXXX 99092-00-81 ЛЗ

Консультанти:

Науково-дослудна робота:

___________доц. xxx.Ф

Економічна частина:

___________доц. xxxxxxxx.

Охорона праці і навколишнього середовища

___________ст.викл. xxxxxx.

Розробники:

Керівник проекту:

проф. xxxxx.

“___”_________2005р

Виконавець:

xxxx.

“___”_________2005р

Харків 2005


ЗАТВЕРДЖЕНО

xxxxx 99092-00-81 ЛЗ

Прилад прийому та обробки метеорологічних даних

Пояснювальна записка

xxxxx 99092-00-81

Листів 28

Харків 2005


Зміст

Вступ

1 Призначення та галузь застосування

2 Постановка задачі

2.1 Вимоги до програмного виробу

2.2 Вибір програмних засобів для реалізації задачі

3 Об’єктно-орієнтований підхід при вирішенні задачі

3.1 Структура програми

3.2 Класи з полями та інкапсульованими методами

4 Організація обміну даними по розробленому протоколу

4.1 Структура вхідного пакету даних

4.2 Прийом даних

4.3 Структура вихідного пакету даних

4.4 Передача даних

5 Додаткові можливості програми

5.1 Збереження отриманих даних

6 Аналіз прийнятих даних

7 Охорона праці та навколишнього середовища

7.2 Аналіз небезпечних і шкідливих факторів

7.1 Характеристика виробничого середовища приміщення

7.3 Виробнича санітарія

7.4 Забезпечення виробничого освітлення

7.5 Шум

7.6 Вiпромiнювання вiд екрана

7.7 Техніка безпеки

7.8 Пожежна безпека

Висновки

Список літератури


Вступ

Сучасний розвиток комп’ютерної техніки, технологій та методів програмування передбачає появлення нових програмних комплексів, що здатні вирішувати майже будь-яку задачу. При цьому, якщо розглядати увесь обсяг програмного забезпечення, що випускається, написання спеціалізованого програмного забезпечення буде займати перше місце.

При цьому перед початком написання такої програми, в умовах наявності дуже великої кількості засобів, пакетів, мов програмування буде гостро стояти проблема вибору мови програмування, що здатна вирішувати саме конкретну спеціалізовану задачу.

Обрана мова програмування java 1.4 вирішує відразу декілька поставлених задач: можливість зручно зберігати дані, що отримані від приладу прийому метеорологічних данних для подальшого їх використання; надає користувачеві можливість зручного перегляду даних, що були отримані; дозволяє зручно керувати метеорологічним комплексом, та бути інформованим про помилки, що можуть бути викликані під час роботи; до токож java містить потужний графічний інтерфейс для відображення інформації у реальному відрізку часу. Усі ці переваги надають можливість подальшого розширення прикладної програми для її вдосконалення та надання нових можливостей. Також стандартна бібліотека javax.comm містить всі необхідні засоби для роботи в усіх режимах lpt-порту, через який відбувається надходження даних, тобто завантаження інших програмних засобів для вирішення задачі роботи з метеорологічним комплексом не знадобиться.

Значною перевагою данної програми є те, що вона є платформо-незалежною, переносимою програмою, тобто дана програма працюватиме як з операційною системою Windows, так, скажімо й з Unix.


1. Призначення та галузь застосування

Дана програма є спеціалізованим програмним виробом, що входить до складу метеорологічного комплексу.

Призначення програми – надання користувачеві можливості керування метеорологічним комплексом; отримання та оперування результатами інформації, що надходить від модулів збору метеорологічної інформації.

Програма призначена для встановлення на переносному персональному комп’ютері (ноутбуці). Також можлива інсталяція й на стаціонарній (непереносній) робочій станції.

Оскьліки даний програмний продукт є спеціалізованим програмним виробом, його призначенням є надання зручного інтерфейсу між користувачем (оператором) та модулями збору інформації, що входять до складу метеорологічного комплексу.


2. Постановка задачі

2.1 Вимоги до програмного виробу

Постановка задачі вимогала виконання кінцевим програмним продуктом наступних вимог:

приймання даних, що надходять з lpt-порту ПК;

аналіз даних які були щойно прийняті;

обчислення метеопоказників, на основі даних, отриманих від приладу збору метеорологічних даних;

надання зручної індикації оброблених даних;

можливість роботи з метеокомплексом у різних режимах;

можливість підключення нових модулів збору інформації під час роботи програми;

зручне збереження оброблених даних;

імітацію входних сигналів від модуля збору інформації;

можливість підстройки різних параметрів прийому під час роботи програми

можливість „поширення” програми – додання нових функціональ-них можливостей без зміни структури програми.

2.2 Вибір програмних засобів для реалізації задачі

Зручність роботи з прикладною програмою користувача завжди зумовлює собою зручний графічний інтерфейс програми. Тому для рішення цієї проблеми потрібно використовувати мову високого рівня з об’єктно-орієнтованим підходом, бо це відразу вирішує іншу проблему – проблему легкого масштабування програмного виробу. До того ж обраний програмний засіб мусить мати досить потужний математичний апарат для можливості обчислення та аналізу певних вхідних даних. Також слід врахувувати й вимогу до вводу вхідних даних для програми через lpt-порт, звідси виходить задача можливості керування портами вводу/виводу.

Для рішення всіх вищезгаданих задач можна запропонувати мову програмування java, яка до того ж є платформонезалежною, тобто дана програма працюватиме як з операційною системою Windows, так, скажімо й з Unix.

Серед інтегрованих сред розробки (Integrated Development Environment) можна виділити програмний продукт Borland JBuilder X, який є на сьогодняшній день є одним з найпотужніших.


3. Об’єктно-орієнтований підхід при вирішенні задачі

Оскільки обрана мова програмування, як і більшість сучасних мов програмування високого рівня є об’єктно-орієнтованою, для написання програми будемо використовувати об’єктно-орієнтований підхід. Де головними питаннями є не „що робити” та „як робити”, а кто має виконувати ту чи іншу функції.

3.1 Структура програми

Як і будь яка інша java-програма дана програма складається з класів, кожен з яких розміщується у конкретному пакеті.

За своєю функціональністю класи програми поділені на три пакети:

ui – містить класи для графічного відображення (user interface);

util – допоміжні та утилітарні класи для роботи програми;

obj – класи-структури даних для логічного та зручного оперування даними.

3.2 Класи з полями та інкапсульованими методами

Розглянемо фізичні дані, з якими ми будемо оперувати.

По-перше, інформація, що надходить. Її можна інкапсулювати у єдиний клас – WeatherData з наступними полями:

номер модуля (moduleNumber);

температура (temperature);

атмосферний тиск(preasure);

сила вітру(windPower);

напрямок вітру(windDirection);

контрольна сума(src);

Також інкапсулюємо у класі методи для оперування з цими полями.

По-друге, фізична модель модуля збору інформації може бути уособлена в класі Module. З наступними молями:

номер модуля (moduleNumber);

опис модуля (moduleDescription);

інформація про погоду, що передається (weatherData).

До того ж необхідні методи, що характеризуватимуть роботу модуля:

sendModuleNumber() – посилає поточному модулю запит на відповідь – інформацію від погодних датчиків.

createWeatherData(byte [] recivedBytes) – утворення об’єкта класу WeatherData; параметри byte [] recivedBytes – набір байтів, який є відповіддю поточного модуля на запит від керуючої програми.

Також для роботи будь-якої програми необхіден набір утилітарних класів, які будуть допомідними під час виконання програми (пакет util).

Розглянемо їх:

Transmitter – клас, що відповідає за передачу даних. Він характеризується наступними полями:

OutputStream out – вихідний поток, куди вестиметься передача;

int PACKAGE_SIZE – розмір вихідного буфера для передачі даних.

sendBytes (byte [] byte01) – метод для відправки пакету байтів до вихідного потока, параметри byte [] byte01 – набір вихідних байтів для передачі.

Receiver – клас, що відповідає за прийом даних. Він характеризується наступними полями:

InputStream out – вхідний поток, звідки вестиметься передача;

int PACKAGE_SIZE – розмір вхідного буфера для прийому даних.

byte [] readData() – метод для прийому пакету байтів до вхідного потока.

Слід також зазначити, що клас Receiver реалізує інтерфейс Runnable, це означає, цо від призначений для щапуску у окремому потоці.

Класи Transmitter та Receiver побудовані по шаблону Singletone, це означає, що що присутній лише єдиний екземпляр класу. І дійсно: непотрібно тримати у системі два класи для передачі або прийому даних, аби уникнути помилок при роботі програми.

Наприклад для реалізації цього шаблону застосовується:

private Receiver() { }

public static Receiver getInstanse()

{if (receiver != null) return receiver;

receiver = new Receiver();

return receiver;}

Скільки б раз ми не викликали метод getInstanse(), ми працюватимемо з одним й тим самим екземпляром класу.

Розробка інших утилітарних класів. При роботі програми, що проектується можливі виникнення двох умовних типів помилок:

перша група – некритична, тобто помилка, що не заважатиме нормальному ходу виконання програми. Очевидно дії при її виникнені мають носити суто інформаційний характер для користувача; наприклад «помилка рпи передачі даних».

друга група – критичні помилки, при виникненні яких подальша робота програми є неможлиивою, та необхідно робити терміновий вихід з програми; наприклад «lpt-порт не знайдено», або «помилка при спробі відкрити порт на запис».

Для зручної обробки цих помилок у класі BadEvent передбачено два статичних методи:

public static void throwCriticalEvent(Exception ex, Component sourse, String message)

public static void throwNonCriticalEvent(Exception ex, Component sourse, String message)

параметри: Exception ex – клас помилки, Component sourse – джерело помилки, String message – повідомлення про помилку.

У класі Helper інкапсульовані допоміжні методи для роботи програми, а також методі, призначені для роботи програми у тестовому режимі.

public static byte[] integerToBytes(int number) – перевід числа до послідовності бітів, придатних для передачі до lpt-порту при даному протоколі передачі; параметри int number – число для передачі.

public static byte [] testStringIntoBytes(int moduleNumber) – перевід тестової строки, взятої з файлу для імітації сигналів, отриманої від модуля.

Також він містить константи для підстройки програми під час роботи.


4. Організація обміну даними по розробленому протоколу

4.1 Структура пакету даних

Розробимо структуру вхідного пакету даних, згідно з набором даних, що будуть надходити від приладу збору метеорологічних даних.

Розглянемо набір даних, з яким будемо оперувати

температура;

атмосферний тиск;

сила вітру;

напрямок вітру.

Формат даних про температуту (рис. 4.1.1):

хххх хххх хххх хххх


Рис 4.1.1. Формат даних про температуру, що надходять.

Формат даних про атмосферний тиск – 16 біт, що відображують абсолютне значення атмосферного тиска у мм. рт. ст. Інформацію про силу та напрямок вітру отримуємо у вигляді послідовності трьох шістнадцятибітних чисел, за допомогою яких будуть обчислені ці показники (рис 4.1.2):

хххх хххх хххх хххх - показання від датчику вітру (1)

хххх хххх хххх хххх - показання від датчику вітру (2)

хххх хххх хххх хххх - показання від датчику вітру (3)

Рис. 4.1.2. Інформація від датчику сили та напрямку вітру.


Також включимо до пакету даних номер модуля, від якого були отримані дані та передана контрольна сума, завдяки чому можемо перевірити відсутність помилок під час передачі даних, обчисливши власну контрольну суму від усіх погодних показників (рис 4.1.3).

хххх хххх хххх хххх - температура

хххх хххх хххх хххх - атм. тиск

хххх хххх хххх хххх - показання від датчику вітру (1)

хххх хххх хххх хххх - показання від датчику вітру (2)

хххх хххх хххх хххх - показання від датчику вітру (3)

хххх хххх хххх хххх - обчислена контрольна сума

Рис 4.1.3. Обчислення контрольної суми

Тобто контрольна сума обчислюється прямим сумуванням всіх показників за модулем «2», та порівняється є контрольною сумою, яка щойно була передана.

Також при організації обміну даними слід передбачити наявність бітової послідовності, що слугуватиме сигналом для початку аналізу бітової послідовності, яка надходить від зовнішнього пристрою, та формування інформаційного пакету. Для цього додамо до початку вхідної бітової послідовності (пакету даних) комбінацію з восьми логічних одиниць – „стартову” послідовність біт.

Тепер можемо представити структуру пакету, яка являє собою послідовність біт (4.1.4):

СП код модуля температура атм. тиск дані про вітер контр. сума