Главная      Учебники - Разные     Лекции (разные) - часть 32

 

Поиск            

 

Взаимосвязь языков C и ассемблера

 

             

Взаимосвязь языков C и ассемблера

Раздел 1: Регистры и параметры


1.1 Использование регистров


В создаваемых ассемблерных программах можно использовать все регистры процессора. Но чтобы предотвратить путаницу с функциями С и С++, необходимо восстанавливать bp, cs, sp и ss, которые они имели до запуска созданной подпрограммы. Тогда можно быть совершенно уверенным, что обращение к другим функциям не изменит эти регистры. Также нельзя забывать, что С использует регистры si и di для регистровых переменных, поэтому при использовании встроенного ассемблера замедляется общая работа программы.

К регистрам ax, bx, cx, dx и es можно обращаться свободно и не нужно резервировать их значения до окончания подпрограммы. Эта свобода касается и других функций, поэтому надо помнить, что эти регистры изменяться, если вызываются функции С и С++ из ассемблерных подпрограмм.


1.2 Ассемблерные операторы Inline


Ассемблерные операторы inline начинаются словом asm, за которым следует инструкция и ее операнды. Например, чтобы синхронизировать программу с внешним сигналом прерывания, можно написать:

/* ожидание прерывания*/

asm sti

asm hlt

printf(“Прерывание получено\n”)

Когда ранние версии Turbo C компилируют программу со встроенными командами asm, компилятор сперва создает ассемблерный текст для всей программы, вставляя в текст наши ассемблерные инструкции вместе с откомпилированным кодом для остальных операторов С. Затем компилятор вызывает Turbo Assembler и Linker (компоновщик), чтобы провести ассемблирование и подключить программу к конечному файлу кода. Более поздние версии Turbo и Borland C++ могут компилировать операторы asm без вызова TASM. Полный синтаксис asm:

asm[метка] мнемоника/директива операнды [;] [/*С комментарий*/]

Точки с запятыми в конце строк asm и комментарии С, расположенные между /*и*/ удаляются из текста перед ассемблированием, поэтому их можно опускать в тексте программы.


1.3 Размещение данных и операторов в тексте программы


Каждая строка текста программы С и С++ находится либо внутри, либо снаружи функции, и операторы asm могут вставляться как в одном, так и в другом месте. Конкретное положение оператора asm влияет на то, куда ассемблируется код или директива. Если оператор asm появляется снаружи функции, то он ассемблируется в сегмент данных программы, если внутри функции - в кодовый сегмент. Обычно, чтобы создать переменные, операторы asm вставляются снаружи функций; для создания кода их следует вставлять внутрь функций. Например:

asm count db ?

int main()

{

asm shl [count], 1/*умножение count на 4*/

asm shl [count], 1

return 0;

}

Переменная count объявляется в сегменте данных программы (относительно ds). Операторы внутри функции main умножают count на 4, используя вместо mul быстрые инструкции сдвига shl. Если объявлять переменные внутри функции, данные ассемблируются в кодовый сегмент, требуя особого обхождения:

int main()

{

asm jmp OverThere

asm count db ?

OverThere:

asm shl [count], 1 /* умножение count на 4*/

asm shl [count], 1

return 0;

}

Поскольку теперь переменная count находится в кодовом сегменте, требуется инструкция jmp, чтобы избежать случайного восприятия значения count в качестве машинного кода и его исполнения.


7



Раздел 2: Особенности данных


2.1 Разделение данных


Inline операторы asm имеют свободный доступ к переменным и структурам С и C++ - одно из самых привлекательных преимуществ метода inline по сравнению с подходом посредством внешних модулей. Самое интересное в типах данных ассемблера и С++, что dq может использоваться для создания инициализированных переменных двойной длины с плавающей точкой в языке ассемблера, но в Turbo Assembler отсутствуют директивы для непосредственного создания переменных с плавающей точкой.

В операторах asm можно ссылаться на переменные типов С++. Например:

unsigned char initial

initial = 'T'

asm mov dl, [initial] /*Загрузка символа в dl*/

asm mov ah, 2 /* Пересылка символа в ДОС */

asm int 21h /* Стандартная выходная функция */

Беззнаковая символьная переменная initial загружается оператором asm в dl. Так как и dl, и беззнаковые символьные данные имеют длину один байт, нет необходимости в ссылке использовать определитель Byte, хотя его применение и не будет ошибкой:

asm mov dl, [Byte ptr initial]


2.2 Объявление ассемблерных данных


Можно объявить переменные для использования только ассемблерными операторами. Например, чтобы создать 16-битовое слово с именем TwoBytes и загрузить значение переменной в сх, можно написать:

asm TwoBytes db 1, 2

int main()

{

asm mov cx, [Word ptr TwoBytes]

return 0

}

Переменная TwoBytes объявляется в сегменте данных программы (снаружи функции), с использованием директивы db, чтобы хранить в памяти 2 байта (1 и 2). Оператор ассемблера затем загружает TwoBytes в сх. Определитель Wordptr необходим для ссылки на TwoBytes как на 16-битовое слово.

Поскольку TwoBytes объявляется в операторе asm, на эту переменную нельзя ссылаться в тексте программы С или C++. Поэтому, если только не требуются отдельные переменные для ассемблерных инструкций, следует объявлять их обычным образом и ссылаться на них из ассемблерного модуля.


2.3 Разделение кода


Ассемблерные операторы inline могут вызывать функции С и C++, а операторы С и C++ обращаться к функциям, написанным полностью на ассемблере. Вся эта взаимосвязь будет хорошо рассмотрена в данном курсовом проекте.

8



Раздел 3: Вызов ассемблерных функций из С


3.1 Символы подчеркивания


Как показывает практика, все символы PUBLIC и EXTERN должны начинаться символами подчеркивания. Это необходимо делать только в ассемблерном модуле (но не в исходной про грамме С или C++), поскольку компилятор добавляет подчеркивание ко всем глобальным символам, если только не используется опция -u для компиляции программ. (Не стоит применять эту опцию, если только не надо также перекомпилировать всю используемую при выполнении С библиотеку, в которой предполагается, что все глобальные символы начинаются символом подчеркивания.) Если во время компоновки выходит сообщение об ошибке "undefined symbol" (неопределенный символ), то причиной может оказаться отсутствие подчеркивания в ассемблерном модуле.


3.2 Использование дальних данных


Если объявляются переменные в дальнем сегменте данных после ключевого слова FARDATA, то необходимо подготовить сегментный регистр к размещению переменных в памяти. Прежде всего, вслед за директивой FARDATA необходимо объявить данные:

FARDATA

_OuterLimits dw ?

Затем, в кодовом сегменте, следует перед использованием переменной подготовить сегментный регистр. Одним из возможных подходов является использование оператора SEG для загрузки адреса дальнего сегмента данных:

mov ax, SEG_OuterLimits;Адресует дальний сегмент ;данных

mov es, ах ;посредством es

mov [es:_OuterLimits], dx ;Резервируется dx для пере ;менной

Можно также использовать заранее определенный символ @fardata:

mov ах, @fardata

mov es, ах

mov [es:_OuterLimits], dx


3.3 Вызов ассемблерных функций из С


Чаще всего asm код оформляют в виде отдельных asm функций, которые потом соединяют на этапе загрузки. Ассемблерный код должен поддерживать стиль языка С для вызова функций, которые включают передачу параметров, возврат значений и правила сохранения регистров, которые требуются для С++ функций.

Компилятор и загрузчик должны работать совместно для обеспечения вызовов между модулями. Процесс называется исключением или ломкой имен. Предусматривает наличие информации о типе аргумента. Ломка имени изменяет имя функции, показывая, что за аргумент принимает функция. Когда мы конструируем на языке С++, то ломка имен происходит автоматически.

Когда же пишется модуль на asm, который должен быть подсоединен к модулю на языке С++, необходимо позаботиться о том, чтобы asm модуль содержал ломку имен (знак подчеркивания). Это можно сделать путем написания фиктивной функции на С++ и компилировать его в asm код. И ассемблерный файл, который будет сгенерирован компилятором С++, будет содержать ломку имен, которые мы можем потом использовать при написании asm функции:

@ имя класса @ исходное имя функции $g описание типов

, где

@ - связующий символ

$ - конец исходного имени функции

g - начало описания типов параметров

Пример:

void test() {}

void test(int...) {}

void test(int, int) {}

void test(float, double) {}

Что будет в ассемблере?

1. @ test $ gv proc near

push bp

mov bp, sp

pop bp

ret

@ test $ gv endp


2. @ test $ gi proc near

.............

@ test $ gi endp


3. @ test $ gii proc near

............

@ test $ gii endp


4. @ test $ gfd proc near

............

@ test $ gfd endp


BC++ разрешает использование неискаженных имен asm функций, определяя стандартные имена С функций в С программах. Для этого в программе определяется внешний С блок:

extern “C”{

int add(int *a, int b);

}

________________

public _add

_add proc ...и т.д.


Определение или декларирование asm функции во внешнем С блоке избавляет программиста от необходимости определения действительного имени ассемблерной функции и повышает наглядность.

С++ передает параметры функции через стек. Перед тем как вызвать функцию С++ помещает параметры в стек, начиная с последнего.


3.4 Ассемблирование и компоновка внешних модулей


Существует несколько методов ассемблирования, компиляции и компоновки отдельных модулей (и аналогичных многофайловых программ) для создания конечной .ЕХЕ программы. Проще всего предоставить проделать все это Turbo С:

tcc cfillstr cfill.asm/*первый модуль - cfillstr.c*/

Если используется Borland C++, надо ввести следующую команду (заменить bсс на tсс для Turbo C++):

bcc cfillstr.с cfill.asm

В любом случае команда сперва компилирует CFILLSTR.C в CFILLSTR.OBJ. Затем, распознав расширение имени файла .ASM как имя ассемблерного модуля, компилятор вызывает Turbo Assembler, чтобы ассемблировать CFILL.ASM в CFILL.OBJ. И наконец, компилятор вызывает Turbo Linker для объединения модулей с объектными кодами в CFILLSTR.EXE. Если компиляции и ассемблированию подлежит небольшое количество модулей, этот одношаговый метод наиболее прост для использования.

Если у имеется большое количество модулей, можно сэкономить время, осуществляя ассемблирование и компоновку раздельно. Первым шагом следует ассемблировать все .ASM файлы. Поскольку пример flllsrting обладает только одним таким файлом, все можно проделать с помощью единственной команды

tasm /ml cfill.asm

Опция /ml включает различение строчных и прописных символов, чтобы к примеру слова UpAndDown и upanddown рассматривались как различные - как это принято в программах С и C++. (Turbo Assembler обычно не обращает внимания на то, в каком регистре набраны символы, поэтому опция /ml необходима во избежание ошибок при компоновке.) После ассемблирования всех внешних модулей откомпилировать основную программу. Опять же, поскольку в этом примере имеется только один файл .С, для этого необходима только одна команда

tcc -с cfillstr.c

Если используется Borland C++, надо применить следующую команду (заменить bсс на tсс для Turbo C++):

bсс -с cfillstr.c

Опция -с означает "только компилировать", вызывая создание CFILLSTR.OBJ, но не компоновку программы в законченный кодовый файл. Для включения всех модулей необходимо выполнить этот шаг самим, вызывая Turbo Linker для объединения файлов с объектным кодом с соответствующими библиотечными подпрограммами для создания CFILLSTR.EXE. Существует два метода компоновки. Сначала рассмотрим более сложный метод:

t1ink с:\tc\lib\c0s cfillstr cfill, cfillstr,, с:\tc\lib\cs

При использовании Borland C++4 можно применить следующую команду:

tlink с:\bc4\lib\c0s cfillstr cfill, cfillstr,, с:\bc4\lib\cs

Первый член после tlink специфицирует файл объектного кода в директории \LIB для соответствующей модели памяти, в данном случае - COS.OBJ. Второй и третий члены перечисляют подлежащие компоновке файлы с объектным кодом .OBJ - они могут быть перечислены в любом порядке. Запятая отделяет список файлов .OBJ от имени, которое должно использоваться для конечного файла, в данном случае - CFILLSTR-EXE. Две запятые, следующие за этим, показывают место необязательного файла карты (*.map), не создающегося в данном примере. И наконец, специфицируется рабочая библиотека - также в каталоге \LIB.

Имена файла с объектным кодом COS и библиотечным файлом CS должны соответствовать модели памяти, используемой программой.

Упрощенный (но не очень быстрый) метод компоновки отдельных модулей состоит в использовании компилятора в качестве "первой части" Turbo Linker. Другими словами, вставляя различные команды компиляции, можно пропустить компиляцию и перейти прямо