Главная      Учебники - Разные     Лекции (разные) - часть 31

 

Поиск            

 

Прогнозирование свойств индивидуальных веществ: 4-Метил-4-этилгептан, орто-Терфенил, Диизопропиловый эфир, Изобутилацетат

 

             

Прогнозирование свойств индивидуальных веществ: 4-Метил-4-этилгептан, орто-Терфенил, Диизопропиловый эфир, Изобутилацетат

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального

образования.

Самарский государственный технический университет.

Кафедра: «Технология органического и нефтехимического синтеза»

Курсовой проект по дисциплине:

«Расчеты и прогнозирование свойств органических соединений»

Выполнил:

Руководитель: доцент, к. х. н.

Самара

2008 г.


Задание 40А

на курсовую работу по дисциплине "Расчеты и прогнозирование свойств органических соединений"

1) Для четырех соединений, приведенных в таблице, вычислить , , методом Бенсона по атомам с учетом первого окружения.

2) Для первого соединения рассчитать и .

3) Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить критическую (жидкость-пар) температуру, критическое давление, критический объем, ацентрический фактор.

4) Для первого соединения рассчитать , , . Определить фазовое состояние компонента.

5) Для первого соединения рассчитать плотность вещества при температуре 730 К и давлении 100 бар. Определить фазовое состояние компонента.

6) Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить плотность насыщенной жидкости. Привести графические зависимости "плотность-температура" для области сосуществования жидкой и паровой фаз. Выполнить их анализ.

7) Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить давление насыщенного пара. Привести графические Р-Т зависимости для области сосуществования жидкой и паровой фаз. Выполнить их проверку и анализ.

8) Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить и . Привести графические зависимости указанных энтальпий испарения от температуры для области сосуществования жидкой и паровой фаз. Выполнить их анализ.

9) Для первого соединения рассчитать рекомендованными методами вязкость вещества при температуре 730 К и низком давлении.

10) Для первого соединения рассчитать рекомендованными методами вязкость вещества при температуре 730 К и давлении 100 атм.

11) Для первого соединения рассчитать рекомендованными методами теплопроводность вещества при температуре 730 К и низком давлении.

12) Для первого соединения рассчитать рекомендованными методами теплопроводность вещества при температуре 730 К и давлении 100 атм.


Задание №1

Для четырех соединений, приведенных в таблице, рассчитать и методом Бенсона с учетом первого окружения.

4-Метил-4-этилгептан

Из таблицы Бенсона возьмем парциальные вклады для и , вводим набор поправок:

Поправки на гош взаимодействие

Вводим 4 поправки «алкил-алкил»

Поправка на симметрию:

,

Таблица 1

Кол-во вкладов

Вклад

Вклад в энтальпию, кДж/моль

Вклад

Вклад в энтропию Дж/К*моль

Вклад

Вклад в т/емкость Дж/К*моль

СН3 -(С)

4

-42.19

-168.76

127.29

509.16

25.910

103.64

С-(4С)

1

2.09

2.09

-146.92

-146.92

18.29

18.29

СН2 -(2С)

5

-20.64

-103.2

39.43

197.15

23.02

115.1

10

-269.87

559.39

237.03

гош-попр.

4

3.35

13.4

поправка на симм.

σнар =

2

σвнутр =

81

-42,298

смешение

N=

0

0

ΔHo

-256.47

ΔSo

517,092

ΔСpo

237.030

Для данного вещества рассчитаем энтальпию и энтропию методом Татевского по связям

Кол-во вкладов

Парц. вклад, кДж/моль

Вклад в энтальпиюкДж/моль

Парц. вклад, Дж/К*моль

Вклад в энтропию Дж/К*моль

12 )1

3

-52,581

-157,74

147,74

443,22

14 )1

1

-41,286

-41,286

92,46

92,46

24 )1

3

-5,087

-15,261

-22,89

-68,67

22 )1

2

-20,628

-41,256

39,03

78,06

9

-255,546

545,07

поправка на симм.

σнар =

2

σвнутр =

81

-42,298

ΔHo

-255,546

ΔSo

502,772

орто-Терфенил

Из таблицы Бенсона возьмем парциальные вклады для и , вводим набор поправок.

Поправка на симметрию:


Таблица 3

Кол-во вкла-дов

Вклад

Вклад в энтальпию, кДж/моль

Вклад

Вклад в энтропию Дж/К*моль

Вклад

Вклад в т/емкость Дж/К*моль

Cb -Cb

4

20,76

83,04

-36,17

-144,68

13,94

55,76

Cb -H

14

13,81

193,34

48,26

675,64

17,16

240,24

18

276,38

530,96

296

Поправка орто- (полярный/

полярный)

10,05

поправка на симм.

σнар =

1

σвнутр =

4

-11,526

ΔHo

286,43

ΔSo

519,434

ΔСpo

296,0

Диизопропиловый эфир

Из таблицы Бенсона возьмем парциальные вклады для и , вводим набор поправок.

Поправки на гош – взаимодействие через кислород простого эфира.

Поправка на внутреннюю симметрию:


Таблица 3

Кол-во вкла-дов

Вклад

Вклад в энтальпию, кДж/моль

Вклад

Вклад в энтропию Дж/К*моль

Вклад

Вклад в т/емкость Дж/К*моль

СН3 -(С)

4

-42,19

-168,76

127,29

509,16

25,91

103,64

O-(2C)

1

-97,11

-97,11

36,33

36,33

14,23

14,23

СН-(2С,O)

2

-30,14

-60,28

-46,04

-92,08

20,09

40,18

7

-326,15

453,41

158,05

Гош – через

кислород простого эфира

1

2,09

2,09

поправка на симм.

σнар =

1

σвнутр =

81

-36,535

ΔHo

-324,06

ΔSo

416,875

ΔСpo

158,05

Изобутилацетат

Из таблицы Бенсона возьмем парциальные вклады для и , вводим набор поправок.

Поправки на гош - взаимодействие:

Введем 1 поправку «алкил-алкил».

Поправка на симметрию:

Таблица 4

Кол-во вкла-дов

Вклад

Вклад в энтальпию, кДж/моль

Вклад

Вклад в энтропию Дж/К*моль

Вклад

Вклад в т/емкость Дж/К*моль

СН3 -(С)

3

-42,19

-126,57

127,29

381,87

25,91

77,73

О-(С,С0)

1

-180,41

-180,41

35,12

35,12

11,64

11,64

СН-(3С)

1

-7,95

-7,95

-50,52

-50,52

19,00

19,00

СН2 -(С,О)

1

-33,91

-33,91

41,02

41,02

20,89

20,89

СО-(С,О)

1

-146,86

-146,86

20

20

24,98

24,98

7

-495,7

427,49

154,24

гош-поправка

1

3,35

3,35

поправка на симм.

σнар =

1

σвнутр =

27

-27,402

попр. на смешение

N=

0

0,000

ΔHo

-492,35

ΔSo

400,088

ΔСpo

154,240

Задание №2

Для первого соединения рассчитать и

4-Метил-4-этилгептан

Энтальпия.

где -энтальпия образования вещества при 730К; -энтальпия образования вещества при 298К; -средняя теплоемкость.

;

Для расчета из таблицы Бенсона выпишем парциальные вклады соответственно для 298К, 400К, 500К, 600К, 800К и путем интерполяции найдем для 730К., и для элементов составляющих соединение.

Таблица 5

Кол-во вкладов

Сpi , 298K,

Сpi , 400K,

Сpi , 500K,

Сpi , 600K,

Сpi , 730K,

Сpi , 800K,

СН3 -(С)

4

25.910

32.820

39.950

45.170

51.235

54.5

СН-(3С)

0

19.000

25.120

30.010

33.700

37.126

38.97

С-(4С)

1

18.29

25.66

30.81

33.99

35.758

36.71

СН2 -(2С)

5

23.02

29.09

34.53

39.14

43.820

46.34

10

237.030

302.390

363.260

410.370

459.796

С

10

8.644

11.929

14.627

16.862

18.820

19.874

Н2

11

28.836

29.179

29.259

29.321

29.511

29.614

403.636

440.259

468.119

491.151

512.824

Энтропия.

Для расчета из таблицы Бенсона выпишем парциальные вклады соответственно для 298К, 400К, 500К, 600К, 800К и путем интерполяции найдем для 730К.

Таблица 5

Кол-во вкладов

Сpi , 298K,

Сpi , 400K,

Сpi , 500K,

Сpi , 600K,

Сpi , 730K,

Сpi , 800K,

СН3 -(С)

4

25.910

32.820

39.950

45.170

51.235

54.5

СН-(3С)

0

19.000

25.120

30.010

33.700

37.126

38.97

С-(4С)

1

18.29

25.66

30.81

33.99

35.758

36.71

СН2 -(2С)

5

23.02

29.09

34.53

39.14

43.820

46.34

10

237.030

302.390

363.260

410.370

459.796


Задание №3

Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить (жидкость-пар) температуру, критическое давление, критический объем, ацентрический фактор.

Метод Лидерсена.

Критическую температуру находим по формуле:

где -критическая температура; -температура кипения (берем из таблицы данных); -сумма парциальных вкладов в критическую температуру.

Критическое давление находится по формуле:

где -критическое давление; -молярная масса вещества; -сумма парциальных вкладов в критическое давление.

Критический объем находим по формуле:

где -критический объем; -сумма парциальных вкладов в критический объем.

Ацентрический фактор рассчитывается по формуле:

;

где -ацентрический фактор; -критическое давление, выраженное в физических атмосферах; -приведенная нормальная температура кипения вещества;

-нормальная температура кипения вещества в градусах Кельвина;

-критическая температура в градусах Кельвина.

Для расчета, выбираем парциальные вклады для каждого вещества из таблицы составляющих для определения критических свойств по методу Лидерсена.

4-Метил-4-этилгептан

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

СН3 -(С)

4

0.08

0.908

220

СН2 -(2С)

5

0.1

1.135

275

С-(4С)

1

0

0.21

41

10

0.18

2.253

536

Критическая температура.

Критическое давление.

.

Критический объем.

Ацентрический фактор.

;

орто-Терфенил

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

-CН=(цикл)

14

0,154

2,156

518

>C=(цикл)

4

0,044

0,616

144

Сумма

18

0,198

2,772

662

Критическая температура.

Критическое давление.

Критический объем.

Ацентрический фактор.

.

Диизопропиловый эфир

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

3

4

0,08

0,908

220

CH

2

0,024

0,42

102

-O- (вне кольца)

1

0,021

0,16

20

Сумма

7

0,125

1,488

342

Критическая температура.

Критическое давление.

;

Критический объем.

Ацентрический фактор.

Изобутилацетат

Выпишем парциальные вклады для температуры, давления и объема:

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

3

3

0,06

0,681

165

CH2

1

0,02

0,227

55

CH

1

0,012

0,21

51

-CОО-

1

0,047

0,47

80

Сумма

6

0,139

1,588

351

Критическая температура.

Критическое давление.

Критический объем.

Ацентрический фактор.

.

Метод Джобака.

Критическую температуру находим по уравнению;

где -критическая температура; -температура кипения (берем из таблицы данных);

-количество структурных фрагментов в молекуле; -парциальный вклад в свойство.

Критическое давление находим по формуле:

где -критическое давление в барах; -общее количество атомов в молекуле; -количество структурных фрагментов; -парциальный вклад в свойство.

Критический объем находим по формуле:

где -критический объем в ; -количество структурных фрагментов; -парциальный вклад в свойство.

Для расчета, выбираем парциальные вклады в различные свойства для каждого вещества из таблицы составляющих для определения критических свойств по методу Джобака.

4-Метил-4-этилгептан

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

СН3 -

4

0.0564

-0.0048

260

-СН2 -

5

0.0945

0

280

>С<

1

0.0067

0.0043

27

10

0.1576

-0.0005

567

Критическая температура.

Критическое давление.

;

орто-Терфенил

Выпишем парциальные вклады для температуры, давления и объема:


Группа

кол-во

ΔT

ΔP

ΔV

-CН=(цикл)

14

0,1148

0,0154

,-CН=(цикл)

>C=(цикл)

4

0,0572

0,0032

>C=(цикл)

Сумма

18

0,172

0,0186

Сумма

Критическая температура.

Критическое давление.

;

Диизопропиловый эфир

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

3

4

0,0564

-0,0048

CH2

2

0,0328

0,004

O (2)

1

0,0168

0,0015

Сумма

7

0,106

0,0007

Критическая температура.

Критическое давление.

;

Изобутилацетат

Выпишем парциальные вклады для температуры, давления и объема:

Группа

кол-во

ΔT

ΔP

ΔV

3

3

0,0423

-0,0036

195

CH2

1

0,0168

0

56

CH

1

0,0164

0,002

41

,-CОО-

1

0,0481

0,0005

82

Сумма

6

0,1236

-0,0011

374

Критическая температура.

Критическое давление.

;

Задание №4

Для первого соединения рассчитать , и . Определить фазовое состояние компонента.

Энтальпия

4-Метил-4-этилгептан

Для расчета , и воспользуемся таблицами Ли-Кеслера и разложением Питцера.

где - энтальпия образования вещества в стандартном состоянии; -энтальпия образования вещества в заданных условиях; и -изотермические изменения энтальпии.

Находим приведенные температуру и давление:

по этим значениям с помощью таблицы Ли-Кеслера и разложения Питцера интерполяцией находим изотермическое изменение энтальпии.

Из правой части выражаем:

Энтропия

где энтропия вещества в стандартном состоянии; - энтропия вещества в заданных условиях; - ацентрический фактор.

; R=8,314Дж/моль*К

Находим приведенные температуру и давление:

по этим значениям с помощью таблицы Ли-Кесслера и разложения Питцера интерполяцией находим изотермическое изменение энтропии.

Из правой части выражаем:

Теплоемкость.

где - теплоемкость соединения при стандартных условиях; - теплоемкость соединения при заданных условиях; - ацентрический фактор.

; R=8,314Дж/моль*К

Находим приведенные температуру и давление:

по этим значениям с помощью таблицы Ли-Кесслера и разложения Питцера интерполяцией находим изотермическое изменение теплоемкости.

Дж/моль*К

Из правой части выражаем:

Задание №5

Для первого соединения рассчитать плотность вещества при температуре 730 К и давлении 100 бар. Определить фазовое состояние компонента.

Для определения плотности вещества воспользуемся методом прогнозирования плотности индивидуальных веществ с использованием коэффициента сжимаемости.

где -плотность вещества; М- молярная масса; V-объем.

Для данного вещества найдем коэффициент сжимаемости с использованием таблицы Ли-Кесслера по приведенным температуре и давлении.

Коэффициент сжимаемости находится по разложению Питцера:

где Z-коэффициент сжимаемости; -ацентрический фактор.

Приведенную температуру найдем по формуле

где -приведенная температура в К ; Т-температура вещества в К; -критическая температура в К.

Приведенное давление найдем по формуле ; где - приведенное; Р и давление и критическое давление в атм. соответственно.

Критические температуру и давление а так же ацентрический фактор возьмем экспериментальные.

; R=8,314Дж/моль*К

Находим приведенные температуру и давление:

Коэффициент сжимаемости найдем из разложения Питцера:

путем интерполяции находим и .

=0,6790;

=0,0069;

Из уравнения Менделеева-Клайперона ,

где P-давление; V-объем; Z- коэффициент сжимаемости; R-универсальная газовая постоянная (R=82.04); T-температура;

выразим объем:

М=142,29 г/моль.

Задание №6

Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить плотность насыщенной жидкости. Привести графические зависимости «плотность-температура» для области существования жидкой и паровой фаз. Выполнить анализ.

Для вычисления плотности насыщенной жидкости воспользуемся методом Ганна-Ямады.

где -плотность насыщенной жидкости; М -молярная масса вещества; -молярный объем насыщенной жидкости.

где - масштабирующий параметр; - ацентрический фактор; и Г – функции приведенной температуры.

4-Метил-4-этилгептан

в промежутке температур от 298 до 475 К вычислим по формуле:

В промежутке температур от 475 до 588 К вычислим по формуле:

В промежутке температур от 298 до 480 К вычислим Г по формуле:

Находим масштабирующий параметр:

Полученные результаты сведем в таблицу:

 

 

 

T, К

Tr

Vr(0)

Vsc

Г

Vs

ρs ,г/см3

182,17884

0,3

0,3252

315,9798

0,2646

91,3058

1,5584

212,54198

0,35

0,3331

315,9798

0,2585

105,2578

1,3518

242,90512

0,4

0,3421

315,9798

0,2521

108,1093

1,3161

273,26826

0,45

0,3520

315,9798

0,2456

111,2163

1,2794

303,6314

0,5

0,3625

315,9798

0,2387

114,5478

1,2422