Главная      Учебники - Разные     Лекции (разные) - часть 29

 

Поиск            

 

Разработка Мыковского карьера лабрадоритов

 

             

Разработка Мыковского карьера лабрадоритов

СОДЕРЖАНИЕ.

1.Введение………………………………………………………………….

1.1.Развитие камнедобывающей и камнеобрабатывающей

подотрасли…………………………………………………………………

1.2.Коньюнктура мирового рынка декоративного камня……………….

2.Характеристика района месторождения……………………………..

2.1.Характеристика района строительства Мыковского карьера………

2.2.Геологическая характеристика Мыковского месторождения……….

2.3.Качественная характеристика полезного ископаемого………………

2.4.Подсчёт запасов полезного ископаемого, нормативов

потерь, объёмов вскрыши………………………………………………..

2.5.Гидрогеологическая характеристика Мыковского месторождения..

3.Производительность карьера и организация работ………………...

3.1.Производительность, режим работы и срок службы карьера……….

3.2.Основные показатели по Мыковскому месторождению……………..

4. Вскрытие Мыковского месторождения……………………………...

4.1.Состояние горных работ………………………………………………….

4.2.Вскрытие и порядок отработки месторождения………………………

5.Подготовка горных пород к выемке…………………………………..

5.1.Выбор способа подготовке горных пород к выемке………………….

5.2.Расчёт технологического комплекса по подготовке

к выемке блоков термобурохимическим способом……………………

5.3.Расчёт количества буровых станков…………………………………….

6.Система разработки и структура комплексной механизации……..

6.1.Система разработки и технологическая схема горных работ……….

6.2.Расчёт количества добычных экскаваторов……………………………

6.3.Завалка монолита………………………………………………………….

6.4.Разделка монолита на блоки……………………………………………..

6.5.Вертикальный транспорт блоков………………………………………..

6.6.Организация добычных и погрузочных работ………………………...

6.7.Вскрышные работы………………………………………………………..

7.Отвальные работы……………………………………………………….

8.Карьерный транспорт…………………………………………………...

8.1.Выбор типа транспорта для транспортирования вскрышных

пород и полезного ископаемого…………………………………………

8.2.Обработка исходных данных…………………………………………….

8.3.Проверка профиля трассы………………………………………………..

8.4.Определения числа автосамосвалов…………………………………….

9.Водоотлив………………………………………………………………...

9.1.Выбор насоса………………………………………………………………

9.2.Выбор трубопровода……………………………………………………...

9.3.Рабочий режим……………………………………………………………..

9.4.Выбор привода……………………………………………………………..

9.5.Определение объёмов водосборника……………………………………

9.6.Определение эффективности водоотливной установки………………

10.Электроснабжение……………………………………………………...

10.1.Выбор схемы питания и распределения электроэнергии

на Мыковском карьере……………………………………………………

10.1.1.Выбор внешнего электроснабжения…………………………………….

10.1.2.Схема соединения подстанции…………………………………………..

10.1.3.Распределение энергии на Мыковском карьере……………………….

10.2.Проектирование электрического освещения

открытых горных работ…………………………………………………

10.2.1.Осветительные установки в карьерах…………………………………..

10.2.2.Расчёт освещения ксеноновыми лампами……………………………...

10.3.Определение электрических нагрузок и выбор

мощности трансформатора…………………………………………….

10.3.1.Определение электрической нагрузки ГПП.

10.3.2.Выбор мощности трансформатора……………………………………..

10.4.Расчёт электрических сетей Мыковского карьера…………………..

10.4.1.Выбор площади сечения проводников питающей ЛЭП……………..

10.4.2.Выбор площади сечения проводников и жил кабелей

по условиям нагрева и механической прочности……………………...

10.4.3.Проверка сети по потере напряжения…………………………………..

10.5.Выбор аппаратов управления…………………………………………..

10.6.Расчёт защитного заземления…………………………………………..

10.7.Определение основных электрических показателей…………………

11.Защита карьера от пылевого загрязнения…………………………..

11.1.Характеристика окружающей среды Мыковского карьера………..

11.2.Оценка воздействия на окружающую среду

Мыковского карьера…………………………………………………….

11.3.Воздушная среда…………………………………………………………

11.4.Методы и средства контроля за состоянием

воздушного бассейна…………………………………………………….

11.5.Программа контроля экологической безопасности

на Мыковском карьере……………………………………………………

11.6.Комплекс мероприятий по уменьшению выбросов в атмосферу…..

11.7.Охрана воздушного бассейна от пылевых выбросов………………..

11.7.1.Охрана воздушного бассейна от пылевых выбросов горного

предприятия………………………………………………………………...

11.7.2.Охрана воздушного бассейна на Мыковском карьере……………….

11.8.Расчёт суммарного выброса пыли из карьера………………………..

11.8.1.Расчёт выбросов пыли при автотранспортных работах……………...

11.8.2.Расчёт пылеуносов с породных отвалов………………………………..

11.8.3.Расчёт выброса пыли при отсыпке отвала……………………………..

11.8.4.Расчёт выброса пыли при выемочно-погрузочных работах…………

11.8.5.Расчёт выброса пыли при буровых работах…………………………...

11.8.6.Расчёт суммарного выброса пыли из карьера…………………………

11.9.Предотвращённый экономический ущерб от загрязнения

воздушного бассейна……………………………………………………..

12.Технико-экономическое обоснование разработки

Мыковского карьера…………………………………………………..

12.1.Расчёт капитальных затрат……………………………………………..

12.2.Определение годовых эксплуатационных затрат…………………….

12.2.1.Расчёт амортизационных отчислений………………………………….

12.2.2.Расчёт фонда заработной платы…………………………………………

12.2.3.Расчёт затрат на материалы……………………………………………...

12.2.4.Определение затрат на электроэнергию………………………………..

12.2.5.Определение затрат на топливо………………………………………….

12.3.Расчёт себестоимости 1 м3 декоративного камня…………………….

12.3.1.Расчёт участкового персонала…………………………………………...

12.3.2.Затраты на материалы и топливо……………………………………….

12.4.Фондоотдача……………………………………………………………..

12.5.Рентебельность предприятия…………………………………………..

12.6.Разработка, расчёт параметров и оптимизация сетевого

графика…………………………………………………………………….

13.Охрана труда……………………………………………………………

13.1.Анализ существующих опасностей и вредных

факторов на карьере……………………………………………………….

13.2.Мероприятия по защите от выявленных опасностей и

вредных факторов на Мыковском карьере…………………………….

13.2.1.Основные мероприятия по обеспечению безопасности работ………

13.2.2.Промсанитария труда…………………………………………………….

13.2.3.Контроль требований безопасности……………………………………

13.3.Расчёт освещения…………………………………………………………

13.4.Пожарная безопасность…………………………………………………

13.5.Расследование и учёт несчастных случаев,

профессиональных заболеваний и аварий………………………….…

14.Литература……………………………………………………………………...


1. ВВЕДЕНИЕ.

1.1. Развитие камнедобывающей и камнеобрабатывающей подотрасли.

Природные облицовочные камни широко используются в разных отраслях народного хозяйства: архитектурной, строительной, технической, художественном камнерезании. Развитие и освоение новых методов добычи и обработки природного облицовочного камня дали возможность значительно расширить области использования камня и уменьшить его стоимость.

Создание промышленных предприятий и объектов культурно-бытового назначения, строительство новых линий метрополитена, увеличение капитального строительства, а также стремление специалистов сделать эти строения долговечными и выразительными требует значительного увеличения объёмов производства облицовочных материалов из природного камня. Это в свою очередь обуславливает необходимость расширения сырьевой базы, т.е. выявление новых месторождений природного облицовочного камня и увеличение его ассортимента, в том числе разновидностей, которые характеризуются высокой декоративностью.

Камнеобрабатывающая и камнедобывающая подотрасли промышленности развиваются высокими темпами. Однако потребность в облицовочной продукции и архитектурных изделиях из камня удовлетворяется только на 30 %, а в продукции из высокопрочных облицовочных пород только на 10 – 12 %.

В развитии промышленности добычи и обработки облицовочных материалов из природного камня за последние годы выявились и негативные стороны, связанные с необоснованным расширением камнеобрабатывающего производства без достаточного развития карьеров. Чувствуется значительный дефицит блоков облицовочного камня и, в первую очередь, из высокопрочных пород. Много отраслей промышленности, особенно бумажная, терпят значительные трудности в работе из-за отсутствия валов, валиков и других технических изделий из гранита. Темпы увеличения объёмов добычи блоков из мягких пород и пород средней прочности выше, чем такие же показатели на карьерах по добыче блоков из высокопрочных пород.

Самой актуальной проблемой для камнеобработчиков и камнедобытчиков является увеличение объёма необходимых тёсано-полировочных изделий из камня, в основном за счёт рациональной добычи и использования блоков. Увеличение объёма изготовления блоков возможно за счёт улучшения технологии удаления блоков из массива и использование современных, менее трудоёмких и материалоёмких комплексов, которые дают возможность уменьшить их себестоимость.

За последние двадцать лет произошло значительное развитие техники и технологии добычи блоков облицовочного камня. Появились современные камнерезательные карьерные машины, алмазно-канатные пилы, широко используются гидроклиновые установки и гидродомкраты, всё шире внедряется отделение камня от массива невзрывным разрушающим способом. Однако камни, которые добываются с соблюдением формы и размеров, монолитности камня не всегда удовлетворяет камнеобрабатывающую подотрасль, что снижает её эффективность и увеличивает материалоёмкость продукции, которая выпускается.

Добыча блоков из высокопрочных пород с использованием взрывных способов отделения камня от массива является низкоэффективной и приводит к резкому уменьшению выхода блоков из сырья, которое добывается, к нарушению его монолитности.

Украина располагает уникальной минерально-сырьевой базой облицовочного камня. Наиболее ценными являются граниты, габро-нориты, лабродориты и др. Они универсальны как для внутренней, так и для наружной облицовки зданий и сооружений, благоустройства, изготовление изделий широкого потребления с фасонной поверхностью (столики, камины, подоконники, сувениры, комплектующие для мебели, санизделия, колонны и др.), памятников. Всемирно известны граниты Капустинского, Токовского, Емельяновского, Корнинского, Янцевского месторождений. Мировое признание имеют габро-нориты и лабродориты Головинского и Слипчитского месторождений Житомирской области.

В последние годы начата отработка Дидковичковского, Осныкинского, Небижского, Емельчинского, Добрыньского, Масловского, Шадурского, Слободского, Ташлыкского, Торчинского, Томашевского и ряда других месторождений. Но добыча облицовочного камня, особенно на новых месторождениях, должна выполняться по государственным регламентам. Невыполнение специфических требований к разработке месторождений декоративного камня приводит к значительным потерям сырья, нарушения экологии, разрушению месторождений, которые не восстанавливаются.

Развитие предприятий по добыче блоков и производству изделий из камня сдерживалось отсутствием современного отечественного высокопроизводительного оборудования. На практике имело место низкая производительность буровых работ, низкий выход блоков из массива, низкий уровень механизации основных и вспомогательных операций.

В настоящее время наряду с действующими Хустским, Коростышевским, Солоковским, Янцевским, Жежелевским, Днепропетровским, Киевским заводом «Гранит», АО ГДКК «Беличи» начали производить продукцию, отвечающую мировым стандартам, заводы, созданные с участием иностранного капитала. Это СП «Комета», АО «Русь», Тернопольский завод «Гранит», а также одно из самых мощных и перспективных предприятий Украины – совместное украинско-австралийское предприятие «Волхонтет – банчи ЛТД», основанное в 1993 году. Его годовой объём продукции на действующих производственных мощностях составляет 150 тысяч м2 .

Ещё одним крупным предприятием по обработке блоков декоративного камня является горнодобывающий и камнеобрабатывающий комбинат «Беличи». Комбинат располагает собственной сырьевой базой, позволяющей обеспечивать ежегодную добычу блоков в объёме 7 – 8 тысяч м3 , и располагает уникальным оборудованием для изготовления практически любых изделий из камня.

По Украине общий объём поставок изделий из декоративного камня на экспорт не превышает 300 тысяч м2 .

За рубежом пользуются спросом блоки с размерами:

- длина 2300 – 3300 мм;

- ширина 1000 – 1500 мм;

- высота 1100 – 1600 мм;

Средний объём добываемого блока около 2 м3 .

1.2. Коньюнктура мирового рынка декоративного камня.

Оценочный анализ показывает, что ежегодно в международном торговом обороте находится 20 – 26% общего объёма мирового производства облицовочных материалов и изделий из камня. Лидирующее место здесь, так же как и в уровне производства, принадлежит Италии, объём экспорта – импорта, которой составляет 65% от общего мирового торгового оборота.

Мировой рынок облицовочного камня характеризуется чрезвычацным разнообразием. В тоже время степень насыщенности этого рынка по отдельным регионам неравномерна и обусловлена, прежде всего, уровнем потребления камня в различных странах. В свою очередь, на потребление камня в каждой стране оказывает влияние ряд факторов:

- состояние экономики;

- национальные и историко-архитектурные традиции;

- атхитектурная мода и т.д.

Динамическое развитие за последнее время экономики ряда стран, не обладающих собственной мощной минерально-сырьевой базой облицовочного камня, привело к резко возросшему спросу на этот материал и обусловило появление групп стран - Китай, Индия и др. и даже целых регионов – потребителей камня, определивших характер современного мирового рынка.

Наиболее высока степень насыщенности облицовочным камнем европейского рынка, что объясняется наличием большого числа стран,

производящих в широком ассортименте камень на экспорт (Италия, Испания, Греция, Португалия, Югославия, Финляндия, Швеция и др.). Однако и в Европе сохранились страны со значительным потреблением камня за счёт импорта в перечисленные страны: ФРГ, Англию, Голландию, Францию и бывшие соцстраны и республики СССР и особенно в Россию. Предметом импорта в перечисленные страны являются готовые изделия и полуфабрикаты.

Наименее насыщен облицовочным камнем американский рынок. Это происходит за счёт традиционно высокого импорта США и относительно низкого уровня собственного производства. Ежегодный объём импорта камня в США, главным образом, в виде облицовочных плит и архитектурно-строительных изделий, составляет 350 – 400 млн. долларов.

За последнее десятилетие значительные перемены произошли в региональной структуре торговли камнем, нарушившие традиционные направления международных рыночных товаропотоков. Так, открылись благоприятные возможности для экспорта облицовочных изделий из камня в страны Ближнего Востока (Кувейт, Саудовскую Аравию, ЮАР и др.). В последнее время весьма перспективный для экспорта рынок формируется в Дальневосточном регионе, где возросшая у ряда стран потребность в камне (Япония, Южная Корея, Тайвань, Сингапур и др.) открывает благоприятные возможности для сбыта облицовочных и архитектурно-строительных изделий. В последнее время резко увеличился спрос на изделия и плиты из гранитов, лабродоритов, габро-норитов и приравненных к ним пород.

Главным фактором, предопределяющим спрос на тот или иной вид камня, а также его потребительскую стоимость, является декоративность, то есть совокупность художественно-эстетических свойств его поверхности. При этом основным признаком декоративности, принимаемым в расчёт, является цвет камня. Остальные признаки (рисунок-текстура, структура и др.) учитываются в значительно меньшей степени.

Весомость влияния того или иного цвета на потребительскую стоимость камня в различных странах неоднозначна. Она предопределяется национальными традициями, местной архитектурной модой и другими факторами.


2. ХАРАКТЕРИСТИКА РАЙОНА МЕСТОРОЖДЕНИЯ.

2.1. Характеристика района строительства Мыковского карьера.

Район месторождения расположен в пределах Центрального Украинского полесья, характеризуется слаборасчленённым рельефом с абсолютными отметками 186,0 – 196,0 м над уровнем моря с общим слабым уклоном поверхности с Юго - Востока на Северо – Запад.

Мыковский карьер расположен в северной части Коростышевского района Житомирской области. Промплощадка размещается на пахотных и пастбищных землях КСП «Каменнобродское», на правом берегу ручья Мыка, впадающего в речку Быстриевка.

Ближайший населённый пункт село Слободка находится на расстоянии 0,6 км к юго-западу от промплощадки, ж/д станция Горбаши Юго-Западной железной дороги – 4 км к западу от месторождения.

Санитарно-защитная зона в соответствии с пунктом 8 СН 245-71 для данного предприятия составляет 500 м, что обеспечивается принятыми проектными решениями.

Район строительства, согласно СниП II-й дорожно-климатической зоне. Климат района умеренно-континентальный со среднегодовой температурой +6 - +7,50 С. Глубина промерзания грунтов до 70 мм. Среднегодовая сумма осадков 460 – 640 мм. Минимальная температура воздуха приходится на январь – февраль и составляет -180 С. Безморозный период составляет около 7,5 месяцев.

В экономическом отношении район преимущественно сельскохозяйственный. Главную роль играет животноводство и выращивание таких культур как лён, рожь, хмель, картофель. Весьма важную роль в экономике района занимает горнодобывающая промышленность (месторождение лабрадорита – Головинское, Горбулёвское, Верхолужское, Слободское, Осныкское, Каменнобродское).

Район относительно густо заселён, сёла расположенны на расстоянии 3 – 7 км друг от друга. Населённые пункты связаны между собой в основном улучшенными грунтовыми дорогами, а село Слободка связано с г. Коростышевом асфальтированной дорогой. Все населённые пункты района электрофицированы.

Источниками хозяйственно-питьевого водоснабжения населённых пунктов служат колодцы, реже гидрогеологические скважины; технического – реки и водоёмы.

2.2. Геологическая характеристика Мыковского месторождения.

В геологическом строении Мыковского месторождения принимают участие кристаллические породы Коростенского комплекса, представленные лабрадоритами, их корой выветривания и четвертичными отложениями. Лабрадориты вскрыты разведочными скважинами. Пройденная мощность полезной толщи по скважинам колеблется от 27,6 м до 58,0 м. Средняя мощность лабрадоритов в подсчётном блоке – 32,52 м.

Макроскопически лабрадориты представляют собой равномернозернистую, от среднезернистой до крупнозернистой , иногда переходящую в гигантозернистую кристаллическую породутёмносерого до чёрного цвета. Отличаются однородностью структуры и текстуры, а также расцветки и, практически, полным отсутствием других разновидностей пород.

Абсолютные отметки кровли неизменённых пород в контуре подсчёта запасов колеблются от 181,4 до 188,8. Поверхность кристаллических пород в различной степени и на разную глубину подвержена выветриванию. Выветрелые и затронутые выветриванием кристаллические породы отнесены к скальной вскрыше. Переход от выветрелых пород к неизменённым постепенный. Мощность затронутых выветриванием пород колеблется от 0,6 м до 3,0 м. Средняя мощность скальной вскрыши в контуре подсчёта блока составляет 1,91 м.

Выше по разрезу залегает коалинистая, глинисто-каолинистая и каолинисто-щебенестая кора выветривания лабрадоритов с размерами обломков от 0,05см до 2 см в поперечнике. Кора выветривания имеет участками пятнистую белесо-желтовато-бурую окраску за счёт лимонитизации. Мощность коры выветривания в подсчётном блоке варьирует от 0 м до 4,0 м.

Затронутые выветриванием и выветрелые лабрадориты перекрыты четвертичными отложениями, представленными кварцевыми глинистыми песками окрашенными в желтовато-серые и бурые тона. Среди кварцполевошпатого пластического материала встречаются в различной степени обкатанные обломки кристаллических пород, окременённого песчанника с остатками фауны. Глинистая составляющая песков меняется от 10-15 % до 45-50 %.

В зависимости от глинистости четвертичные пески к подошве слоя переходят в суглинки, редко в глины. Также встречается коалин, возможно переотложенный, мощностью от 3,3 м и 2,2 м белого и желтовато-белого цвета, жирный на ощупь, с включениями серебристо-белых чешуек гидрослюд. Мощность среднечетвертичных отложений колеблется от 1,5 м до 6,5 м.

Структурная кора выветривания, совместно с четвертичными отложениями отнесена к рыхлой вскрыше. Мощность рыхлой свкрыши колеблется от 1,3 м до 9,6 м. Средняя мощность в контуре подсчёта запасов – 6,04 м. Абсолютные отметки кровли рыхлой вскрыши 189,3 – 195,5 м.

Среднечетвертичные флювиогляционные отложения перекрыты почвенно-растительным слоем (ПРС), предоставленным супесью – тонкозернистой песчано-глинистой породой слабо гумусированной с остатками корней растительности. Мощность ПРС колеблется от 2,0 до 0,4 м. Средняя мощность ПРС в контуре подсчётного блока 0,27 м. Абсолютные отметки кровли (дневная поверхность) составляют от 189,5 до 195,8 м.

В структурном отношении Мыковское месторождение представляет собой пологое поднятие кровли кристаллических пород под четвертичными отложениями. В контуре месторождения разломы отсутствуют.

Лабродориты имеют сеть разнонаправленных трещин, которые нельзя отнести к региональной трещеноватости. Трещены всех направлений имеют неровную, слабо бугристую поверхность, чаще открытые. Мощность трещин от нитевидных до 0,5 мм, отдельные трещены достигают 1-2 мм мощности – это горизонтальные трещены. Как правило трещены выполненны хлоритом и лишь в верхней части и довольно редко по трещинам развита лимонитизация. По углам падения трещины квалифицируются в три группы:

- І – субгоризонтальные (углы падения 0-200 к горизонту), количество трещин составляет 59,0 % от общего числа;

- ІІ – наклонные (углы падения 200 -700 ) – 13,5 %;

- ІІІ- субвертикальные (угол падения 700 -900 ) – 27,5 %.

2.3. Качественная характеристика полезного ископаемого.

Полезным ископаемым на месторождении являются лабрадориты, обладающие хорошими декоративно-облицовочными свойствами. По породам выполнен комплекс испытаний по их качеству. Основные показатели физико-механических свойств свежих лабрадоритов представлены в таблице 2.1.

Таблица 2.1.

Наименование показателей

Макс.

Мин.

Сред.

Истинная плотность, г/см3

Средняя плотность, г/см3

Пористость общая, %

Водопоглащение, %

Предел прочности при сжатии:

- в воздушно-сухом состоянии, кгс/см2

- в водонасыщенном состоянии

Коэффициент снижения прочности при на-

сыщении водой

Истираемость, г/см2

2,86

2,86

1,96

0,22

2039

1789

0,95

0,62

2,75

2,69

0,54

0,04

1139

867

0,72

0,49

2,81

2,87

1,34

0,13

2038

1328

0,84

0,46

Представленные образцы пород – ладрадориты зеленовато-тёмносерые, с массивной текстурой, часто пятнистой, обусловленной наличием неправильных выделенийи скоплений зеленоватого оливина на фоне тёмносерой массы плагиоклаза, крупно и среднезернистые до гигантозернистых; габбро-лабрадориты от тёмносерого до чёрного, иногда буровато-серого цвета, текстура массивная и шлифовая, обусловлена наличиеми в породе обособленных агрегатов тёмноцветных материалов (моноклинный пироксен), имеющих постепенные переходы с остальными частями породы.

Минеральный состав непостоянен и колеблется:

1. Плагиоклаз – от65 до 100%.

2. Оливин – от 0 до 20%.

3. Ромбический пироксен – от 0 до 25%.

4. Моноклинный пироксен – от 0 до 35%.

5. Калишпат – присутствует не во всех образцах.

6. Кварц – от 0 до 5%.

7. Биотит – от 0 до 2%.

8. Рудные: магнетит – от редких зёрен до 5%.

9. Акцессорные: апатит – от редких зёрен до 2%.

Вторичные изменения выражены слабо.

В результате изучения декоративности полезного ископаемого установлено, что лабрадориты легко обрабатываются, распиливаются без выкрашивания, принимают полировку высокого качества. Лицевая поверхность всех полированных образцов ровная с зеркальным блеском, полностью выявляющая природную окраскуи рисунок камня.

Текстура образцов массивная, что позволяет выполнять облицовку специального подбора блоков по рисунку и цвету.

Отходы блочной продукции будут перерабатываться совместно с породами скальной вскрыши (выветрелые и затронутые выветриванием лабрадориты) на щебень и камень бутовый.

Качество полезногоископаемого соответствует требованиям ГОСТов:

- ГОСТ 9479-84 «Блоки из природного камня для производства облицовочных изделий»;

- ГОСТ 2173-87 «Камень бутовый»;

- ГОСТ 23845-86 «Породы скальные для производства щебня для строительных работ»;

- ГОСТ 8267-82 «Щебень для строительства»;

- ГОСТ 7392-85 «Щебень для баластного слоя ж/д пути».

Каолины и суглинки соответствуют требованиям ОСТ 21-78-88 «Сырьё глинистое для производства керамических кирпича и камней» и могут применяться для этих изделий.

Пески, в зависимости от зернового состава, относятся к группе очень мелких и не соответствуют требованиям ГОСТа 8736-85 по содержанию пылевидных и глинистых частиц, проходу через сито №16 и частично по модулю крупности и для строительных работ использоваться не могут.

Дресвяно-щебенистую кору, присутствующую на месторождении, можно использовать для отсыпки дорог.

Выветрелый лабрадорит, совместно с затронутым выветриванием был испытан на пригодность получения бута и щебня и признан соответствующим ГОСТам: 8267-82, 23845-85 и ОСТу 21-73-87.

По уровню естественной радиоактивности породы продуктивной толщи относятся к І классу и пригодны для строительства жилых и общественных зданий, а также других видов строительства без ограничений.

2.4. Подсчёт запасов полезного ископаемого, нормативов потерь, объёмов вскрыши.

Исходя из геологического строения месторождения и способа его разработки, подсчёт запасов блочных лабрадоритов и объёмов вскрышных пород произведён методом средне-арифметического по одному геологическому блоку, с требуемой достоверностью, обеспечивающей подсчёт запасов и оценку его качества.

Выделение одного геологического блока категории А на месторождении вызвано степенью разведанности запасов. Подсчёт запасов выполнен до подсчётного горизонта с абсолютной отметкой +157,0 м.

Протоколом ГКЗ №448 от 04.12,98 г. утверждены следующие объёмы запасов:

1. Вскрышные породы – 304,5 т. м3 ; в том числе: ПРС-19,8 т. м3 , мягкая вскрыша – 262,7 т. м3 , скальная вскрыша – 22,0 т. м3 .

2. Каолины – 105,6 т. м3 .

3. Суглинки – 52,2 т. м3 .

4. Лабрадориты неизменённые – 1112,6 т. м3 .

5. Лабрадориты выветрелые – 37,2 т. м3 .

Границы карьера определяются конфигурацией контура подсчёта запасов промышленной категории А, способом погашения бортов карьера, а также углами откоса на момент погашения. Контур разработки Мыковского месторождения принят с учётом двадцатипятиметровой охранной зоны р.Мыка.

Углы откоса нерабочих бортов карьера приняты:

- по полезному ископаемому /лабрадориты неизменённые/ - 900 ;

- по скальной вскрыше /лабрадориты затронутые выветриванием/ - 600 ;

- по мягкой вскрыше – 300 .

При погашении уступов результирующий угол откоса бортов карьера по полезному ископаемому в соответствии с требованиями «Единых правил безопасности при разработке ме6сторождений полезных ископаемых открытым способом» принят 650 .

Площадь карьерного поля с учётом положения бортов карьера на момент погашения и капитальных въездных траншей внешнего заложения составляет 6,84 га.

Размеры карьерного поля:

- длина 270 м;

- ширина 240 м;

- площадь дна карьера – 3,6 га.

Эксплуатационные потери при погрузочно-разгрузочных работах, транспортировке и складировании устанавливаются «Нормами технологического проектирования предприятий промышленности по добыче и отработке облицовочных материалов из природного камня» в размере 0,5 % от годовой потребности в сырье или. Эти потери учитываются в расчёте годовой производительности карьера.

Баланс запасов полезного ископаемого и объёмов вскрышных пород в границах карьерного поля приведён в таблице 2.2.

Таблица 2.2.

Показатели

Количество,

тысяч м3

1.Гелогические запасы неизменённых лабрадоритов

вовлекаемые в разработку (пр. ГКЗ №448).

2.Проектные запасы неизменённых лабрадоритов

вовлекаемые в разработку.

3.Потери:

- общекарьерные /под капитальными выработка-

ми и в бортах/;

- эксплуатационные 1-ой группы;

- эксплуатационные 2-ой группы: в шпурах.

Итого эксплуатационных потерь

Всего потерь

4. Промышленные запасы полезного ископаемого,

кроме того запасы лабрадоритов, затронутые вывет-

риванием.

5.Коэффициент потерь.

3. Коэффициент извлечения.

4. Вскрышные породы в геологическом контуре:

- ПРС;

- мягкая вскрыша;

- скальная вскрыша.

5. Запасы попутных полезных ископаемых:

- каолины;

- суглинки.

9. Промышленный коэффициент вскрыши.

1112,6

1141,7

-

-

6,5

6,5

6,5

1135,2

37,2

0,6%

99,4%

304,5

19,8

262,7

22,0

157,8

105,6

52,2

0,27

2.5. Гидрогеологическая характеристика Мыковского месторождения.

В районе и в пределах месторождения установлены следующие водоносные горизонты:

- водоносный горизонт в осадочных отложениях, водовмещающими породами которого являются мелко-тонкозернистые глинистые пески и суглинки средней мощностью до 3,9 м;

- водоносный горизонт в кристаллических породах нижнего протерозоя, водовмещающими породами которого являются лабрадориты коростенского комплекса, средней мощностью 32,52 м. Средний коэффициент пьезопроводимости 13,3 м2 /сут.

Статическиеуровни подземных вод находятся на глубине 4,8 метров ниже земной поверхности, таким образом, воды обладают слабым напором, на отдельных участках безнапорные. Результаты пробных откачек свидетельствуют о невысокой обводнённости кристаллических пород и их низких фильтрационных свойствах.

Согласно гидрогеологическим условиям месторождения основными составляющими водопритока в карьер будут:

1. Приток с водоносного комплекса четвертичных отложений.

2. Приток с водоносного горизонта трещеноватых кристаллических пород по всему периметру карьера.

3. Атмосферные осадки по всей площади карьера.

4. Ливневые осадки.

Суммарный приток в карьер при его углублении до проектной отметки за счёт атмосферных осадков и подземных вод составит порядка 315 м3 /сут.

Исходя из общих гидрогеологических условий прилегающих к карьеру площадей, единственно пригодным для снабжения питьевой водой горизонтом, может служить горизонт трещеноватых кристаллических пород нижнего протерозоя.


3. ПРОИЗВОДИТЕЛЬНОСТЬ КАРЬЕРА И ОРГАНИЗАЦИЯ РАБОТ.

3.1. Производительность, режим работы и срок службы карьера.

Производственная мощность Мыковского карьера по блокам осваивается на третий год эксплуатации карьера:

- 1999 г. – 1500 м3 ;

- 2000 г. – 2600 м3 ;

- 2001 г. – 5000 м3 .

Выход блоков из горной массы составляет – 37,1%.

В последующие годы производительность не изменяется. Данные о режиме работы и производительности карьера на 2001 год и последующие годы работы приводятся в таблице 3.1.

Таблица 3.1.

Наименование показателей

Ед.

изм.

Горная масса

Всего

В том числе

блоки

отходы

1. Годовая производительность

2. Кол-во рабочих дней в году

3. Суточная производительность

4. Число смен в сутки

5. Сменная производительность

6. Продолжительность смены

м3

тонн

дней

м3

тонн

шт

м3

тонн

ч

13500

37800

260

51,92

145,38

1

51,92

145,38

8

5000

14000

260

19,23

53,84

1

19,23

53,84

8

8500

23800

260

32,69

91,54

1

32,69

91,54

8

Среднегодовой объём вскрышных работ составляет 15,82 тыс. м3 , в том числе по скальной вскрыше 3,63 тыс. м3 , по калинам 3,5 тыс. м3 .

Режим работы по вскрыше определяется среднегодовым объёмом вскрышных работ и производительностью задалживаемого оборудования и составляет в среднем 100 рабочих дня в год в одну 8-ми часовую смену.

Исходя из величины промышленных запасов по Мыковскому карьеру и производственной мощности карьера, срок службы карьера составит:

где: д=3 - срок вывода карьера на проектную мощность;

Qп =1135,2 - промышленные запасы по карьерному полю, тыс. м3 ;

Vг '=1,5 и Vг 2 =2,6 - производственная мощность карьера, в первый и второй годы, тыс. м3 ;

Vг =13,5 - проектная годовая мощность карьера (блоки + отходы), тыс. м3.

3.2. Основные показатели по Мыковскому месторождению лабрадорита.

1. Площадь земельного отвода – 9,0 га; в том числе карьерного поля – 6,84 га.

2. Полезное ископаемое – лабрадорит, сырьё для получения блоков. Плотность лабрадорита 2,69 – 2,87 г/см2 . Предел плотности при сжатии 1139 – 2039 кгс/см2 .

3. Геологические запасы полезного ископаемого: лабрадорита – 1112,6 тыс. м3 ; суглинков – 105,6 тыс. м3 ; каолинов – 52,2 тыс. м3 .

4. Запасы неизменённых лабрадоритов в границах карьерного поля – 1141,7 тыс. м3 .

5. Промышленные запасы сырья в границах карьерного поля – 1135,2 тыс. м3 ; суглинков – 105,6 тыс. м3 ; каолинов – 52,2 тыс.м3 .

6. Вскрышные породы – 304,5 тыс. м3 .

7. Промышленный коэффициент вскрыши – 0,27 тыс. м3 .

8. Среднегодовой объём вскрышных пород – 15814 тыс. м3 .

9. Производительность карьера – 5000 м3 блоков в год; 13500 м3 горной массы.

10. Выход товарных блоков из массива – 37,1%.

11. Срок службы карьера – 84 года.

12. Режим работы карьера:добычные работы – 260 дней в году в одну 8-ми часовую смену; вскрышные работы – 100 дней в году в одну 8-ми часовую смену.

13. Система разработки – уступная, с параллельным продвиганием фронта работ и внешним размещением отвалов.

14. Параметры системы разработки – один уступ по вскрышным породам высотой до 5 м, и пять уступов по полезному ископаемому высотой до 6 м. Углы откосов уступов на рабочем борту по вскрышным породам 450 , по полезному ископаемому 900 , на нерабочем борту карьера – 300 по мягким породам, 650 по вскальной вскрыше, 900 по скальным породам.

15. Угол погашения борта карьера – 650 .

16. Горнокапитальные работы – проходка въездной траншеи, создание рабочей площадки и опережения по вскрыше.

17. Основные объёмы горнокапитальных работ – мягкие породы – 15399 м3 ; скальные IX группы - 5740 м3 ; в том числе блоков – 1016 м3 .

18. Вскрышные работы – разработка и погрузка экскаватором ЭО-4111Б, ёмкость ковша – 1,0 м3; на вспомогательных работах бульдозер ДЗ-101.

19. Добычные и погрузочные работы – отделение монолитов от массива: БВР с применением дымного пороха; разделка монолитов на блоки – гидроклиновая установка СМП-075; погрузка блоков – кран КС-5363; вспомогательные работы – бульдозер ДЗ-101.

20. Карьерный транспорт - автосамосвалы КраЗ-256Б.

21. Водоотлив из карьера – насосная станция с центробежным насосом 2К-20/30.

22. Электроснабжение – от системы Киевэнерго.

23. Производственные рабочие – 42 человек (списочный состав).


4. ВСКРЫТИЕ МЫКОВСКОГО МЕСТОРОЖДЕНИЯ.

4.1. Состояние горных работ.

Мыковское месторождение лабрадорита к моменту составления проекта разработки не разрабатывалось. На площади месторождения имеется опытный карьер, в котором была выполнена пробная добыча лабрадорита на стадии детальной разведки.

Объём всего пространства вынутых пород по состоянию на 01.10.98 г. составляет 22,9 тыс. м3 мягкой вскрыши и 4400 м3 кристаллических пород.

4.2. Вскрытие и порядок отработки месторождения.

Вскрытие месторождения производится временной траншеей внутреннего заложения пройденной при вскрытии опытного карьера на добычной горизонт отм. 181,0 м. Такое расположение вскрывающих выработок обеспечивает минимальные объёмы работ в период подготовки месторождения к эксплуатации и большой фронт работ, что позволит быстро нарастить годовой объём добычи блоков.

В первые три года горные работы развиваются в южном направлении с целью проходки разрезной траншеи и отработки запасов, находящейся под въездной траншеей постоянного заложения. В конце третьего года работы производится отсыпка постоянной капитальной въездной траншеи внешнего заложения на горизонт 181,0.

Параметры постоянных горно-капитальных выработок представлены в таблице 4.1.

Таблица 4.1.

Наименование

выработок

Длина,

м

Ширина,

м

Ометки, м

от - до

Уклон,

Объём,

м3

1.Въездная траншея на

кровлю полезного иск.

2.Въездная траншея на

подошву уступа отм.181м

3.Разрезная траншея по

полезному ископаемому

в т.ч. скальная вскрыша

4.Разрезная траншея и

нормативное опережение

по мягкой вскрыше

63,0

49,5

37,5

35,0

31,9

15,8

20

80

190,0-185,0

185,0-181,0

181,0

185,0

8

8

-

-

6479

1565

4175

2600

10920

Объёмы горно-капитальных работ:

1. Проведение въездной траншеи по мягким породам: объём работ – 6479 м3 ; группа пород по СниП IV-6-82 – I; работы выполняются экскаватором с ёмкостью ковша 1м3 , погрузка происходит в КрАЗ-256Б грузоподъёмностью 12 т; дольность перевозки до 1 км.

2. Проходка разрезной траншеи по вскрышным породам и создание нормативного опережения по вскрыше: объём работ – 8920 м3 ; группа пород по СниП IV-6-82 – I; работы выполняются экскаватором с ёмкостью ковша 1м3 , погрузка происходит в КрАЗ-256Б грузоподъёмностью 12 т; дольность перевозки до 1 км.

3. Проходка въездной траншеи с применением НРС по :

- скальной вскрыше: объём работ – 400 м3 ; группа пород по СниП IV-6-82 – IX; буровые работы выполняются перфораторами ПП-50; глубина шпуров до 1 м; тип НРС – НРС-1;

- по полезному ископаемому: объём работ – 1165 м3 ; группа пород по СниП IV-6-82 – IX; буровые работы выполняются перфораторами ПП-50; глубина шпуров до 1 м; тип НРС – НРС-1;

4. Проходка разрезной траншеи и рабочей площадки с применением НРС по:

- скальной вскрыше: объём работ – 2600 м3 ; группа пород по СниП IV-6-82 – IX; буровые работы выполняются перфораторами ПП-50; глубина шпуров до 1 м; тип НРС – НРС-1;

- по полезному ископаемому: объём работ – 1575 м3 ; группа пород по СниП IV-6-82 – IX; буровые работы выполняются перфораторами ПП-50; глубина шпуров до 1 м; тип НРС – НРС-1;

5. Погрузка блоков: объём работ – 1016 м3 ; группа пород по СниП IV-6-82 – IX; работы выполняются автокраном КС-5363;

6. Погрузка отходов при добыче и разделке блоков: объём работ – 4724 м3 ; группа пород по СниП IV-6-82 – IV; работы выполняются экскаватором ЭО-4111Б, бульдозером.

7. Устройство автодороги в траншее из ж/б плит, высотой 18 см. Вес плиты 2 тонны. Расход бетона на одну плиту 0,8 м3 , расход арматуры 56,3 кг, плиты марки ПД2-6 из бетона М-200 на песчанном основании: объём работ – 99/274 м3 /т;

8. Строительство карьерных сооружений:

- лестницы (Н=6 м – 1шт.; Н=4 м – 4 шт.);

- флаг-мачта Н=12 м – 1 шт;

- автоматизированная насосная станция – 1 шт;

- очистные сооружения – 1 компл.; ограждение оч. соор. – 50 м.


5. ПОДГОТОВКА ГОРНЫХ ПОРОД К ВЫЕМКЕ.

5.1. Выбор способа подготовки горных пород к выемке.

Характер трещеноватости неизменённых лабродоритов позволяет получать блоки крупных размеров и близких к прямоугольной форме.

Исходя из опыта разработки подобных месторождений, проектом принимается двустадийная технологическая схема добычи блоков, при которой предварительно отделённый монолит объёмом свыше 10 м2 подвергается последующей разделке на более мелкие товарные блоки в пределах рабочей зоны карьера.

Отделение монолитов от массива производится с применением невзрывчатого разрушающего средства, которое получают специальным обжигом карбонатных пород с последующим измельчением продукта обжига.

В случае использования НРС камень разрушается без выброса твёрдых и газоподобных продуктов, при этом отсутствуют звуковые и другие колебания.

При отсутствии в торцевой плоскости отделяемого монолита природной вертикальной трещины искусственная трещина образуется путём бурения отрезных щелей буровым станком СБУ-100Г.

При отсутствии горизонтальной или наклонной трещины по нижней плоскости отделяемого монолита производится горизонтальное бурение по всей длине с использованием станков строчечного бурения и перфораторов.

5.2. Расчёт технологического комплекса по подготовке к выемке блоков лабрадорита термобурохимическим методом.

Группа пород по СНиП 9-ой категории; трещиноватость: Q=3,8 м; E=8,7 м; L=1,7 м; коэфициент удельной линейной трещиноватости, 1/м: КQ =0,11; КS =0,59; КL =0,26.

При этом размры блока и монолита определяются параметрами камнеобрабатывающего станка СМР-075 и трещиноватости массива:

1. а = 2,7м - длина блока;

2. в = 1,9м - ширина блока;

3. h = 1,5м - высота блока;

4. n1 = 2 - кратность ширины монолита;

5. n2 = 3 - кратность высоты монолита;

6. n3 = 3 - кратность длинны монолита;

Размеры монолита 8,1х3,8х3,0 м.

Расчет паспорта работ с использованием НРС проводится исходя из условий: средняя высота уступа НУ =3 м: размещение шпуров вертикальное; диаметр шпура Dш =42 мм.

Длинна шпура, при использовании НРС, равна 2/3 высоты блока. При этом НРС размещается в шпуре по всей его длине и равен 2,7 м. Масса НРС на один шпур:

где: lш - длина шпура;

Р - масса НРС в 1 м шпура, диаметром 42 мм;

Необходимое количество шпуров для откалывания монолита с использованием НРС определяется из соотношения:

,

где: - расстояние между шпурами;

RШ - радиус шпура, м;

Р - давление в середине шпура, создаваемое НРС, МПа;

sр - предел прочности на растяжение, МПа;

.

Сумарная масса НРС на откалывание монолита:

Удельное количество шпуров на плоскости обнажения при откалывании монолита с использованием НРС:

,

Удельная длинна шпуров на плоскости обнажения при откалывании монолита НРС:

где: К2 =0,9 - коэфициент недобуривания до противоположной плоскости.

.

Удельная плоскость обнажения при откалывании монолита от массива при помощи НРС:

.

Удельная площадь обнажения при термическом резании:

.

Удельная площадь обнажения раскалыванием на блоки:

.

Удельная длина шпуров на плоскостях обнажения раскалывынием монолита на блоки:

где: К2 =0,25 - коэфициент недобуривания до противоположной плоскости.

Коэфициент, который учитывает технологическое разрушение гранита в искусственных плоскостях обнажения, для способа подготовки блоков к выемке при помощи НРС:

где: gНРС - технологическое разрушение пород в плоскостях обнажения при подготовке блоков к выемке при помощи НРС;

gТ - технологическое разрушение породы в плоскостях обнажения при термическом резании;

ST , SНРС БЛ , SНРС М - удельные плоскости обнажения при откалывании монолита и раскалывании его на блоки.

.

Коэфициент выемки блоков из добытого полезного ископаемого при помощи НРС:

.

Производительность комплекса оборудования при термобурохимическом способе подготовки блоков к выемке с применением НРС:

5.3. Расчёт количества буровых станков.

Буровые работы в карьере выполняются хозяйственным способом.

Определяется из условия нормальной работы экскаватора в течении двадцати дней:

.

Количество погонных метров шпуров, которые необходимо пробурить для отделения одного монолита, составляет:

,

где: V 1 – выход горной массы с одного погонного метра скважины, м3 ;

,

где: V – выход горной массы с одной скважины, м3 ;

Годовой объём бурения:

,

Сменная производительность бурового станка СБУ-100Г, с учётом группы пород (IX), составляет Vбс =13 м/см при следующих характеристиках:

1. Диаметр долота, мм – 105.

2. Диаметр штанги, мм – 89.

3. Усилие подачи, кН – 7,6.

4. Частота вращения става, с-1 – 0,8.

5. Скорость передвижения станка, км/ч – 0,85.

6. Высота в транспортном положении, м – 1,6.

7. Пневмоударник – П-105.

Годовая производительность станка:

Количество буровых станков принимаем:

.

Аналогичный расчёт проводится для станков ССБ-2А.

Бурение торцевых шпуров и шпуров для отделения монолитов от массива принимаем станками строчечного бурения типа ССБ-2А в количестве – 2 шт., оснащённых двумя перфораторами ПП-63В. Кроме того, для проходки щелей и устранения зажатых мест принимается станок СБУ-100Г в количестве – 1 шт.


6. СИСТЕМА РАЗРАБОТКИ И СТРУКТУРА КОМПЛЕКСНОЙ МЕХАНИЗАЦИИ.

6.1. Система разработки и технологическая схема горных работ.

Учитывая горно-геологические условия месторождения, мощность и физико-механические свойства полезного ископаемого и вскрышных пород, технологические особенности добычи блочного камня, а также опыт разработки подобных месторождений, принимается транспортная система разработки месторождения с внешним расположением отвалов вскрышных пород.

Технологическая схема добычных работ предусматривает получение товарных блоков в две стадии и включает стадии отделения от массива монолитов и разделку их на блоки нужных размеров.

Вертикальный транспорт блоков принят самоходными стреловыми кранами, перевозка блоков на склад и окола на переработку или на склад технологическим автотранспортом. Транспортировка попутного ископаемого (каолины и суглинки) – автотранспортом потребителя.

Отделение монолитов от массива производится в основном с помощью НРС. Разделка монолитов на блоки производится с помощью гидроклиновой установки СМП-075. Пассировка блоков - пневматическими молотками. Разрыхление скальной вскрыши и проходка траншей производится с помощью НРС. В качестве погрузочного оборудования приняты одноковшовые экскаваторы ЭО-4111Б, краны автомобильные самоходные КС-5363.

В связи со специфическими условиями карьера блочного камня (небольшой объём работ по погрузке) для погрузки окола, отходов и вскрыши принимается один одноковшовый экскаватор ЭО-4111Б с ковшом ёмкостью 1 м3 , для отгрузки попутного ископаемого и в качестве резерва такой же экскаватор.

Ширина рабочей площадки добычных уступов при двустадийной схеме добычи блоков согласно «Нормам технологического проектирования предприятий промышленности по добыче и обработке облицовочных материалов из природного камня» (НТП), п. 6.2. составляет:

,

где: А=3 м – ширина отделяемого монолита;

П1 =10 м – ширина полосы безопасности;

Пр =10 м – ширина полосы для разделки монолитов на блоки;

Пп =4,5 м – ширина транспортной полосы для автосамосвалов;

По =2,25 м – ширина обочин при однополосном движении;

Пв =7 м – ширина полосы для размещения вспомогательного оборудования;

Пб =3 м – ширина полосы безопасности по верхней бровке нижележащего уступа.

Отсюда Ш1 =42,5 м.

Ширина рабочей площадки уступа мягкой вскрыши Ш2 =30 м.

Основные параметры системы разработки, увязанные с технологией горных работ, приводится в таблице 6.1.

Таблица 6.1.

Наименование параметров

Ед.

изм.

Уступы

мягкой

вскрыши

Добычные

Уступы

1. Количество уступов

2. Отметки рабочих горизонтов

3. Высота уступов

4. Ширина рабочей площадки

5. Ширина выездной траншеи

6. Ширина транспортной бермы

7. Угол откоса уступа

- Рабочего

- Нерабочего

8. Длина фронта работ

9. Угол погашения борта карьера

10. Ширина предохранительной бермы

11. Ширина заходки

шт.

м

м

м

м

м

град

м

град

м

м

1

По кровле

скал. вскр.

2,0-5,0

30

15,8

16

45

30

50-160

6

5

181, 175, 169,

163, 157

1,0-6,0

42,5

15,8

14,5

90

90

50-160

65

12

3

6.2. Расчёт количества добычных экскаваторов.

Сменная производительность расчитывается по формуле:

,

где: Тсм =480 – продолжительность смены, мин;

Тпз =35 – время подготовительно-заключительных операций, мин;

Тлн =10 – время на личные надобности, мин;

Тпс =5 – время погрузки, мин;

Туп =2 – время установки под погрузку, мин;

Qк – объём горной массы в ковше экскаватора, м3.

,

Число ковшей nк определяется:

,

где Ст – грузоподъёмность автосамосвала КрАЗ-256Б.

Техническая производительность:

,

где: Кр =1,4 – коэффициент разрыхления породы в ковше экскаватора; Кн =0,75 - коэффициент наполнения ковша экскаватора.

Количество экскаваторов определяется по формуле:

,

где: Qсм пр - сменная производительность предприятия, м3/см;

Кпер - коэффициент неравномерности подачи транспорта;

Ки - коэффициент использования оборудования во времени.

Принимаем один эксковатор ЭО-4111Б.

Коэффициент использования экскаватора за смену:

,

где: Qп – объём добычи для одного экскаватора за смену, м3 /см;

Qэ – сменная производительность экскаватора, м3 /см.

6.3. Завалка монолита.

Выход блоков из добытого карьере полезного ископаемого колеблется в границах 10-60%, что создаёт значительный объём сопутствующей горной массы, которая требует организации её погрузки и транспортирования. Указанные факторы обуславливают необходимость для большинства карьеров использовать технологическую схему с нижней погрузкой как наиболее эффективную для работы транспортных средств и погрузочных механизмов.

Отделённые от массива монолиты опрокидываются на подошву карьера на мягкое основание из щебня для последующей разделки.

Для опрокидывания монолитов и оттягивания их от забоя используется бульдозер ДЗ-101.

Для растягивания каната используются вспомогательные пневматические лебёдки ШВ-630-0,35П/ЛПР-3м/ в количестве 2 шт, устанавливаемые на кровле уступа.

6.4. Разделка монолитов на блоки.

Разделка монолитов на блоки нужных размеров производится невзрывным способом с помощью гидроклиновой установки СМП-075.

По линии раскола монолита через 0,4 – 0,5 м пробуриваются шпуры диаметром 36 мм. Расход бурения на 1 м3 горной массы составляет (по данным практики) 1,5 погонных метра. Бурение шпуров принято перфораторами ПР-30В.

Расчётный объём бурения в смену составит: 1,5*51,92=77,88 пог.м. Где 51,92 м3 /см – сменная производительность карьера по горной массе.

Норма выработки бурильщика в породах IX группы составляет 23 м/см (НТП-77, п. 5.3.4). Расчётное количество перфораторов, задалживаемых в одну смену для разделки монолитов на товарные блоки составит: 77,88/23=4 шт.

Потребителями сжатого воздуха в карьере являются станки строчечного бурения и перфораторы.

Расчёт потребности в сжатом воздухе представлен в таблице 6.2.

Таблица 6.2.

Потребители

Количест-

во

Расход воз-а

1-м потреб.

м3 /мин

Коэф.

К

Общий

расход

м3/мин

1.Станки срочечного

бурения ССБ-2А

2.Перфораторы ПР-30В

Итого:

2

4

4,5

3,5

0,9

0,85

8,1

11,9

20,0

Потребность в сжатом воздухе составляет:

,

где: N – количество одновременно работающих механизмов; q – расход воздуха одним потребителем, м3 /мин.; К – коэффициент одновременности работы.

Обеспечение работ сжатым воздухом предусматривается с помощью передвижных компрессорных станций типа ДК-9М.

При производительности одного компрессора 10 м3 /мин, число компрессоров в работе принимаем 3 шт. и один резервный.

6.5. Вертикальный транспорт блоков.

Основным оборудованием, которое используется для выемки и погрузки блоков и продуктов крупного размера, сопутствующих добыче, являются стреловые краны.

Для вертикального транспорта блоков приняты самоходные стреловые краны на пневмоходу КС-5363, грузоподъёмностью 25 тонн. В соответствии с объёмом работ принимаем два крана. Погрузочные работы выполняются машинистом крана.

Для выполнения вспомогательных работ (зачистка рабочих площадок, перемещения блоков и негабарита, окучивания окола) принимается два бульдозера ДЗ-101.

6.6. Организация добычных и погрузочных работ.

Добыча блоков принята по двустадийной схеме, включающей отделение монолитов, завалку его на подошву уступа и последующую разделку на блоки. Если же расстояние между трещинами невелико, добыча блоков организуется по одностадийной схеме, т.е. отделение блоков производится прямо в забое.

При одностадийной схеме высота уступа не должна превышать 1.5. м, а выкалывание блоков должно производится сверху вниз, ширина рабочей площадки на подуступе должна быть не менее 3-х метров.

Фронт работ каждого забойного рабочего должен быть не менее 10 м, а расстояние между кольщиками не менее 4 м.

На карьере применяется бригадная организация труда, при которой рабочие по добыче блочного камня сводятся в две комплексные бригады по 6 – 7 человек в каждой, и выполняют все работы, связанные с отделением монолитов, завалкой и разделкой их, а также обкалыванием блоков. Каждая бригада имеет собственный фронт работ, а сами работы ведутся в восьмичасовую рабочую смену.

В течение первого пятилетия работы ведутся на горизонте 181 м (первый добычной уступ).

Календарный план добычных работ составлен на пять лет работы карьера с соблюдением основных параметров системы разработки и представлен в таблице 6.3.

Таблица 6.3.

Год ра-

боты

Объём добычи

в целике, м3

Средняя

мощность

м

Средний

фронт ра-

бот, м

Среднее годовое

продвигание фр.

работ, м

Примечание

1999

2000

4050

6739

4,50

4,50

40,00

40,00

22,5

37,44

По уступу 181

По уступу 181

ГКР

2001

13500

4,50

68,00

44,12

По уступу 181

Отсыпка въездной траншеи на уступ 181,0 м

2002

2003

13500

13500

5,00

5,00

160,00

200,00

16,88

12,05

По уступу 181

По уступу 181

6.7. Вскрышные работы.

Вскрышные породы на месторождении представлены мягкой и скальной вскрышей. К мягкой вскрыше отнесены почвенно-растительный слой, пески и кора выветривания лабрадоритов.

Мягкие вскрышные породы относятся ко II группе грунтов по СниП-82, скальные к IV группе пород.

Средняя дальность транспортирования вскрыши до 1 км. Отвалы располагаются на южном борту карьера. Почвенно-растительный слой разрабатывается и складируется отдельно и используется при рекультивации земель.

Календарный план вскрышных работ составлен на пять лет. При этом обеспечивается нормативное количество готовых к выемке запасов, сохранение рабочих площадок и безопасное ведение горных работ. План работ представлен в таблице 6.4.

Таблица 6.4.

Среднее год.

продвигание

фронта работ,м

Средняя дли-

на фронта

работ, м

Ср. мощность вскр., м

Объём в целике, м3

всего

в том числе

всего

в том числе

скальн.

каолин

скальн.

каолин

16

17

14

20

155,00

155,00

190,00

100,00

5,80

6,20

6,20

6,00

5,50

1,80

1,30

1,40

1,60

2,00

1,00

1,00

1,50

1,80

2,00

20399,0

15376,0

16337,0

15960,0

11000,0

3000,0

3224,0

3689,0

4256,0

4000,0

2000,0

2480,0

3952,5

4788,0

4000,0

Итог за пять лет

79072,0

18169,0

17220,50

Среднегодовой объём за пять лет

15814,4

3633,8

3444,10

Высота уступа по мягкой вскрыше колеблется в пределах от 2,0 до 5,0 м. Отдельный уступ по скальной вскрыше отсутствует, так как средняя мощность скальной вскрыши по месторождению составляет 1,91 метр, а при мощности уступа до 1,5 – 2,0 метров скальная вскрыша отрабатывается совместно с полезным ископаемым.

Для производства вспомогательных работ на вскрыше будет использоваться бульдозер, принятый для вспомогательных работ на добыче.


7. ОТВАЛЬНЫЕ РАБОТЫ.

За период разработки месторождения в отвалы подлежит разместить 304,5 тысяч м3 вскрышных пород, в т.ч.:

1. Почвенно-растительный слой – 19,8 тыс. м3 ;

2. Мягкой вскрыши – 262,7 тыс. м3 ;

3. Скальной вскрыши – 22,0 тыс. м3 .

Из-за небольших размеров карьера в ближайшее время не представляется возможным осуществить внутреннее отвалообразование. Поэтому, в соответствии с актом выбора площадок для строительства Мыковского карьера, намечается расположение отвалов вскрышных пород на южном борту карьера на площадке размером 1,91 га. Укладке в отвал подлежат в основном скальные породы.

Объём скальных пород, подлежащих укладке в отвал, составляет 22 тыс. м3 .

Рыхлые вскрышные породы используются для рекультивации (землевания) болотистых и непригодных для сельскохозяйственного использования земель.

Способ отвалообразования – бульдозерный.

Укладка отвалов производится одним ярусом высотой до 7 м.

Производительность бульдозера:

,

где: Vпв – действительный объём призмы волочения, м3 ; Кд – коэффициент изменения производительности бульдозера в зависимости от величины уклона и дальности перемещения породы; Тц -–продолжительность рабочего цикла бульдозера, с; Крп – коэффициент разрыхления породы в призме волочения.

Объём призмы волочения в плотном теле 5,4 м3 . Время цикла – 48 с.

Время рабочего цикла бульдозера определяется по формуле:

где: tн - время набора (выемки) породы, с; tдг и tдп - время перемещения породы и обратного хода бульдозера, с; tв - время вспомогательных операций, приходящихся на рабочий цикл бульдозера, с.


8. КАРЬЕРНЫЙ ТРАНСПОРТ.

8.1. Выбор типа транспорта для транспортирования вскрышных пород и полезных ископаемых.

На Мыковском карьере производятся товарные блоки в количестве:ІІ категории – 4000 м3 ; ІІІ и ІV категории – 1000 м3 .

Карьерным автотранспортом предусматривается перевозка блоков на склад готовой продукции, расположенный на промплощадке, отходов камнедобычи и затронутого выветриванием лабрадорита на Быстриевский карьер для переработки на щебень, вскрышных пород – в отвал.

Исходя из дальности транспортирования (до 1 км), производительности погрузочного оборудования (табл. 8.1.) и веса одного блока (до 10 т) для транспортирования горной массы целесообразно использовать автосамосвалы КрАЗ-256Б.

Таблица 8.1.

Наименование

Ед.

изм.

Вид груза

блоки

отходы

вскрыша

Объём перевозок:

- годовой

- суточный /смен-

ный/

м3

м3

5000

19,23

12134

46,67

8737

87,37

Исходные данные:

1. Характеристика дорожного покрытия – согласно СНиП 2.05.07-91 «Промышленный транспорт» и в соответствии с грузонапряженностью, карьерные автодороги относятся к III категории. Уклоны по карьерным дорогам принимаются для автомобилей с колёсной формулой 6х4 (КрАЗ-256Б) – 80 ‰. Карьерные автодороги устраиваются преимущественно в скальных породах, в связи с чем покрытие их предусматривается, при необходимости устраивается выравнивающий слой из щебня. В мягких породах проезжая часть покрывется ж/б дорожными плитами марки ПД2-6. Для ухода за карьерными дорогами приобретается комбинированная поливомоечная машина КО-713 на шасси ЗИЛ-431412.

2. Транспортные связи осуществляются в следующих направлениях:

- перевозка вскрышных пород в отвал расположенный на южном борту карьера на расстояние до 1 км;

- доставка товарных блоков из карьера на склад блоков, расположенный на промплощадке на расстояние 0,5 км;

- перевозка отходов камнедобычи на склад Быстриевского карьера на расстояние 20 км;

перевозка попутных полезных ископаемых транспортом потребителя.

9. Характеристика груза – отходы камнедобычи (окол), затронутые выветриванием лабладориты, вскрышные породы, готовые блоки.

10. Вид организации движения – без закрепления автомобилей за экскаваторами. Вся откатка заменяется осреднённым расчётным маршрутом.

11. Характеристика погрузочных средств: экскаваторы ЭО-4111Б – 2 шт.; ёмкость ковша – 1 м3 ; время цикла – 20 сек; кран автомобильный самоходный КС-5363, грузоподъёмностью 16т – 2шт, время цикла 25 сек.

8.2. Обработка исходных данных.

На добыче:

1. Суммарная сменная производительность погрузочного облорудования:

где: Qсмi – сменная производительность i-го погрузочного оборудования.

2. Средневзвешенная длина забойных проездов:

где: l'i – длина забойного проезда к i-му погрузочному оборудованию.

3. Средневзвешанная длина траншеи:

где: l"i – проезд от i-го забойного проезда по траншее до дневной поверхности.

4. Средний уклон для каждого участка (забойный, траншейный, магистральный):

Уклоны забойного и магистрального участка i=00 .

На вскрыше:

1. Сменная производительность погрузочного облорудования:

где: Qсмi – сменная производительность экскаватора.

2. Средневзвешенная длина забойных проездов:

где: l'i – длина забойного проезда к i-му экскаватору.

3. Средневзвешенная длина траншеи:

где: l"i – проезд от i-го забойного проезда по траншее до дневной поверхности.

4. Средневзвешенная длина отвальных путей: до 1 км.

5.Средний уклон для каждого участка (забойный, траншейный, магистральный):

Уклоны забойного и магистрального участка i=00 .

8.3. Проверка профиля трассы.

1. Число ковшей в кузове автосамосвала.

- по ёмкости:

- по грузоподъёмности:

где: 1,2 – коэффициент загрузки «с верхом»; Vном - номинальный объём кузова; Vк - объём ковша; kрк - коэффициент разрыхления пород в ковше; kнк - коэффициент наполнения ковша; mном - номинальная грузоподъёмность автосамосвала; rц - плотность горных пород в целике; kу - коэффициент уплотнения породы в кузове.

На добыче:

Vном =10 м3 ; Vк =1 м3; kрк =1,8; kнк =0,75; mном =12 т; rц =2,9; kу =0,87.

На вскрыше:

Vном =10 м3 ; Vк =1 м3; kрк =1,4; kнк =0,9; mном =12 т; rц =1,9; kу =0,94.

Окончательно число ковшей в кузове автосамосвала принимаем:

На добыче:

На вскрыше: .

2. Фактическая грузопобъёмность:

На добыче: .

На вскрыше: .

3. Коэффициент использования грузоподъёмности:

На добыче: .

На вскрыше: .

4. Коэффициент использования ёмкости кузова:

На добыче: .

На вскрыше: .

5. Масса гружёной машины:

где: m0 – масса порожней машины.

На добыче: .

На вскрыше: .

6. Сцепная масса гружёной машины. По колёсной формуле находят выражение сцепной массы для данного самосвала.

Колёсная формула для КрАЗа-256Б – 6х4. Отсюда выражение сцепной массы для данного автосамосвала:

На добыче: .

На вскрыше: .

7. Производим проверку профиля трассы. Проверка производится для участка, имеющего самый большой уклон – это выездная траншея.

- предельная масса автомобиля по условиям сцепления при трогании с места в выездной траншее в грузовом направлении:

где: y - коэффициент сцепления колёс с дорогой; w0 - основное удельное сопротивление движению автомобиля.

где d=1,8 – коэффициент инерции вращающихся масс; g=9,81 – ускорение свободного падения; аmin =1 м/с2 – это норматив введён для того, чтобы не происходило затягивание разгона.

На добыче:

На вскрыше:

Условие по сцеплению выполняется:

На добыче: 35,68>14,448

На свкрыше: 35,59>14,412

- проверка на спусках предельной скорости движения по безопасному торможению.

Тормознаясила для порожнего состава:

Тормозное замедление на уклоне:

Допустимая скорость движения:

где: tn =1,5 – 2,5 сек – время подготорки тормозов к действию; lт =40 – 80м – длина тормозного пути.

8.4. Определение числа автосамосвалов.

1. Время погрузки самосвала:

На добыче:

- блоков ,

- отходы .

На вскрыше: .

2. Время паузы за цикл:

где:tраз =1мин – время разгрузки; tзад =1-2 мин – время ожидания погрузки и разгрузки; tман =1-2 мин – время маневрирования.

На добыче:

- блоков ,

- отходы .

На вскрыше: .

3. Время рейса по осреднённому расчетному маршруту со средними техническими скоростями.

где: lpi - длина i –го элемента трассы в рабочем направлении (с грузом, км); lxi - длина i–го элемента трассы в холостом направлении (км);Vcpi - средняя техническая скорость движения на i-ом участке в рабочем направлении; Vcxi - средняя техническая скорость движения на i–ом участке в холостом направлении.

На добыче:

- блоков Т=32 мин,

- отходов Т=87,2

На вскрыше: Т=17,9 мин.

4. Количество рейсовых автомобилей.

где: tсм - продолжительность смены (час); k - коэффициент неравномерности; kвм - коэффициент использования сменного времени автомобиля.

На добыче:

- блоков ,

- отходы .

На вскрыше: .

5. Инвентарное число автомобилей.

На добыче:

- блоков ,

- отходы .

На вскрыше: .

6. Общий пробег автомобилей за смену.

где: lS р – длина рабочего пробега за один рейс; lS х – длина холостого пробега за один рейс.

На добыче:

- блоков ,

- отходы .

На вскрыше: .

7. Количество рейсов в смену, сделанные одной машиной:

На добыче:

- блоков ,

- отходы .

На вскрыше: .

8. Расчетный расход топлива за 1рейс 1 самосвалом.

где: Кз =1,1 – 1,2 – коэффициент, учитывающий повышение расхода топлива в зимнее время; Кн =1,05 – 1,06 – коэффициент, учитывающий расход топлива на внутригаражные нужды; Км = 1,1 – 1,2 – коэффициент, учитывающий расход топлива на манёвры; Кдв =1,05 – 1,25 – коэффициент, учитывающий степень износа двигателя; Кт - коэффициент тары; Н – высота подъёма горной массы при транспортировании; q - грузоподъёмность.

На добыче:

- блоков др = 1,59 л/рейс,

- отходы др = 20,4 л/рейс.

На вскрыше: др = 1,095 л/рейс.

9. Расход топлива за сутки.

где: N – количество смен в сутки.

На добыче:

- блоков ,

- отходы .

На вскрыше: .

10. Расход смазочных материалов в сутки.

На добыче:

- блоков ,

- отходы .

На вскрыше: .


9. ВОДООТЛИВ.

Исходные данные для расчёта водоотливной установки:

1. Схема вскрытия, план и отметка добычного горизонта – на площади месторождения в его западной части пройден опытный карьер. Вскрытие месторождения производится временной траншеей внутреннего заложения, пройденной при вскрытии опытного карьера на добычной горизонт с отметкой 181,0 м.

2. Годовая производительность – 5000 м3 /год.

3. Данные о водообильности месторождения, химическом составе и температуре воды, содержание твёрдого в воде – суммарный водоприток в карьер при его углублении до проектной отметки за счёт атмосферных осадков и подземных вод составит 315 м3 /сут. Воды водоносного горизонта в осадочных отложениях по составу преимущественно гидрокарбонатно-кальциевые с сухим остатком от 342 мг/л до 530 мг/л. рН от 6,2 до 7,6 общей жесткостью до 8,4 мг*экв/л. Воды водоносного горизонта трещеноватых пород по составу гидрокарбонатно-кальциевые с сухим остатком до 326 мл/л. рН = 7,6 с содержанием СО2 агрессивного 13,2 мг/л и общей жесткостью от3,2 до 4,5 мг*экв/л.

Основные этапы расчёта водоотливной установки содержит выбор насоса и трубопровода, определение параметров рабочего режима, выбор привода и объёма водосборника, энергетическая оценка эффективности спроектированной установки.

9.1. Выбор насоса.

Насос выбирают исходя из обеспечения необходимых подачи и напора установки.

Минимальную необходимую подачу водоотливной установки определяют из условия удаления нормального суточного водопритока за время работы Трс =20 ч, м3 /ч:

м3 /сут,

м3 /ч,

где: Qn - нормальный приток воды, м3 /ч.

Необходимый напор насоса, м:

м,

где: Нг – геометрическая /геодезическая/ высота поднятия воды – расстояние по вертикали от зеркала воды в водосборнике до горизонта слива воды с трубопровода, м:

м,

где: Нод – отметка околоствольного двора относительно дневной поверхности, м; Нвс – геометрическая высота всасывания, Нвс =2,5…3,5 м; hт – КПД трубопровода, ориентировочно принимается 0,9…0,95.

Исходя из требуемых значений подачи и напора, по данным промышленного использования насосов и их техническим характеристикам, выбран насос 2К-20/30 (Q=30 м3 /ч; Н=24 м).

Выбранный насос проверяют на устойчивость работы по условию:

где: - необходимое число рабочих колёс; Нко – напор, создаваемый одним рабочим колесом при нулевой подаче; Нк – напор, создаваемый одним рабочим колесом при подаче Qmin /принимается по характеристикам насоса/.

Насос 2К-20/30 обеспечивает расчётную подачу и напор.

9.2. Выбор трубопровода.

Выбор трубопровода водоотливной установки сводится к выбору стандартного сечения труб. При этом фактическая потеря напора:

Оптимальная скорость воды в трубопроводе определяют по эмпирической формуле, м/с:

Величину Vэ обосновывают социальным технико-экономическим расчётом из условия минимума приведённых затрат на сооружение трубопровода и эксплуатационных затрат энергии на прокачку воды через него.

Qн номинальная подача насосов, принятая из условий превышения на 15% минимальной подачи.

Диаметр трубопровода напорного става определяется по формуле:

Стандартное сечение диаметра трубопровода принимается 0,245 м.

Коэффициент гидравлического трения

Длина напорного трубопровода, м:

где: a - угол наклона откоса уступа нерабочего борта карьера, по полезному ископаемому a=900 ; l - ширина горизонтальной площадки уступа, м; nу – количество уступов; l2 – длина труб от нижней бровки уступа до насоса, l2 =15…20 м; l3 – длина труб от верхней бровки уступа до места слива, l3 = 15…20 м; lв – длина подводящего трубопровода, м; lэ -эквивалентная длина прямолинейного трубопровода, учитывающая местные сопротивления в напорном и подводящем трубопроводах, м.

где: Sj- сумма коэффициентов местных сопротивлений для типовой схемы водоотливного трубопровода, Sj = 25…30; Кв – расходные характеристики в напорном трубопроводе, м3 /с; d – диаметр трубопровода напорного става.

Фактическая потеря напора в трубопроводе:

Уравнение расходной характеристики трубопровода определяется по формуле:

где: R – сопротивление трубопровода.

Уравнение характеристики имеет вид: .

H

22

22,2

22,8

23,8

25,1

26,9

29,1

31,6

34,5

Q

0

5

10

15

20

25

30

35

40

С целью увеличения коэффициента готовности резервного трубопровода и снижения удельных энергозатрат рекомендуется предусматривать его постоянную эксплуатацию совместно с рабочим трубопроводом.

Постоянное использование резервного трубопровода в рабочем режиме снижает удельные энергозатраты на откачку воды. С вводом резервного трубопровода потери напора и энергии на преодоление сопротивления итрубопровода сократятся в 4 раза.

9.3. Рабочий режим.

Рабочий режим определяется графическим решением системы уравнений характеристик насоса и трубопровода (см. рис.9.1.). Точка пересечения характеристик определяет рабочий режим. Рабочие параметры насоса:

1. Qр =16 м3 /ч;

2. Нр =23,8 м;

3. hp =63%.

Проверка режима работы насоса: hp ³ 0,85hmax , 0,63 ³ 0,85*0,65, где hmax - максимальное КПД насоса, равное 0,65.

При проверке режима работы насоса на отсутствие кавитации должно выполняться условие: Нвр ³ Нвс , 3 м ³ 3 м,

где Нвр = 3 м – допустимая вакуумметрическая высота свасывания насоса в рабочем режиме, м; Нвс = 3 м – проэктная высота всасывания,м.

Условие безкавитационной работы насоса выполняется.

11.4. Выбор привода.

Привод выбирают из условия обеспечения необходимой мощности, Вт:

,

где: q – ускорение свободного падения, q=9,8 м*с-2 ; r - плотность воды, r=1020 кг/м3 .

По расчитанной мощности, с учетом частоты вращения насоса, принимаем электродвигатель ВАО-82-2. Двигатель трёхфазный асинхронный короткозамкнутый, преимущественно на напряжение 660В.

Коммутационную аппаратуру двигателя выбирают по уровню его напряжения Uн и рабочему току, А:

Выбранный тип устройства – РВД-6.

11.5. Определение объёма водосборника.

Объём водосборникавыбирают согласно требованиям Правил безопасности. Для главной водоотливной установки минимально возможный объём водосборника, м3 :

В качестве водосборника принимают обычно горную выработку определённой площади сечения Sс =5м ´ 6м и высоты hс =4м. С учётом чистки принимаются как минимум две секции.

11.6. Определение эффективности водоотливной установки.

Эффективность спроектированной установки оценивают по отдельным энергозатратам на откачку воды. Суточная производительность работы водоотливной установки по откачке нормального притока воды:

,

Годовой расход электроэнергии на водоотлив:

где: 1,05 – коэффициент, учитывающий расход электроэнергии на освещение насосной камеры, сушку электродвигателей, питание аппаратуры, автомотизации др.; hс =0,95…0,98 – КПД электросети; Кп – коэффициент увеличения весеннего притока.

Удельные затраты на подъём 1 м3 воды на высоту 1 м, Вт*ч/(м3 *м):

Полученное значение энергозатрат характеризует эффективность использования оборудования и принятых решений в выполненном расчёте. Для использования полученного параметра в качестве обобщённого критерия эффективности полученного проекта следует ориентироваться, что среднестатистическое значение удельных энергозатрат для отрасли составляет 5,2 Вт*ч/(м3 *м), минимально возможное – 2,73 Вт*ч/(м3 *м).


10. ЭЛЕКТРОСНАБЖЕНИЕ.

10.1. Выбор схемы питания и распределения электроэнергии на Мыковском карьере.

10.1.1. Выбор внешнего электроснабжения.

Краткая горно-геологическая характеристика приведена в ранее выполненных разделах проекта.

Размеры Мыковского карьера: 270 х 240 м, средняя глубина 20 м.

Мыковский карьер работает 260 дней в году, в одну смену протяженностью 8 часов, преимущнественно в светлое время суток.

На Мыковском карьере используются электроприёмники, представленные в таблице 10.1.

Таблица 10.1.

Наименование

Потребителей

Кол-во

Уст.

мощн.

Коэф.

спроса

Кп

Потреб.

мощ-

ность,

Рр ,кВт

Число

Часов

Работ

в год,Т

все-

го

рабо-

чих

все-

го

рабо-

чих

1.Насос 2К20/30

2.СБУ - 100Г

3.Лампа ДКсТ

4.Вагон ВП-6

2

1

1

2

1

1

1

2

8

22

20

30

4

22

20

30

0,8

0,6

1

1

3,2

13,2

20

30

2080

2600

1430

1820

Всего:

-

-

80

76

-

66,4

-

Ориентировочно напряжение, которое питает ЛЭП, можно определить по формуле:

.

где: L – длина ЛЭП; Р – мощность линии ЛЭП, кВт.

Источник электроснабжения Мыковского карьера – отпайка от ВЛ-10 кВ «Кам. Брод» напряжением 10 кВ.

Номинальное напряжение электрической сети:

- выше 1000 В - 10 кВ;

- до 1000 В - 0,4 кВ.

Установленная мощность электрических приёмников – 80 кВт, в том числе:

а) силовое оборудование - 60 кВт;

б) освещение - 20 кВт.

Токоприёмники карьера (буровые станки, насосы и др.) питаются от трансформаторной подстанции с изолированной нейтралью, установленной на северном борту карьера при пробной добыче. От трансформаторной подстанции (ТП) к карьеру проведена ЛЭП – 0,4 кВт.

Для передачи электроэнергии от ТП к потребителям применяются провода. Провода в карьере прокладываются открыто на «козлах», а в местах проезда транспорта – в трубах, с соблюдением правил безопасности.

10.1.2. Схема соединения подстанции.

Для питания небольших горных предприятий, таких как Мыковский карьер, где все потребители электрической энергии по степени бесперебойности электрического снабжения относят к ІІІ категории, при значительном отдалении от районной подстанции, используют однострансформаторные подстанции (рис. 10.1.).

10.1.3. Распределение электроэнергии на Мыковском карьере.

Электроэнергию на карьере распределяют в соответствии с установленными правилами и требованиями.

Строение распределительных сетей внутреннего электроснабжения карьера зависит от размера и конфигурации карьера, мощности и количества горных машин и механизмов, глубины и количества уступов (1 вскрышной и 5 добычных). По этим условиям предварительно выбирается система распределения электроэнергии.

Исходя из данных Мыковского карьера выбирается продольно-фронтальная схема распределения электроэнергии.

10.2. Проектирование электрического освещения открытых горных работ.

10.2.1. Осветительные установки в карьерах.

Эффективное освещение на карьере улучшает условия труда, благоприятствует повышению его производительности и снижает травмвтизм.

На Мыковском карьере работы по добыче полезного ископаемого ведутся в одну смену, протяженностью 8 часов, в светлое время суток. Исходя из этих условий работы в тёмное время суток требуется охранное освещение, минимальное освещение составляет 0,5 лк.

Общее освещение карьера осуществляется стационарной осветиткльной установкой с мощным ксеноновым светильником, который размещается на внешнем борту карьера.

Ксеноновые светильники позволяют обеспечить освещение карьера при минимальном количестве светоточек, снизить расходы на осветительные приборы, электрические осветительные сети и их обслуживание. Светильник устанавливают на стационарной опоре.

10.2.2. Расчёт освещения ксеноновыми лампами.

Количество светильников с ксеноновыми лампами и высоту их установки можно определить методом светового потока.

Общий световой поток, нужный для освещения карьера, и количество светильников можно определить по формулам:

1. Световой поток, необходимый для создания на площади нужной освещённости, Ен :

где: Кз =1,2…1,5 – коэффициент запаса; Кп =1,15…1,5 – коэффициент, который учитывает потери света в зависимости от конфигурации площади освещения; z=1,3 – коэффициент неравномерности освещения.

2. Количество ксеноновых светильников для освещения данной площади определяется:

где: hпр =0,35…0,38 – КПД светильника; Ен =0,5 – нужная освещённость; S – площадь карьера; Фп