Главная      Учебники - Разные     Лекции (разные) - часть 31

 

Поиск            

 

Методика решения задач по теоретическим основам химической технологии

 

             

Методика решения задач по теоретическим основам химической технологии

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Пензенский государственный педагогический университет

им. В.Г. Белинского

Факультет Кафедра

Естественно-географический Химии и теории и методики преподавания химии

" МЕТОДИКА РЕШЕНИЯ ЗАДАЧ ПО ТЕОРЕТИЧЕСКИМ ОСНОВАМ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ "

Пенза, 2007 г.

Содержание

Введение

1. Обзор литературы

1.1 Предмет химической технологии

1.2 Трактовка понятия «задача»

1.3 Значение химической задачи в процессе обучения

1.4 Требования к изучению химической задачи и ее место в процессе обучения

1.5 Система химических задач

1.6 Этапы решения задач

1.7 Классификация химических задач

2. Исследование трудностей, возникающих при решении задач теоретическим основам химической технологии

3. Методика решения задач по теоретическим основам химической технологии

3.1 Общие вопросы химической технологии

3.1.1 Термохимия

3.1.2 Химическое равновесие

3.1.3 Химическая кинетика

3.2 Технико-экономические показатели химических производств

3.3 Задачи с экологическим содержанием

3.4 Производство неорганических соединений

3.4.1 Металлургия

3.4.2 Электрохимические производства

3.5 Производство органических соединений

3.6 Творческие и изобретательские задачи

Выводы

Литература

Введение

Проблема методики решения задач в любой науке стоит достаточно остро, т.к. тщательная ее разработанность предполагает лучшую усвояемость научных знаний, их систематизированность и способность к применению в новых нестандартных ситуациях.

Дисциплина «Прикладная химия», целью которой является изучение производства и применения практически важных химических продуктов, базируется на принципах химической технологии. В настоящее время новые технологические процессы и системы управления ими создаются не эмпирически, а на основании рационального научного подхода, поэтому одним из разделов дисциплины «Прикладная химия» является «Теоретические основы химической технологии».

Изучение принципов химической технологии невозможно без количественных расчетов. Студент – будущий учитель химии, должен понимать, каким образом теоретические положения химии используются в промышленных процессах и повседневной жизни. Важной составляющей такого понимания является химическое мышление в целом и умение решать химические задачи, в частности.

Необходимо отметить специфику задач по химической технологии в рамках дисциплины «Прикладная химия». Как правило, это сложные, комплексные задачи, где требуются не только умения вести расчеты по уравнению химических реакций (часто многостадийные процессы), но и знания по разделам физической химии (термодинамика, кинетика, электрохимия), математики и физики. Поэтому не случайно изучение прикладной химии проходит именно на 5 курсе. Дисциплина «Прикладная химия» – это курс повторения, обобщения, систематизации химических знаний.

Целью дипломной работы было разработать методику решения задач по химической технологии в рамках изучения дисциплины «Прикладная химия».

Для достижения цели, нами поставлены следующие задачи:

1. Определить тематику задач дисциплины «Прикладная химия» в рамках раздела «Теоретические основы химической технологии».

2. Подобрать и составить задачи по выбранным темам.

3. Выявить основные трудности при решении задач по прикладной химии в рамках раздела «Теоретические основы химической технологии».

4. Разработать методику решения типовых задач.

Практической значимостью работы является возможность использования задач на занятиях по прикладной химии, для проведения коллоквиумов, индивидуального собеседования при защите лабораторных работ. Задачи по теоретическим аспектам химической технологии будут полезны и для учителей средней общеобразовательной школе при разработке элективных курсов. Общеизвестно, что овладение методикой обучения школьников решать задачи – одно из сложных профессиональных умений учителя.

1. Обзор литературы

1.1 Предмет химической технологии

Химическая технология является одной их основных химических дисциплин в педагогическом вузе. Она призвана дать студентам систему знаний о современном химическом производстве, теоретических основах химической технологии, технологических процессах и типовых аппаратах основных химических производств, проблемах и перспективах развития химической промышленности.

Наряду с использованием технологии основных химических производств в нем рассматриваются и практические результаты использования химических законов, экспериментальных методов, а также химических продуктов в различных отраслях экономики и в социально-бытовой сфере. Современное состояние общества характеризуется проникновением химии во все сферы жизни. Самые разнообразные химические вещества используются сегодня в промышленности и сельском хозяйстве, в строительстве и энергетике, в медицине и в быту. Необходимо ориентироваться в том, как получаются те или иные химические вещества, какие природные маете риалы используются для этого. Немаловажными представляются и экологические проблемы современной химической технологии, проблеме комплексного использования природного сырья, энергетические [4, 44, 45].

Изучение принципов химической технологии невозможно без количественных расчетов. Студент, избравший химическую специальность, должен овладеть в совершенстве простейшими приемами умственной деятельности, развивать творческое мышление. Важным компонентом этого процесса является умение решать химические задачи, так как оно всегда связано с более сложной мыслительной деятельностью [20].

1.2 Трактовка понятия «задача»

Психологи и дидакты по-разному трактуют понятие «задача», связываю его с другими родственными понятиями. По словам А.И. Леонтьева , «задача – это цель, данная в определенных условиях». При характеристике процессов мышления задачу определяют как ситуацию, в которой субъект для достижения сформулированной цели должен выяснить неизвестное на основе использования его связи с известным. Л.М. Фридман считает, что задача – это «знаковая модель проблемной ситуации». По определению Я.А. Пономарева , «задача есть ситуация, которая определяет действие субъекта, удовлетворяющего потребность путем изменения ситуации». В кибернетике для определения задачи вместо понятия «субъект» вводится понятие «решающая система», это расширяет возможности средств решения задачи: задачу может решать машина. Человек в отличие от машины не только решает строго поставленные задачи, но и совершенствует процесс познания, добиваясь новых теоретических и практических результатов. Решение задачи есть вид творческой деятельности, а поиск решения – процесс изобретательства. Учебную же задачу принято считать частным случаем задачи вообще. Таким образом, основным содержанием задач являются проблемные ситуации, решение которых возможно в результате творческого поиска. При этом необходимо учитывать как специфику предмета, так и психологические закономерности процесса решения.

Химическая учебная расчетная задача – это модель проблемной ситуации, решение которой требует от учащихся мыслительных и практических действий на основе знания законов, теорий и методов химии, направленная на закрепление, расширение знаний и развитие химического мышления.

Решение задач не самоцель, а цель и средство обучения и воспитания. В связи с этим проблема решения задач является одной из основных для дидактики, педагогической психологии и частных методик [57].

1.3 Значение химической задачи в процессе обучения

Решение задач занимает в химии важное место. Во-первых, это один из приемов обучения, посредством которого обеспечивается более глубокое и полное усвоение ученого материала по химии и вырабатывается умение самостоятельного применения приобретенных знаний на практике. Во-вторых, это прекрасный способ осуществления межпредметные и курсовых связей и связи химической науки с жизнью. Успешное решение задач учащимися, поэтому является одним из завершающих этапов в самом познании. Чтобы научиться химии, систематическое изучение известных истин химической науки должно сочетаться с самостоятельным поиском решения сначала малых, а затем и больших проблем.

Решение задач требует умения логически рассуждать, планировать, делать краткие записи, производить расчеты и обосновать их теоретическими предпосылками, дифференцировать определенные проблемы в целом. При этом не только закрепляются и развиваются знания и навыки учащихся, полученные ранее, но и формируются новые. Задачи, включающие определенные химические ситуации, становятся стимулом самостоятельной работы учащихся над учебным материалом, являются средством контроля и самоконтроля, помогает определить степень усвоения знаний и умений и их использования на практике; позволяет выявлять пробелы в знаниях и умениях учащихся и разработать тактику их устранения. При решении задач развивается кругозор, память, речь, мышление учащихся, а также формируется мировоззрение в целом; происходит сознательное усвоение и лучшее понимание химических теорий, законов и явлений. Решение задач развивает интерес учащихся к химии, активизирует их деятельность, способствует трудовому воспитанию школьников и их политехнической подготовке [1, 55, 57].

Отсюда понятно общепринятое в методике мнение, что мерой усвоения материала следует считать не только и даже не, сколько пересказ учебника, сколько умение использовать полученные знания при решении различных задач.

Психологи и дидакты рассматривают решение задач как модель комплекса умственных действий. Мышление при этом выступает как проблема «складывания» операций и определенную систему знаний с ее последующим обобщением. Значительна роль задач в организации поисковых ситуаций необходимых при проблемном обучении, а также в осуществлении процесса проверки знаний учащихся и при закреплении полученного материла [20].

Психологический анализ обучения свидетельствует о том, что усвоение знаний происходит в процессе активной мыслительной работы учащегося при решении им задачи через выделение существующих сторон проблемы путем анализа, абстрагирования и обобщения. Правильно подобранные задачи в соответствии с уровнем развития учащихся не только реализуют их психологически потенциал, но и мобилизует личность в целом, охватывая эмоциональную сферу, интересы, потребности. По наблюдениям психологов, учителей и методистов сверхтрудные задачи, превышающие известный барьер сложности, не только не стимулируют, а наоборот, снижают уровень мышления и не приносят пользы. Чтобы задачи будили мысль и развивали мышление, они должны быть посильны. Тогда мысль учащегося последовательно переходит от одного объекта к другому, это приковывает его внимание к задаче и стимулирует дальнейшее решение.

Итак, решение задач с психолого-педагогической точки зрения:

- учить мыслить учить мыслить, ориентироваться в проблемной ситуации;

- предполагает активную продуктивную деятельность с определенной глубиной, широтой и самостоятельностью решения, которая должна быть направлена на установление переноса знаний на новые объекты;

- проявляет взаимосвязь представлений и понятий;

- ведет к лучшему пониманию учащимися явлений в свете важнейших теорий;

- позволяет устанавливать связи химии и другими предметами, особенно с физикой и математикой;

- является средством закрепления в памяти учащихся химических законов и важнейших понятий;

- служит одним из способов учета знаний и проверки навыков, полученных в процессе изучения предмета;

- воспитывает в процессе изучения учащихся умение использовать полученные знания для решения практических проблем, тем самым, связывая обучение с жизнью и деятельностью человека [57].

Итак, исходя из выше указанной роли задач в курсе изучения химии, при решении задач ставятся следующие цели:

Образовательная цель.

- усвоение, закрепление, систематизация и совершенствовании учебного материала, формирование важных структурных элементов знаний, осмысление химической сущности явлений;

- выработка умения применять приобретенные знания самостоятельно в конкретно заданной ситуации, т.к. формирование теорий и законов, запоминание правил, формул, составление химических уравнений происходит в действии;

Процесс решения задачи – это познавательный процесс, это восхождение от абстрактного к конкретному. В методологическом аспекте – это подход от абстрактного мышления к практике, связь частного с общим.

Необходимо помнить, что решение задач – это не самоцель, а средство обучения, способствующее прочному усвоению знаний.

Воспитательная цель .

- формирование мировоззрения, осознанием материала, расширение кругозора в краеведческих и политехнических вопросах;

- реализация межпредметных связей, показывающие единство природы, связи обучения с жизнью, что позволяет развивать мировоззрение учащихся.

- осуществление принципа политехнизма;

- воспитание трудолюбия, целеустремленности, развитие чувства ответственности, упорства и настойчивости в достижении поставленной цели;

Развивающая цель.

- в ходе решения задач идет сложная мыслительная деятельность учащихся, которая определяет развитие, как содержательной стороны мышления (знаний), так и действенной (операций, действия).

- формирование научно-теоретического, логического, творческого мышления, развитие смекалки, в будущем – изобретательности и ориентацию на профессию химика.

- теснейшее взаимодействие знаний и действий является основой формирования различных приемов мышления: суждений, умозаключений, доказательств.

Решение задач – это мыслительный процесс.

Знания, используемые при решении задач, можно подразделить на два рода: знания, которые учащиеся приобретают при разборе текста задачи и знания, без привлечения которых процесс решения невозможен. Сюда входят различные определения, знания основных теорий и законов, разнообразные химические понятия, физические и химические свойства веществ, формулы соединений, уравнения химических реакций, молярные массы веществ и т.п [1, 27, 52, 51, 57].

1.4 Требования к изучению химической задачи и ее место в процессе обучения

Методика обучения определяется как педагогическая наука, исследующая закономерности определенному учебному предмету. Соответственно, методика обучения учащихся решению задач по химии может представлять частную методику, исследующую закономерности обучения решению задач.

Овладение методикой обучения школьников решать задачи — одно из сложных профессиональных умений учителя химии. В приобретении этого умения студентам помогут специально организованные практические занятия на семинаре. Занятиям предшествует работа студентов по небольшому методическому руководству — они выполняют определенные заданий и знакомятся с вопросами, которые будут подниматься на семинаре [38, 39].

Решение химических задач – важная сторона овладения знаниями основ науки химии. Включение задач в учебный процесс позволяет реализовать следующие дидактические принципы обучения:

1) обеспечение самостоятельности и активности учащихся;

2) достижение прочности знаний и умений;

3) осуществление связи обучения с жизнью;

4) реализация политехнического обучения химии, профессиональной ориентации.

В решении задач должен соблюдаться единый методический подход. Ведущая роль в обучении учащихся решению задач принадлежит учителю. Но нельзя недооценивать самостоятельности и учащихся при решении задач. При переходе от одного этапа к другому следует руководствоваться рекомендациями по формированию умений. Рассмотрим сущность этих этапов [52].

Выбирая задачу для учащихся, учитель обязан оценить ее с точки зрения следующих целей.

1. Какие понятия, законы, теории, факты должны быть закреплены в процессе решения, какие стороны свойств изучаемого вещества и химические реакции отмечены в процессе решения.

2.Какие приемы решения задачи должны быть сформированы.

3.Какие мыслительные приемы развиваются в процессе решения задачи.

4. Какие дидактические функции выполняют данные задачи.

Психологические исследования проблемы обучения решению задач показывают, что несформированность умений является следствием причин, которые обучающиеся просто не принимают во внимание. Природа внимания у учащихся такова, что они не способны долго концентрировать его на данном предмете. Зачастую длительное решение однотипных задач приводит к тому, что учащиеся решают новую предложенную задачу по тому старому образцу, который предложен преподавателем и не пытаются сделать это нестандартными способами, по-своему, не замечая, что ситуация в целом изменилась. Решая задачу, не осознают должным образом свою собственную деятельность, т.е. не понимают сущности задач и хода их решения. Не всегда анализируют содержание задачи, проводят ее осмысление и обоснование. Не вырабатывают общие подходы к решению, не определяют последовательности действий. Часто неправильно используют химический язык, математические действия и обозначения физических величин. На первое место при решении задач ставятся получение ответа любым действием, а не объяснение хода решения. При решении химической задачи не выделяют ее химическую часть и математические действия. Не задают цель проверить правильность результата не по ответу в задачнике, а решение обратной задачи или другим способом. Не вырабатывают понимания определенной системы задач, и они представляются бесформенным скоплением различных типов, видов, не связанных друг с другом. Для тех, кто сможет преодолеть эти недостатки, решение задач не будет вызывать особых трудностей. Процесс решения станет увлекательным, и будет приносить удовлетворение, подобно тому, которое получают любители разгадывания кроссвордов.

Умение решать задачи развивается в процессе обучения, и развивать это умение можно только одним путем – постоянно систематически решать задачи!

Поэтому, если ставится цель – закрепление теоретического материала, то метод решения задач должен быть уже известен учащимся. Если объясняется новый тип задач по методу решения, то учащиеся должны свободно оперировать учебным материалом. Одновременно обе цели ставить не рекомендуется [38].

Учитель активизирует знания учащихся, которые используются при решении задач. Затем приводится анализ условия задачи. Учитель кратко его записывает с помощью символов и условных обозначений. Далее разрабатывают план решения и по возможности выражают его в общем виде с помощью указанных выше формул, соблюдая все правила, которым учащиеся на уроках математики и физики. Тонко после этого приступают к числовому решению и проверяют ответ.

Если цель решения – изучение нового типа задач, то четко формулируют алгоритм, который учащиеся записывают и отмечают, к какому типу решения он соответствует. После чего решается аналогичная задача и предлагается задачи для самостоятельного решения.

Исходя их выше сказанного, вытекает место задач в процессе обучения.

При объяснении нового материала задачи помогают иллюстрировать изучаемую тему конкретным практическим применением, в результате учащиеся более осознанно воспринимают теоретические основы химии.

Использование задач при закреплении новой темы позволяет учителю выявить, как усвоен новый материал, и наметить методику и план дальнейшего изучения данного вопроса.

Решение задач дома способствует привлечению учащихся к самостоятельной работе с использованием не только учебников, но и дополнительной справочной литературы.

С целью текущего, а также итогового контроля и учета знаний лучшим методом является также расчетная задача, т.к. при ее решении можно оценить все качества ученика, начиная от уровня знания теории до умения оформлять решение в тетради.

Особое место занимает решение задач при повторении и обобщении учебного материала. Именно здесь в большей степени реализуются межпредметные связи, а также системность и целостность изучаемой темы или курса в целом [57].

1.5 Система химических задач

При всей важности отдельных задач эффект целостного образовательного процесса обеспечивается всем множеством задач по каждой теме, которое должно образовывать систему. Таким образом, ключевой элемент ресурсного обеспечения учебного процесса — система задач.

Системой задач называется совокупность задач к блоку изучаемой теме, удовлетворяющая ряду требований.

1. Полнота . В системе задач присутствуют задачи на все изучаемые понятия, факты, способы деятельности, включая мотивационные, подводящие под понятие, на аналогию, следствия из фактов и пр.

2. Наличие ключевых задач . Задачи сгруппированы в узлы вокруг объединяющих центров - задач, в которых рассматриваются факты или способы деятельности, применяемые при решении других задач и имеющие принципиальное значение для усвоения предметного содержания.

3. Связность . Вся совокупность задач может быть представлена связным графом, в узлах которого - ключевые задачи, выше них — подготовительные и вспомогательные, ниже — следствия, обобщения и т. д.

4. Возрастание трудности в каждом уровне . Система состоит из трех подсистем, соответствующих минимальному, общему и продвинутому уровням планируемых результатов обучения. В каждой из подсистем трудность задач непрерывно нарастает.

5. Целевая ориентация . Для каждой задачи определено ее место и назначение в блоке изучения материала.

6. Целевая достаточность. В системе достаточно задач для тренажа, аналогичных задач для закрепления методов решения, задач для индивидуальных и групповых заданий разной направленности, для самостоятельной (в том числе исследовательской) деятельности учащихся, для текущего и итогового контроля с учетом запасных вариантов и т. д.

7. Психологическая комфортность. Система задач учитывает наличие разных темпераментов, типов мышления, видов памяти.

Система задач - основной ресурс учителя для реализации эффективного образовательного процесса. От качества этого ресурса более чем наполовину зависит успех учащихся при изучении курса. Остальные составляющие успеха заключены в организации их деятельности и управлении этой деятельностью [19, 39].

1.6 Этапы решения задач

Психологами обнаружена закономерность в поведении человека при решении задач. Он разбивает задачу на некоторые число более простых, т.е. ставит пред собой промежуточные вопросы (анализ задачи). Затем приступает к очередной проверке ряда простых задач, накапливая количественную информацию. Решив их, переходит к решению сложной – синтезирует. Таким образом, задачи решаются путем анализа и синтеза в совокупности. Иногда анализ протекает в скрытом виде (решающий провел анализ быстро, по шаблону), в таком случае создается впечатление, что имеет место только синтез. Поэтому цель учителя – не только подобрать задачи к уроку, но и обдумать, как он будет обучать учащихся разбивать подобранные задачи на более простые.

Решение задачи состоит из многих операций, которые связаны между собой и применяются в некоторой логической последовательности. Выявление этих связей и определение последовательности логических и математических операций лежат в основе умения решать задачи.

Решение предполагает поисковую деятельность, включение в этот процесс интеллектуальных операций. С точки зрения дидактики важно иметь в виду и то обстоятельство, что при решении любой задачи (математической, физической, химической и др.) задаются цель, условия и требования к учебно-познавательной деятельности. Естественно предположить существование закономерностей для процесса овладения общей процедурой деятельности. Отсюда вытекает необходимость использования общей методологии решения задач, т.е. объективном процессе интеграции естественнонаучных и математических знаний и умений, неизбежности связи предметных языков. Таким образом, главная дидактическая цель учителя химии при обучении решению расчетных задач: формирование общих логических основ стехиометрических знаний и общепредметных умений на базе общенаучных методов.

В общем виде способ решения химических задач можно представить следующим порядком действий:

1) краткая запись условия задачи (вначале указывают буквенные обозначения заданных величин и их значения, а затем — искомые величины), которые при необходимости приводятся в единую систему единиц (количественны сторона);

2) выявление химической сущности задачи, составление уравнений всех химических процессов и явлений, о которых идет речь в условии задачи (качественная сторона);

3) соотношения между качественными и количественными данными задачи, т.е. установление связей между приводимыми в задаче величинами с помощью алгебраических уравнений (формул) – законов химии и физики;

4) математические расчеты [15, 57].

1.7 Классификация химических задач

В ходе составления условий простейших задач и их решения необходимо научиться классифицировать задачи, понимать взаимосвязь между различными величинами, характеризующими условие задачи, т. е., прежде чем приступить к решению задачи, необходимо проанализировать ее условие.

На сегодняшний день не существует окончательной едино разработанной классификации химических задач. В учебных пособиях по методике химии, специальных методических пособиях по решению задач и в статьях приводятся различные классификации задач. Общепризнанной является классификация задач на количественные и качественные , которые решаются устным письменным и экспериментальным способом. В свою очередь эти задачи бывают репродуктивными и продуктивными . Репродуктивные задачи – это типовые задачи, при решении которых возможно применение алгоритмов. В этом случае учитель сам объясняет ход их решения. Продуктивные – творческие задачи, в них необходимо самостоятельно найти способы решения. Для этого не достаточно организованного опыта, необходимо качественно иной опыт, заключающийся в умении логически мыслить, анализировать ситуацию в способности к интуитивному решению проблемы как высшего проявления логического мышления [20, 57].

Различаются задачи и упражнения по дидактическим целям . Задачи имеют целью развитие у учащихся умения применять знания химии в различных условиях практики. Упражнения имеют в качестве основных целей формирование навыков, но отдельным операциям, умственным или физическим. Следовательно, знание различия понятий «упражнения» и «задачи» имеет не только теоретическое, но и практическое значение, так как позволяет целесообразно применять упражнения или задачи обучении.

2. Выявление трудностей при решении задач по теоретическим основам химической технологии в рамках изучения курса Прикладная химия

Задачи по химической технологии, составленные и подобранные в настоящей работе, были использованы для проведения контрольной работы по прикладной химии. В апробации участвовали студенты 5 курса специальностей «Химия» с доп. спец. «Биология» и «Биология» с доп. спец. «Химия» (всего 39 студентов). Контрольная работа проводилась на итоговом занятии по прикладной химии. Каждая задача оценивалась по 5-балльной системе в соответствии с тем, насколько полно представлено решение. Оценка за контрольную работу в целом также выставлялась по 5-балльной системе, принятой в ВУЗах.

Практически все студенты справились с задачами (92,3%), в том числе 61,8% на «хорошо» и «отлично» (рис. 1). И действительно, большинство студентов не испытывали трудностей в решении задач. Наиболее успешно были решены задачи по химической технологии с производственным содержанием (металлургия – полностью решили 66,7% студентов, производство органических соединений – 61,5%, рис. 2). Некоторые затруднения вызвало решение задач на темы химическая кинетика и химическое равновесие (полностью эти задачи решили около 40% студентов), возможно, из-за сложного математического аппарата этих задач, где требуется знание основ интегрирования, дифференцирования, возведения в степень и т.д.

Мы проанализировали решение каждого типа задач. Многие студенты не получили высокие баллы за контрольную работу из-за того, что не получили правильные итоговые ответы. Действительно, достаточно большая часть ребят решила задачи «не полностью» (рис. 3, 4). Как правило, такие студенты приводили верные формулы для расчетов, но затруднялись в подстановке численных значений.

Конкретные, наиболее часто встречающиеся ошибки в решении задач представлены в табл. 1.

Таблица 1.

Тема

Результаты контрольной

работы, %

Замечания

Решили полностью

Не

решили

Решили не

полностью

или с

ошибками

Термохимия

46,2% 12,8% 41% Ошибки связаны в основном с уравнениями химических реакций, студенты забывают расставить коэффициенты, а также ошибки связанные со следствиями из закона Гесса.

Химическое равновесие

41% 15,4% 43,6% Ошибки связаны с нахождением константы равновесия: студенты «переворачивают» формулу для нахождения Кс, а также коэффициенты перед веществами ставят как множители, а не как степень. Не помнят о знаке «-» в уравнении Вант-Гоффа (зависимость константы равновесия от температуры). Также наблюдаются затруднения при нахождении равновесных концентраций, если известна константа равновесия (с использование перемен. х)

Химическая кинетика

38,5% 20,5% 41% Ошибки связаны с определением порядка реакций. Многие студенты забывали о присутствии экспоненты и предэкспоненциального множителя в уравнении Аррениуса.
Технико-экономические показатели производств 59% 10,3% 30,7% Ошибки связаны с неправильным нахождением выхода продукта и с незнанием формул для расчета степени превращения исходных реагентов и селективности.

Задачи с

экологическим содержанием

51,3% 8% 30,7% Ошибки связаны с непони-манием сущности задачи, а также ошибки связанные с неправильным переводом м3 в литры, и с неправиль-ным использованием значения массы вещества вместо объема раствора в формуле

Металлургия

66,7% 7,7% 25,6% Ошибки связаны с непра- вильным нахождением mпр и mтеор. В формуле , например, при нахождении mпр, вместо формулы пишут , т.е студенты путают значение массы пустой породы с массой чистого вещества.
Электрохимические производства 56,7% 12,8% 30,2%

Ошибки связаны с непра- вильным нахождением эквивалента элемента, с неправильным переводом часов в секунды (система СИ).

Производство органических соединений 61,5% 7,7% 30,8%

Ошибки связаны с непра- вильным нахождением молекулярной массы вещества, с неправильным определением брутто –

формулы вещества

Общие ошибки:

1. неправильное нахождение молекулярной массы вещества.

2. не знание правил округления числовых значение, что в итоге приводит

к неправильному нахождению ответа.

3. Ошибки, связанные с подсчетом ех, ln x , 10 x и т.д. на калькуляторе.


Рис. 1. Оценки, полученные студентами на контрольной работе по прикладной химии

1- Рис. 2. Доля студентов, полностью решившая задачи по отдельным темам. термохимия, 46.2%

2- химическое равновесие, 41%

3- химическая кинетика, 38.5%

4- технико-экономические показатели, 59%

5- задачи с экологическим содержанием, 51.3%

6- металлургия, 66.7%

7- электрохимические производства, 56.4%

8- производство органических соединений, 61.5%

Таким образом, апробация задач по химической технологии среди студентов 5 курса на итоговой контрольной работе показала необходимость повторения в курсе основы химической технологии базовых тем по физической химии (химическая кинетика, термодинамика, электрохимия и т.д.) и высшей математике (дифференцирование, интегрирование, степенные функции и т.д.). Реальной помощью для самостоятельной проработки этого фактически уже хорошо известного студентам материала может послужить пособие по прикладной химии «Задачи по теоретическим основам химической технологии», составленное по материалам представленной работы.

3. Методика решения задач по теоретическим основам химической технологии

Одна из главных задач химической науки и промышленности - получение необходимых человеку веществ (продуктов, материалов). Поэтому большинство учебных химических задач снизано с расчетами по уравнению химической реакции, которую в общем виде можно представить так:

аА+ вВ cC+dD

где A, В, С, D - условные обозначения формул различных веществ;

а, в, с, d — стехиометрические коэффициенты.

Расчет по уравнению реакции наиболее прост лишь в идеальном случае, когда реагенты абсолютно чистые, взяты в строго стехиометрических отношениях, потерь при реакции нет, т.е. выход продукта составляет 100%. Практически эти условия не выполняются. Как правило, исходные вещества содержат примеси или взяты в виде растворов; обычно одно из веществ, вступающих в реакцию (наиболее доступное, дешевое, берут в избытке и, наконец, реальный выход продуктов всегда меньше 100%.)

Итак, химические задачи делят на:

1) Расчетные

2) Качественные

Расчетные задачи условно делятся на две группы:

1) Задачи, решаемые с использованием химической формулы вещества или на вывод формулы.

2) Задачи, для решения которых используют уравнения химических реакций.

3) Задачи, для решения которых используют только математические формулы.

Первая группа задач включает расчеты по определению массы чистого вещества в смеси (растворе) по известной массовой доле его (или процентному содержанию); вычисление массовой доли (или процента) элементов по формулам веществ (прямая и обратная задачи).

Ко второй группе задач относятся вычисления по химическим уравнениям массы, объема и количества продуктов реакции или взаимодействующих веществ в различных единицах измерения. При этом учитывают произвольное соотношение компонентов, т. е. наличие избытка одного из реагирующих веществ; практический выход продукта реакции; наличие примесей в исходных веществах или продуктах реакции.

На уроках обобщения знаний о химических производствах составляются задачи с производственным содержанием. Совместно с учащимися определяем, какие особенности таких задач следует при этом учитывать:

1) условия процесса (концентрация, давление, температура);

2) возможность протекания процесса;

3) кинетику и равновесие реакций;

4) состав сырья (наличие примесей, необходимость очистки);

5) выход продукта (потери в процессе очистки; обратимость процесса; побочные реакции; циркуляция);

6) использование энергии экзотермических процессов;

7) утилизация побочных продуктов и отходов производства.

8) экологический аспект;

9) технико-экономические показатели химических производств;

10) использование электрической энергии. [54]

При составлении методического пособия для решения задач по химической технологии мы условно выделили несколько разделов задач по их химической тематике:

I. Общие вопросы химической технологии.

1. термохимия.

2. химическая кинетика.

3. химическое равновесие.

II. Технико-экономические показатели химических производств.

III. Задачи с экологическим содержанием.

IV. Производство неорганических соединений.

1. металлургия.

2. электрохимические производства.

V. Производство органических соединений.

VI.Творческие и изобретательские задачи.

Каждый раздел задач сопровождается методической частью, где приводятся основные теоретические аспекты темы, законы и формулы для математических расчетов. Далее рассматриваются методические рекомендации по решению задач, конкретные примеры решения типичных и наиболее сложных задач, а также задачи для самостоятельного решения. Эти задачи могут быть использованы на практических занятиях, для проведения коллоквиумов, индивидуального собеседования при защите лабораторных работ, а также в средней общеобразовательной школе при изучении факультативного курса по химии.

3.1 Общие вопросы химической технологии

3.1.1 Термохимия

Термохимия — учение о тепловых эффектах химических реакций. Для решения задач по термохимии необходимо знать такие понятия, как тепловой эффект реакции, стандартная тепловой эффект образования вещества, стандартная тепловой эффект сгорания химического соединения, закон Гесса и следствия из него, возможность самопроизвольного протекания реакции, зависимость энергии Гиббса от температуры. Наиболее важным понятием химической энергетики является тепловой эффект химической реакции. Данные о тепловых эффектах применяются для определения строения и реакционной способности соединений, энергии межатомных и межмолекулярных связей, используются в технологических и технических расчетах.В основе термохимических расчетов по уравнениям реакций лежит закон сохранения и превращения энергии, или первое начало термодинамики. Сущность его состоит в том, что при всех превращениях энергия не возникает и не исчезает, а одни ее виды переходят в эквивалентные количества других видов. Количество выделившейся (поглощенной) теплоты в результате химической реакции называется тепловым эффектом реакции Q (при p-const QP или V-const QV ) (измеряется в кДж). По тепловому эффекту химические реакции подразделяются на экзотермические (с выделением теплоты (+Q)) и эндотермические (с поглощением теплоты (-Q)). Существует величина обратная тепловому эффекту (записывается с противоположным знаком). Она характеризует внутреннюю энергию вещества и называется энтальпией (∆Н). Изменение энтальпии измеряют в кДж/моль, т.е. это то количество теплоты, которое выделяется или поглощается при образовании 1 моль вещества из простых веществ. С термодинамической точки зрения принимают, что тепловой эффект при постоянном давлении и температуре равен изменению энтальпии ΔН. Передачу энергии при этом рассматривают как бы со стороны самой реакционной системы. Если система отдала энергию во внешнюю среду, величина ΔН считается отрицательной ΔН<0, если реакционная система получила энергию за счет внешней среды — величину ΔН считают положительной ΔН>0. Вычисление теплоты реакции по теплотам образования участвующих в ней веществ, производится на основании закона Гесса.

Закон Гесса: Тепловой эффект химической реакции при постоянном давлении и объеме не зависит от пути реакции (т.е. от промежуточных стадий), а определяется начальным и конечным состоянием системы (т.е. состоянием исходных веществ и продуктов реакции (газ, жид., тв.)).

Δr Н0 298 – стандартная энтальпия реакции (reaction), тепловой эффект реакции.

Δf Н0 298 – стандартная энтальпия образования (formation) 1 моль вещества из простых веществ в стандартных условиях (Т=298К или 25С, Р=1 атм.), на которые указывает знак «0», (кДж/моль).

Δс Н0 298 стандартная энтальпия сгорания (combustion) 1 моль вещества (до образования СО2 , Н2 О, и др. продуктов), (кДж/моль).

Следствие 1 из закона Гесса:

Тепловой эффект химической реакции равен разности между алгебраической суммой теплот образования продуктов реакции и алгебраической суммой теплот образования исходных веществ

Δr Н0 298 =∑(n j •Δf Н0 298 )прод - ∑(n i • Δf Н0 298 )исх.

где, n j и n i количество вещества продуктов реакции и исходных веществ соответственно (численно равно коэффициенту в уравнении реакции), (моль).

Следствие 2 из закона Гесса:

Тепловой эффект химической реакции равен сумме теплот сгорания исходных веществ минус сумма теплот сгорания продуктов реакции

Δr Н0 298 =∑(n i • Δс Н0 298 )- ∑(n j • Δс Н0 298 )

где, n i иn j - количествовещества исходных веществ и продуктов реакции соответственно (численно равно коэффициенту в уравнении реакции), (моль).

В химических реакциях может одновременно изменяется и энергия системы и ее энтропия, поэтому реакция протекает в том направлении, в котором общая суммарная движущая сила реакции уменьшается. Если реакция происходит при постоянном температуре и давлении, то общая движущая сила реакции называется энергией Гиббса (ΔG0 ) и направление реакции определяется ее изменением.

Зависимость энергии Гиббса реакции от температуры описывается уравнением

ΔG0 T =ΔH0 T – TΔS0 T

При стандартной температуре

ΔG0 298 =ΔH 0 298 – TΔS0 298

ΔG0 298 – стандартная энергия Гиббса , изменение энергии Гиббса при образовании 1 моль вещества из простых веществ в стандартных условиях, (кДж/моль).

Стандартную энергию Гиббса реакции рассчитывают по первому следствию из закона Гесса.

r G 0 298 = ∑(n j Δf G0 298 ) прод . -∑ (n i Δf G0 298 )исход.

ΔS0 298 - стандартная энтропия 1 моль вещества в стандартном условиях, (Дж/К*моль). Энтропию можно характеризовать как меру беспорядка (неупорядоченности) системы. Эта величина характеризует изменение температуры в системе.

Поскольку энтропия – функция состояния системы, ее изменение (ΔS) в процессе химической реакции можно подсчитать, используя следствие из закона Гесса.

Δr S0 298 =∑ (n j Δf S0 298 ) прод. –∑(n i Δf S0 298 )исход

где, n j и n i количество вещества продуктов реакции и исходных веществ соответственно (численно равно коэффициенту в уравнении реакции), (моль).

Δr S0 298 =∑ (n i Δf S0 298 ) исход –∑(n j Δf S0 298 )прод

где, n i иn j - количествовещества исходных веществ и продуктов реакции соответственно (численно равно коэффициенту в уравнении реакции), (моль).

Δr S0 298 стандартная энтропия реакции , (Дж/К).

Δf S0 298 – стандартная энтропия образования химического вещества, (Дж/К*моль).

Знак « - » перед членом TΔS0 298 (энтропийным членом) ставится, для того чтобы при ΔH=0 сделать ∆G отрицательной величиной ΔG<0 – условие самопроизвольного протекания реакции.

Если пренебречь изменением ΔS0 и ΔН0 с увеличением температуры, то можно определить Травн , т.е. температуру, при которой устанавливается химическое равновесие химической реакции для стандартного состояния реагентов, т.е. из условия равновесия реакции ΔG=0 имеем 0=Δr H 0 298 – TΔr S 0 298, отсюда

Следует знать:

Если ΔS=0 (ΔS>0), ΔH<0(ΔH=0) то ΔG <0 – реакция протекает самопроизвольно, процесс протекает в прямом направлении (энергетически выгоден).

Если ΔS=0(ΔS<0), ΔH>0 (ΔH=0) то ΔG>0 – протекание реакции невозможна, возможна только в обратном направлении (энергетически невыгоден).

Если ΔS=0, ΔH=0 ΔG=0 – система находится в состоянии равновесия.

Примеры решения задач

1. Вычислить тепловой эффект реакции получения гидроксида кальция

СаО(т) + Н2 О(ж) = Са(ОН)2(т) , если теплота образование СаО(т) равна +635701,5Дж/моль, теплота образования Н2 О(ж) +285835,5 Дж/моль и теплота образования Са(ОН)2 +986823 Дж/моль.

Решение:

Тепловой эффект реакции

СаО (т) + Н2 О (ж) = Са(ОН)2(т) по первому следствию закона Гесса, будет равен теплоте образования Са(ОН)2(т) минус теплота образования Н2 О(ж) и теплота образования (СаО(т) ):

Δr Н0 298 =∑(nj •Δf Н0 298 )прод - ∑(ni • Δf Н0 298 )исх.

Δr Н0 298 =1 моль•Δf Н0 298 (Са(ОН)2(т) )- (1 моль Δf Н0 298 (СаО(т) )+

+1 моль• Δf Н0 2982 О (ж) ))=1 моль*986823 Дж/моль - (1 моль* 635701,5 Дж/моль +

+ 1 моль*285835,5 Дж/моль)= 65 286 Дж.

Ответ: 65286 Дж.

2. Вычислите изменения энергии Гиббса в реакции димеризации диоксида азота при стандартной температуре, при 0 и 100ºС. Сделать вывод о направлении процесса.

Решение:

При стандартной температуре 298 К изменение энтальпии в реакции

2NO2 (г) N2 O4(г) равно (первое следствие закона Гесса)

Δr Н0 298 =∑(nj •Δf Н0 298 )прод - ∑(ni • Δf Н0 298 )исх.

Δ r Н0 298 =1 моль* 9660 Дж/моль – 2 моль*33800 Дж/ моль = - 57940 Дж

Изменение температуры равно

Δr S0 298 =∑ (nΔf S0 298 ) прод. –∑(nΔf S0 298 )исход = 1 моль*304 Дж/моль*К -

–2 моль*234 Дж/моль*К = - 164 Дж/К

Зависимость энергии Гиббса реакции от температуры описывается уравнением

ΔG0 T =ΔH0 T – TΔS0 T

При стандартной температуре

Δr G0 298 =ΔH 0 298 – TΔS0 298 = - 57940 Дж – (298 К*(-164 Дж/К)) = -9068 Дж/моль

Отрицательное значение энергии Гиббса реакции говорит о том, что смещении равновесия вправо (самопроизвольный процесс), т.е. в сторону образования диоксида азота.

При 0ºС (273К)

Δr G0 273 = -57940 Дж + 273К* 164 Дж/К = -13168 Дж/моль

Более высокое отрицательное значение ΔG273 по сравнению с ΔG0 298 свидетельствует о том, что при 273 К равновесие еще больше смещено в сторону прямой реакции.

При 100ºС (373 К)

Δr G373 = -57940 Дж + 373К*164 Дж/К = 3232 Дж/моль.

Положительная величина ΔG373 указывает на изменение направления реакции: равновесие смещено влево, т.е. в сторону распада димера N2 O4 (реакция невозможна). Ответ: при 0ºС (273 К) Δr G273 = -13168 Дж/моль, реакция протекает самопроизвольно; при 100ºС (373 К) Δr G373 = 3232 Дж/моль, реакция невозможна.

3 . Составьте термохимическое уравнение горения метана СН4 и рассчитайте объем воздуха, необходимый для сжигания 1моль метана, если известно, что при сгорании 5,6 л метана выделяется 220 кДж теплоты, содержание кислорода в воздухе равно 20%.

Решение:

СН4 + 2О2 = СО2 + 2Н2 О, ∆Н<0

Находим количество вещества метана объемом 5,6 л

Если при сгорании СН4 количеством вещества 0,25 моль выделяется 220 кДж теплоты, то при сгорании СН4 количеством вещества 1 моль выделяется 880 кДж теплоты.

Термохимическое уравнение:

СН4 +2О2 = СО2 + 2Н2 О+ 880 кДж

Из уравнения реакции видно, что на сгорание СН4 количеством вещества 1моль расходуется О2 количеством вещества 2 моль, на сгорание СН4 количеством вещества 0,25 моль расходуется х моль О2 , откуда х = 0,5 моль.

Кислород количеством вещества 0,5 моль занимает объем 11,2 л.

В воздухе 20% кислорода, следовательно, объем воздуха будет равен

Ответ: 880 кДж, 56 л.

Задачи для самостоятельного решения

1. Рассчитайте, какая из ниже перечисленных реакций при стандартных условиях может идти самопроизвольно:

а) Fe(к) + Al2 O3(к) = Al(к) + Fe2 O3(к)

б) Al(к) + Fe2 O3 (к) = Fe(к) + Al2 O3(к)

в) CuSO4(к) + 2NH4 OH(ж) = Cu(OH)2(к) + (NH4 )2 SO4(к)

г) Al2 O3( корунд ) + 3SO3 = Al2 (SO4 )2( к )

2 . При сварке трамвайных рельсов используют термитную смесь, которую готовят, смешивая порошки алюминия и оксида железа (III) в количественном отношении 2:1. Термохимическое уравнение горения термитной смеси следующее: 2Al + Fe2 O3 = Al2 O3 + 2Fe + 829,62 кДж. Сколько теплоты выделится при образовании: 1) 4 моль железа; 2) 1 моль железа?

3 . Рассчитайте, достаточно ли теплоты, выделяющейся при сгорании 200 кг каменного угля, содержащего 82% углерода, для полного разложения 162 кг карбоната кальция, если для разложения 1 моль СаСО3 необходимо 180 кДж теплоты, а при сгорании 1 моль углерода, входящего в состав каменного угля, выделяется 402 кДж теплоты.

4. Процесс алюминотермии выражается химическим уравнением

8Al + 3 Fe3 O4 = 4Al2 O3 + 9Fe ΔH<0. Рассчитайте, сколько теплоты выделится при сгорании 1 кг термита.

5. Возможен ли обжиг колчедана массой 1т по следующему уравнению химической реакции 4FeS2 + 11O2 →2 Fe2 O3 + 8SO2 ∆H<0

6. Вычислите тепловой эффект образования NH3 из простых веществ, при стандартном условии по тепловым эффектам реакции:

2H2 + O2 = 2H2 O(ж) ΔН0 1 = -571, 68 кДж,

NH3 + 3O2 = 6H2 O(ж) + 2N2 ΔН0 2 = -1530,28 кДж.

7. Стандартный тепловой эффект реакции сгорания этана равен -1560 кДж. Рассчитайте стандартную теплоту образования этана, если известно, что

Δf Н0 298 (H2 O)= -285,84 кДж/моль и Δf Н0 298 (СО2 ) = -396,3 кДж/моль.

8. Вычислите тепловой эффект реакции восстановления оксида железа водородом, пользуясь следующими данными.

FeO + CO = Fe + CO2 ΔН = -13,19 кДж

CO + 1/2O2 = CO2 ΔН = -283,2 кДж

2H2 + 1/2O2 = 2H2 O( г ) ΔН = -242 кДж

9. Протекание, какой из приведенных реакций восстановления оксида железа (III) наиболее вероятно при 298 К.

Fe2 O3( k ) + 3H2(г) = 2Fe(к) + 3H2 O(к)

Fe2 O3( k ) + 3С(графит) = 2Fe(к) + 3СO(к)

Fe2 O3( k ) + 3СО(г) = 2Fe(к) + 3СО2(к)

10. В какой их перечисленных ниже реакций тепловой эффект ΔН0 298 будет стандартной теплотой SO3(г)

а) S(г) + 3/2 O2 = SO3(г)

а) S(г) + 1/2 O2 = SO3(г)

а) S(к) + 3/2 O2 = SO3(г)

3.1.2 Химическое равновесие

При протекании химической реакции через некоторое время устанавливается равновесное состояние (химическое равновесие). Слово «равновесие» означает состояние, в котором сбалансированы все противоположно направленные на систему воздействия. Тело, находящееся в состоянии устойчивого равновесия, обнаруживает способность возвращаться в это состояние после какого-либо возмущающего воздействия.

Примером тела, находящегося в состоянии устойчивого равновесия, может служить шарик, лежащий на дне ямки. Если его толкнуть в одну или другую сторону, он вскоре снова возвращается в состояние устойчивого равновесия. В отличие от этого шарик, лежащий на краю ямки, находится в состоянии неустойчивого равновесия — достаточно ничтожного толчка, чтобы он необратимо скатился в ямку.

Оба этих примера являются примерами статического равновесия. В химии, однако, приходится сталкиваться не столько со статическими равновесиями, столько с динамическими («подвижными»). Динамическое равновесие устанавливается, когда оказываются сбалансированными два обратимых или противоположных процесса. Динамические равновесия подразделяют на физические и химические. Наиболее важными типами физических равновесий являются фазовые равновесия. Система находится в состоянии химического равновесия, если скорость прямой реакции равна скорости обратной реакции.

Например, если скорость протекания реакции (константа скорости к1 )

k1

А(г) + В(пар) АВ(г)

равна скорости обратной реакции (константа скорости k2 )

k2

АВ(г) А(г) + В(пар)

то система находится в динамическом равновесии. Подобные реакции называются обратимыми, а их уравнения записывают с помощью двойной стрелки:

k1

А(г) + В(пар) АВ(г)

k2

Реакции, протекающие слева направо, называются прямой, справа налево – обратной.

Нужно подчеркнуть, что реакционная система остается в состоянии динамического равновесия лишь до тех пор, пока система остается изолированной. Изолированной называют такую систему, которая не обменивается с окружающей средой ни веществом, ни энергией.

Состояние химического равновесия обратимых процессов количественно характеризуется константой равновесия. Так, для обратимой реакции общего вида

k1

аA +bB сC + dD (1.2.1)

k2

константа равновесия К , представляющая собой отношение констант скорости прямой и обратной реакций, запишется

(1.2.2)

где, Кс константа скорости реакции, зависящая от концентрации реагирующих компонентов; С i или [ i ]- равновесная молярная концентрация i - того компонента;

a , b , c , d – стехиометрические коэффициенты веществ.

В правой части уравнения (1.2.2) стоят концентрации взаимодействующих частиц, которые устанавливают при равновесии, - равновесные концентрации.

Уравнение (1.2.2) представляет собой математическое выражение закона действующих масс при химическом равновесии. Для реакции с участием газов константа равновесия выражается через парциальные давления, а не через их равновесные концентрации. В этом случае константу равновесия обозначают символом Кр.

Р i - равновесные парциальные давления i-того компонента.

С i - равновесная молярная концентрация компонентов.

a , b , c , d стехиометрические коэффициенты веществ.

Состояние химического равновесия при неименных внешних условиях теоретически может сохраняться бесконечно долго. В реальной действительности, т.е. при изменении температуры, давления или концентрации реагентов, равновесии может «сместиться» в ту или иную сторону протекания процесса.

Изменения, происходящие в системе в результате внешних воздействий, определяется принципом подвижного равновесия – принципом Ле ШательеБрауна . При воздействие на равновесную систему, любого внешнего фактора, равновесие в системе смещается в таком направлении, чтобы уменьшить воздействие этого фактора .

1. Влияние давления на равновесие химической реакции (для реакции, проходящей в газовой фазе).

aA + bB cC + dD

- если реакция идет с увеличением количества компонентов a + b < c + d, то повышение давления смещает равновесие химической реакции справа налево.

- если реакция идет с уменьшением количества компонентов a + b> c + d, при увеличении давления сдвиг равновесия произойдет слева направо.

- если количество компонентов одинаково a + b = c + d, то изменение давления не повлияет на положении равновесия.

2. Влияние инертного газа . Введение инертного газа подобно эффекту уменьшения давления (Ar, N2 , водяной пар). Инертный газ не участвует в реакции.

3. Влияние изменения концентрации реагирующих веществ. При введение дополнительного количества вещества равновесие химической реакции сместиться в ту сторону где концентрация вещества уменьшается.

4. Влияние температуры на химическое равновесие реакции.

Если к равновесной системе подводится теплота, то в системе происходят изменения, чтобы ослабить это воздействие, т.е. процессы с поглощением теплоты. При экзотермических реакциях снижение температуру сместит равновесие слева направо, а при эндотермических реакциях повышение температуры сместит равновесие справа налево.

Зависимость Кр от температуры – уравнение Вант – Гоффа.

; ;

( ); lnkT 1 lnkT 2 =

Примеры решения задач

1 . Реакция соединения азота и водорода обратима и протекает по уравнению

N2 + 3Н2 2NН3 . При состоянии равновесия концентрации участвующих в ней веществ были: [N2 ] = 0,01 моль/л, [Н2 ] = 2,0 моль/л, [NH3 ] = 0,40 моль/л. Вычислить константу равновесия и исходные концентрации азота и водорода.

Решение:

Для приведенной реакции

Подставляя значение равновесных концентраций, получим

= 2

Согласно уравнению реакции из 1 моль азота и 3 моль водорода получаем

2 моль аммиака, следовательно, на образование 0,4 моль аммиака пошло

0,2 моль азота и 0,6 моль водорода. Таким образом, исходные концентрации будут [N2 ] = 0,01 моль/л + 0,2 моль/л = 0,21 (моль/л),

[H2 ] = 2,0 моль/л + 0,6 моль/л = 2,6 (моль/л).

Ответ: Кравн = 2; С0 (N2 ) = 0,21 моль/л и С0 2 ) = 2,6 моль/л.

2. Один моль смеси пропена с водородом, имеющей плотность по водороду 15, нагрели в замкнутом сосуде с платиновым катализатором при 320°С, при этом давление в сосуде уменьшилось на 25%. Рассчитайте выход реакции в процентах от теоретического. На сколько процентов уменьшится давление в сосуде, если для проведения эксперимента в тех же условиях использовать 1 моль смеси тех же газов, имеющей плотность по водороду 16?

Решение:

С3 Н6 + Н2 С3 Н8

1) Пусть ν(C3 H6 ) = х, ν(H2 ) =1-x, тогда масса смеси равна

42х + 2(1 - х) = 2 • 15 = 30,

откуда х = 0,7 моль, т. е. ν(C3 H6 ) = 0,7 моль, ν(H2 ) = 0,3 моль.

Давление уменьшилось на 25% при неизменных температуре и объеме за счет уменьшения на 25% числа молей в результате реакции. Пусть у моль Н2 вступило в реакцию, тогда после реакции осталось:

ν(C3 H6 ) = 0,7 - у, ν(H2 ) = 0,3 – у, ν(C3 H8 ) = у,

νо6щ = 0.75 =(0,7 - у) + (0,3 - у) + у, откуда y = 0,25 моль.

Теоретически могло образоваться 0,3 моль С3 Н8 (H2 — в недостатке), поэтому выход равен . Константа равновесия при данных условиях равна

2) Пусть во втором случае ν(C3 H6 ) = a моль, ν(H2 ) = (1 – а) моль, тогда масса смеси равна 42а + 2(1 - а) = 2 • 16 = 32, откуда, а= 0,75, т. е. ν(C3 H6 ) = 0,75, ν(H2 ) = 0,25. Пусть в реакцию вступило b моль Н2 . Это число можно найти из условия неизменности константы равновесия

=

Из двух корней данного квадратного уравнения выбираем корень, удовлетворяющий условию 0 < b < 0,25, т. е. b = 0,214 моль

Общее число молей после реакции равно

νoбщ =((0,75 - 0,214) + (0,25 - 0,214) + 0,214 - 0,786) моль, т. е. оно уменьшилось на 21,4% по сравнению с исходным количеством (1 моль). Давление пропорционально числу молей, поэтому оно также уменьшилось на 21,4%.

Ответ: выход С3 Н8 — 83,3%; давление уменьшится на 21,4%.

Задачи для самостоятельного решения

1 . В реакции между раскаленным железом и паром

3Fe(тв) + 4Н2 О(г) Fe3 O4(тв) +4Н2(г) , при достижении равновесия парциальные давления водорода и пара равны 3,2 и 2,4 кПа соответственно. Рассчитайте константу равновесия.

2. Вычислите константы равновесия Кр КС газовой реакции

СО + Cl2 СОCl2, состав газовой смеси при равновесии был следующим (% по объему): СО=2,4, Cl2 =12,6, СОCl2 =85,0, а общее давление смеси при 20С составляло 1,033*105 Па. Вычислите ΔG реакции.

3. Рассчитайте константу равновесия при некоторой заданной данной температуре для обратимой реакции СО + Н2 О СО2 + Н2 , учитывая, что в состоянии равновесия концентрации участвующих в реакции веществ были равны [СО] = 0,16 моль/л, [Н2 О] = 0,32 моль/л, [СО2 ] = 0,32 моль/л, [Н2 ] = 0,32 моль/л.

4. В стальном резервуаре находятся карбонат кальция и воздух под давлением 1 атм. при температуре 27°С. Резервуар нагревают до 800°С и дожидаются установления равновесия. Вычислите константу равновесия Кр реакции CaCO3 СаО + СО2 при 800°С, если известно, что равновесное давление газа в резервуаре при этой температуре равно 3,82 атм., а при 27°С СаСО3 не разлагается.

5. Припостоянной температуре в гомогенной системе А + В = 2С установилось равновесие с равновесными концентрациями [А]=0,8 моль/ль, [В]=0,6 моль/л, [С]=1,2 моль/л. определите новые равновесные концентрации, если в систему дополнительно ввели 0,6 моль/л вещества В.

6. Как можно обосновать оптимальные условия промышленного синтеза аммиака с высоким выходом на основе термохимического уравнения реакции

N2 + ЗН2 2NH3 + 491,8 кДж и с учетом того, что при низких температурах скорость прямой реакции очень мала?

7. Вычислите константу равновесия ниже приведенных реакции, протекающей при стандартных условиях и при 400К.

а) Na2 O(к) + CO2(г) → Na2 CO3(к)

б) N2 O4(г) = 2NO2(г)

8. Уравнение реакции окисления хлорида водорода

4НСl(г) + O2(г) = 2H2 O(г) + 2Cl2(г) Вычислите константу равновесия этой реакции при Т=500К. Предположите способы увеличения концентрации хлора в равновесной смеси.

9. При смешении 2 моль уксусной кислоты и 2 моль этилового спирта в результате реакции СН3 СООН + С2 Н5 ОН = СН3 СООС2 Н5 + Н2 О к моменту наступления равновесия осталось 0,5 моль СН3 СООН и С2 Н5 ОН, а также некоторое количество эфира и воды. Определите состав равновесной смеси, если смешивают по 3 моль СН3 СООН и С2 Н5 ОН при той же температуре.

10. Вычислить начальные концентрации веществ в обратимой реакции

2СO +О2 2СО2 и константу равновесия, если равновесные концентрации составляют [СО]=0,44 моль/л, [О2 ]=0,12 моль/л, [СО2 ] =0,18 моль/л.

3.1.3 Химическая кинетика

Это раздел физической химии, изучающей скорость химических реакций, а в более широком смысле – закономерности их протекания.

Термин скорость реакции означает скорость, с которой образуются продукты, либо скорость, с которой расходуются агенты при протекании химической реакции. Химические реакции происходят с самыми разными скоростями. Со скоростью химических реакций связаны представления о превращении веществ, а также экономическая эффективность их получения в промышленных масштабах. Основным понятием в химической кинетике является понятие о скорости реакции, которая определяется изменением количества вещества реагентов (или продуктов реакции) в единицу времени в единице объема. Если при неизменном объеме и температуре концентрация одного из реагирующих веществ уменьшилась (или увеличилась) от значения с1 до значения с2 за промежуток времени от t1 до t2 , то средняя скорость реакции составит

(1.3.1)

где D С i – изменения концентрации i -того компонента, моль/м3 или моль/л,

wi - скорость реакции, (моль/(л • с) или моль/м3 *с). Уравнение (1.3.1) подходит для реакций протекающих в гомогенном реакционном пространстве.

Если реакция протекает в гетерогенном пространстве, то выражение для скорости реакции по данному веществу i имеет вид (моль/м3 *с).

(1.3.2)

dni изменение количества i-того компонента, моль; S - площадь, м2;

dt – изменение времени, с.

I . Продукты реакции или промежуточные соединения образуются при взаимодействии частиц в элементарном химическом акте. Число частиц в элементарном химическом акте называется молекулярностью реакции. Элементарные реакции бывают трех типов:

- мономолекулярные А ® Р1 + Р2 + …

- бимолекулярные А + В ® Р1 + Р2 +...

- тримолекулярные 2А + В ® Р1 + Р2 + … 3А ® Р1 + Р2 + …,

А + В + С ® Р1 + Р2 + …

Четырехмолекулярных реакций не бывает, т.к. вероятность одновременного столкновения четырех молекул ничтожно мала.

Скорость реакции можно измерить, определяя количество реагента или продукта во времени. Скорость реакции зависит от природы реагирующих веществ и от условий, в которых реакция протекает. Важнейшими из них являются концентрация, температура и присутствие катализатора.

Рассмотрим реакцию между веществами А и В, протекающую по схеме

аА + вВ + …. → сС + dD + …

Скорость реакции зависит от концентраций А и В, однако заранее нельзя утверждать, что она прямо пропорциональна концентрации того или другого. Зависимость скорости химической реакции от концентрации реагирующих веществ выражается основным законом химической кинетики — законом действующих масс : скорость элементарной химической реакции прямо пропорциональна произведению концентрации реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для элементарной реакции

n1 А + n2 В ®n3 С + n4 Е + …

w= илиw = k [A]nA [B]n В .(1.3.3)

Выражение такого типа называют кинетическим уравнением, где k - константа скорости (не зависит от концентрации реагирующих реагентов и времени); CA , CB – текущие концентрации реагирующих веществ; n 1, n 2 - некоторые числа, которые называются порядком реакции по веществам А и В соответственно. Порядок реакции совпадает со стехиометрическими показателями элементарной реакции. Порядок реакции n – сумма показателей кинетических степеней в химическом уравнении реакции. Сумма показателей степеней n 1 + n2 = n называется общим порядком реакции . Для элементарной реакции общий порядок равен молекулярности, а порядок по веществам равны коэффициентам в уравнении реакции. Порядок реакции по i - тому компоненту не равен его стехиометрическому коэффициенту в химическом уравнении сложной реакции.

1 . Реакции нулевого порядка . Скорость этих реакций не зависит от концентрации реагирующего вещества n=0. Из уравнений 1.3.1 и 1.3.3 получим следующее

w = k или . (1.3.4)

Интегрируя выражение (1.3.4) получаем:

CA,t =CA,0 k0 t, k0 t = CA,0 – CA,t (1.3.5)

Введем понятие время полупревращения t 1/2 – это время, в течение которого превращается половина исходного вещества.

Для реакции нулевого порядка в уравнение 1.3.5 подставим

t 1/2 =

2. Реакции первого порядка . Для реакции первого порядка n=1 типа

А ® Р1 + Р2 + …, скорость прямо пропорциональна концентрации вещества А:

w = ;

lnCA , t = lnCA ,0 kt

С=СА, t = CA ,0 e - kt

t 1/2 =

3. Реакции второго порядка . Для реакции второго порядка n=2 типа

А + В ® Р1 + Р2 +..., если СА,0В,0 кинетическое уравнение имеет вид

w= ;

t 1/2

Для реакции второго порядка типа А + В ® Р + … если СА,0 ¹СВ,0 кинетическое уравнение имеет вид

w =

Периоды полураспада вещества А и В, если СА,0 ¹СВ,0 , различны,

т.е. t 1|2 ( A ) ¹ t 1|2 ( B ).

4. Реакции третьего порядка . Кинетика реакции третьего порядка n=3 типа

2А + В ® Р1 + Р2 + … 3А ® Р1 + Р2 + …, А + В + С ® Р1 + Р2 + …

при равных начальных концентрациях описывается уравнением

w =

t 1|2 =

Для реакции А + В + С ® Р + …,если СА,0 ¹СВ,0 ¹СС,0 кинетическое уравнение примет вид

w =

II . Выражение (1.3.1) записано для фиксированной температуры. Для приближенной оценки изменения скорости широко используется эмпирическое правило Вант-Гоффа, в соответствии с которым скорость химической реакции становится в 2-4 раза больше при повышении температуры на каждые 10°C. В математической форме зависимость изменения скорости реакции от температуры выражается уравнением

(1.3.4)

— скорость реакции при повышенной температуре Т2 ,

- скорость реакции при начальной температуре Т1 ; γ —температурный коэффициент скорости, показывающий, во сколько раз увеличится скорость реакции при повышении температуры на 10°С (2-4). Это позволяет предположить, что между скоростью реакции и температурой должна существовать экспоненциальная зависимость. Точное соотношение между скоростью реакции и температурой установил шведский химик Аррениус в 1899 г. Это соотношение, получившее название уравнение Аррениуса, имеет вид

(1.3.5)

где k – константа скорости реакции; А — постоянная, характеризующая каждую конкретную реакцию (константа Аррениуса, или «предэкспонента»);

Еa — постоянная, характерная для каждой реакции и называемая энергией активации, Дж; R — универсальная газовая постоянная Дж/(К*моль);

Т — температура, К.

Подчеркнем, что это уравнение связывает температуру не со скоростью реакции, а с константой скорости. Приведем уравнение Аррениуса для двух температур

III . Одно из наиболее сильных средств влияния на скорость реакции — присутствие в реагирующей системе катализатора - вещества, которое усиливают (а иногда и понижают - тогда его называют ингибитором) скорость химической реакции, но само не расходуется в этом процессе.

Примеры решения задач

1 . Во сколько раз увеличится скорость химической реакции при повышении температуры с 0 до 50°С, принимая температурный коэффициент скорости равным трем?

Решение:

В математической форме зависимость изменения скорости реакции от температуры выражается уравнением

= γ

Температура увеличивается на 50°С, а γ = 3. Подставляя эти значения, получим = 3 = 243

Ответ: скорость увеличится в 234 раза.

2. Для реакции первого порядка А→2В определите время за которое прореагировало на 90% вещества А. Константа скорости реакции 1*10-4 с-1 .

Решение:

А →2В

; ;

C 0, A - CA =0,9 C 0, A

CA = 0,1 C0,A

k1 t = lnC0,A - lnCA

Ответ: 64 ч.

3 . Как изменится скорость реакции 2А+В2 2АВ, протекающей и закрытом сосуде, если увеличить давление в 4 раза?

Решение:

По закону действия масс скорость химической реакции прямо пропорциональна произведению молярных концентраций реагирующих веществ:w = . Увеличивая в сосуде давление, мы тем самым увеличиваем концентрацию реагирующих веществ. Пусть начальные концентрации А и В равнялись [А] =а,

[В]=b. Тогда w =ka2 b. Вследствие увеличения давления в 4 раза увеличились концентрации каждого из реагентов тоже в 4 раза и стали [A]=4a, [B]=4b.

При этих концентрациях w 1 =k(4а)2 *4b = k64а2 b. Значение k и обоих случаях одно и то же. Константа скорости для данной реакции есть величина постоянная, численно равная скорости реакции при молярных концентрациях реагирующих веществ, равных 1. Сравнивая w и w 1 , видим, что скорость реакции возросла в 64 раза.Ответ: скорость реакции возросла в 64 раза.

4 . Энергия активации некоторой реакции в отсутствие катализатора равна

76 кДж/моль и при температуре 27°С протекает с некоторой скоростью k1 . В присутствии катализатора при этой же температуре скорость реакции увеличивается в 3,38 • 104 раз. Определите энергию активации реакции в присутствии катализатора.

Решение:

Константа скорости реакции в отсутствие катализатора запишется в виде

= Ае = Ae -30,485 .

Константа скорости реакции в присутствии катализатора равна

= Ае = Ае .

По условию задачи

=e – (- 30,485- ) =3,38 * 104 .

Логарифмируем последнее уравнение и получаем

30,485 - = 1n(3,38*104 ) = 10,43.

Отсюда Еа = 2493 • 20,057 = 50 кДж/моль.

Ответ: энергия активации реакции в присутствии катализатора равна 50 кДж/моль.

Задачи для самостоятельного решения

1. За какое время пройдет реакция при 60◦С, если при 20◦С она заканчивается за

40 с, а энергия активации 125,5 кДж/моль?

2 . В загрязненном воздухе содержится примесь монооксида углерода, который образуется при неполном сгорании твердого топлива и работе двигателей внутреннего сгорания. Монооксид углерода медленно окисляется кислородом воздуха до диоксида углерода. Допустим, что при определенных условиях скорость такой реакции составляет 0,05 моль/л*с, а концентрация диоксида углерода равна 0,2 моль/л*с. Рассчитайте концентрацию диоксида углерода через 10 с после указанного момента.

3 . Один из важных видов сырья для органического синтеза — так называемый водяной газ, представляющий собой смесь водорода и монооксида углерода. Эту смесь получают при пропускании водяного пара через башни, наполненные раскаленным углем. Из водяного газа получают метанол, формальдегид и другие вещества. Рассчитайте значение константы скорости реакции получения водяного газа, если при концентрации водяного пара, равной 0,03 моль/л скорость реакции составляет 6,1 • 10 -5 моль/л*с.

4. В реакции А + В → С с общим порядок равным 1, k1 = 5*10-5 c-1 Определите концентрации веществ А и В и скорость через 1 час и через 5 ч, если начальная концентрации А составляет 0,2 моль/л.

5 . Причиной появления опасного для здоровья тумана (смога) считают образование большого количества выхлопных газов автомобилей при высокой влажности воздуха. В смоге присутствует ядовитый диоксид азота, который получается при реакции монооксида азота с атомарным кислородом. Рассчитайте скорость этой реакции, если через 5 мин после начала наблюдений концентрация диоксида азота была равна 0,05 моль/л, а через 20 мин - 0,08 моль/л.

6 . Уравнение реакции омыления уксусноэтилового эфира:

СН2 СООС2 Н5 + NаОН = СН3 СООNa+ С2 Н5 ОН

Исходные концентрации реагирующих веществ до начала реакции были: [СН3 СООС2 Н5 ] =0,50 моль/л, [NаОН] = 0,25 моль/л. Определить, как и во сколько раз изменится скорость реакции в момент, когда концентрация [СН3 СООС2 Н5 ] стала равной 0,30 моль/л.

7 . Атмосферные загрязнения, например фторированные и хлорированные углеводороды — фреоны (СС13 F, СС12 F2 , СС1F3 ), разрушают защитный озоновый слой Земли. Фреоны химически стабильны в нижних слоях атмосферы, но в стратосфере под действием ультрафиолетового излучения Солнца разлагаются, выделяя атомарный хлор, который и взаимодействует с озоном. Рассчитайте скорость такой реакции с образованием кислорода и монооксида хлора, если через 15 с после начала реакции молярная концентрация озона была 0,30 моль/л, а через 35с (от начала реакции) стала равна 0,15 моль/л.

8. За реакцией дегидрирования бутана, протекающей по уравнению

С4 Н10 → С4 Н8 + Н2 при температуре 800 К, следили по объему реагирующих газов, занимаемому ими при давлении 101 кПа и 293 К. Объем реактора 0,2 л, скорость протекания реакции равна 1,33 • 10-2 кПа/с. Рассчитайте, через какое время после начала реакции изменение объема достигнет 0,01 л.

9. Рассчитайте изменения константы скорости реакции, имеющей энергию активации 191 кДж/моль, при увеличении температуры от 330 до 400 К.

10. Вычислите порядок реакции и константу скорости, если при изменении начальной концентрации с 0,502 моль/л до 1,007 моль/л время полупревращения уменьшится с 51 с до 26 с.

11. Для реакции омыления уксусно-этилового эфира при большом избытке воды константа скорости при 20ºС равна 0,00099 мин-1 , а при 40С ее величина составляет 0,00439 мин-1 . Определите энергию активации и константу скорости реакции при 30ºС.

3.2 Технико-экономические показатели химических производств

Значение химии становится особенно ясным, когда изучаемый материал связывается с практическими вопросами. Один из способов его связи с жизнью — решение задач на темы с производственны содержанием. Для химической промышленности, как отрасли материального производства имеет значение технический и экономический аспекты, от которых зависит нормальное функционирование производства. Технико-экономические показатели (ТЭП) отражают возможности предприятия выпускать продукцию заданной номенклатуры и качества, удовлетворяющий требованиям заказчика, и в заданном количестве. Они являются критериями, позволяющий установить экономическую целесообразность организации данного производства и его рентабельность.

Рентабельность процесса производства характеризуется следующими ТЭП: степень превращения, выход продукта, селективность, производительность, мощность и интенсивность аппаратуры, практический и теоретический расходный коэффициент.

В этом разделе рассматриваются задачи следующих типов:

1. Задачи, в которых обращается внимание на получение вещества или на применение его в производственных условиях.

2 . Задачи на определение выхода получаемого вещества по отношению к теоретическому.

3. Задачи, вскрывающие химическую сторону технологии производства и требующие составления уравнения реакции по которой оно протекает.

4. Задачи, в которых обращается внимание на масштабы производства или размеры аппаратуры (башен, камер, колонок) и т. п.

Степень превращения ( ) – это отношение количества вещества, вступившего в реакцию, к его исходному количеству вещества. Допустим, протекает простая необратимая реакция типа А → В. Если обозначить через исходное количество вещества А, а через - количество вещества А в данный момент, то степень превращения реагента А составит

(2.1)

Чем выше степень превращения, тем большая часть исходного сырья вступила в реакцию и полнее прошел процесс химического превращения.

Выход продукта (η) является показателем совершенства процесса и показывает отношение количества фактически полученного количества того или иного продукта к его теоретическому количеству.

; (2.2), (2.3)

Производительность аппарата (П) определяет количество готового продукта m фактически вырабатываемый в единицу времени tпри заданных условиях процесса производства. Измеряется т/сут, тыс.т/год, кг/ч, нм3 /сут.

(2.4)

Интенсивность аппарата – производительность, отнесенная к единице полезного объема или к единице полезной площади. Измеряется кг/м3 и кг/м2

или (2.5), (2.6)

Максимально возможная производительность аппарата при оптимальных условиях процесса производства называется его мощностью W

W max (2.7)

Селективность – отношение массы целевого продукта к общей массе продуктов, полученных в данном процессе, или к массе превращенного сырья за время t.

Если А → В, А → С, где В – целевой продукт, С – побочный продукт, то уравнение имеет следующий вид:

(2.8)

Это отношение скорости превращения вещества А в целевой продукт к общей скорости расхода вещества А.

Расходный коэффициент Кр определяет расходы сырья, воды, топлива, электроэнергии пара на единицу произведенной продукции

(2.9)

Gисх затраты сырья, топлива, энергии при производстве продуктав количестве G . Измеряется в т/т, нм3 /т, нм3 / нм3 , кВт*ч/т.

Примеры решения задач

1. Сколько теоретически можно получить чугуна, содержащего 3% углерода и 3% других элементов, из 1 т железной руды, содержащей 80% железа?

Из каждой тонны железной руды, содержащей в среднем 80% магнитного железняка, выплавляют 570 кг чугуна, содержащего 95% железа. Каков был выход железа от теоретического?

Решение:

М(Fе3 О4 ) = 232 г/моль

М(Fе) = 56 г/моль

Записываем формулу определения η( Fе):

Обеих величин в условии нет. Но m(Fе)пр можно рассчитать по массе чугуна и массовой доле железа в нем:

m(Fе)пр = 570 кг • 0,95 = 541,5 кг.

Сразу теоретическую массу железа по условию не вычислить. Можно найти массу магнитного железняка по массе руды и содержанию в ней массовой доли железняка:

m(Fе3 О4 ) = 1000 кг • 0,8 = 800 кг.

По вычисленной массе магнитного железняка и его формуле найдем массу железа в нем:

800 > 232 в 3,45 раза => m(Fе) будет > 168 (56 • 3) тоже в 3,45 раза, т. е.

M(Fе) = 168 • 3,45 = 579,6 (кг).

Подставляя полученные значения практической и теоретической массы железа в первоначальную формулу, получим выход железа:

η(Fе) =

Ответ: η(Fе) =93,4%.

2. Для получения формальдегида метиловый спирт необходимо окислить на серебряном катализаторе: СН3 ОН + 0,5О2 = СН2 О + Н2 О. Кроме основных реакций протекают и побочные. Предположим, что на окисление подается 3,2 кмоль метилового спирта. Их них образовалось 1,8 кмоль формальдегида, 0,8 моль – побочных продуктов (суммарно) и остались неокисленными 0,6 кмоль метилового спирта. Необходимо найти степень превращения метилового спирта, выход формальдегида и селективность.

Решение:

Определим степень превращения. Для этого количество непрореагировавшего спирта, оставшегося после реакции, 0,6 кмоль необходимо вычесть из его начального количества 3,2 кмоль. Подставив данные значения в формулу (2.1) получим:

Рассчитаем селективность по формальдегиду. Общее количество полученных продуктов равно сумме количества формальдегида 1,8 кмоль и количества продуктов 0,8 кмоль.

Найдем выход продукта формальдегида.

Ответ: = 0,81, φ(НСНО)= 0,69, η(НСНО)= 56%

Задачи для самостоятельного решения

1. Рассчитать основные технико-экономические показатели получения синтетического аммиака:

а) расходный коэффициент сырья по Н2 и N2 (в м3 ) на 1т аммиака.

Б) выход аммиака

в) производительность завода.

Г) интенсивность процесса синтеза аммиака в т/м3 полезного объема колонки в сутки. На 1т аммиака практически расходуется 3000 нм3 азотоводородной смеси, теоретически 2635 нм3 . 5 колонок с высотой 0,36 м.

2 . Вычислить расходный коэффициент на 1т СН3 СООН для СаС2 , содержит 65% СаС2 , если выход С2 Н2 97%, уксусного альдегида 95% и СН3 СООН 96%.

3 . Вычислить количество аммиака и СО2 (в кг) израсходованных на производство мочевины. Потери мочевины 5% избыток аммиака 100%, степень превращения карбомата аммония мочевину 75%

4. При окислительном дегидрировании метилового спирта протекают одновременно две реакции: дегидрирование и окисление метанола. Выход формальдегида 90% при степени конверсии метанола 65%. Вычислите расход метанола на 1т формальдегида.

5. Производительность мечи для обжига серного колчедана составляет 30т в сутки. Выход SО2 - 97,4% от теоретического. Сколько тонн SО2 производит печь в сутки, если содержание серы в колчедане 42,4%?

6. Печь для варки стекла, производящая в сутки 300т стекломассы имеет ванну длиной 60м, шириной 10м и глубиной 1,5 м. Определить:

а) годовую производительность, если 15 суток печь находится на ремонте

б) интенсивность печи за сутки работы.

В) количество листов оконного стекла за из свариваемой стекломассы (стандарт. Лист 1250 * 700 * 2 мм и плотность 2500 г/м3 )

7 . При прямой гидратации этилена наряду с основной реакцией присоединения Н2 О протекают побочные реакции. Так 2% (от массы) этилена расходуется на образование простого диэтилового эфира, 1% ацетальдегида, 2% низкомолекулярного жидкого полимера. Общий выход спирта при многократной циркуляции сост. 95%. Напишите уравнению химической реакции образовавшихся выше перечисленных соединений и подсчитайте расход этилена на 1т этилового спирта, и сколько диэтилового эфира может при этом получится.

8 . Шахтная печь для получения оксида кальция имеет в среднем высоту

14 м и диаметр 4 м; выход оксида кальция составляет 600- 800 кг на 1 м3 печи в сутки. Определите суточный выход оксида кальция.

9. Производительность печи для обжига колчедана составляет 30 т колчедана в сутки. Колчедан содержит 42,2% серы. Воздух расходуется на 60% больше теоретического. Выход сернистого газа составляет 97,4%.

Вычислить а) содержание колчедана FеS2 (в%); б) объем и состав газовой смеси, выходящей из смеси за 1 час; в) массу оставшегося в печи огарка; г) массу оставшегося в печи не прореагировавшего FeS2.