Главная      Учебники - Разные     Лекции (разные) - часть 27

 

Поиск            

 

Технические параметры синхронных генераторов

 

             

Технические параметры синхронных генераторов

1. ВВЕДЕНИЕ

Принятая энергетическая программа Республики Казахстан предусматривает завершение формирования основных узлов в единой энергетической системе страны с тем, чтобы повысить её манёвренность и надёжность. Это будет достигаться строительством новых тепловых станций на западе страны и работающих на газе, на северо-востоке страны будет предложено строительство мощных КЭС на базе Экибазтуских углей с последующей транспортировкой избытка электрической энергии зарубеж в Россию и Китай. Планируется строительство новых ЛЭП высокого и сверхвысокого напряжения с тем, чтобы направить потоки электроэнергии с востока и северо-востока в направлении юга и запада страны.

В перспективе для более надёжного и полного обеспечения центра страны и особенно юга электрической энергией возможно строительство атомной теплоэлектростанции в районе о. Балхаш. На юге страны возможно строительство нетрадиционных источников электрической энергии – ветровых и солнечных электростанций. Электроснабжение малых изолированных потребителей расположенных в труднодоступных районах возможно осуществить от небольших газотурбинных генераторов.


2. ВЫБОР СИНХРОННЫХ ГЕНЕРАТОРОВ

Таблица 1.«Технические параметры СГ»

Тип генератора

Рном

МВТ

Sном

МВА

Uном

кВ

cosφ

Iном

А

X"d

о. е.

n

об/мин

ТВФ-120-2У3 120 125 10,5 0,8 6,875 0,192 3000
ТВВ-220-2ЕУЗ 220 258,3 15,75 0,85 8,625 0,1906 3000

Источник: (уч. 1, стр. 610), (уч. 2, стр.76-103)

X" d- сверх переходное индуктивное сопротивление в относительных единицах (о. е.)


3. ВЫБОР ДВУХ СТРУКТУРНЫХ СХЕМ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Рис. 1 Вариант – I

Рис. 2 Вариант – II

Расход мощности на с. н. одного генератора:

Рс.н. = ×Pном.г ; =5% [уч. 1 стр. 445 таб. 5,2]

Рс.н. = ×120=6 МВт – для генераторов ТВФ-120-2УЗ

Рс.н. = ×220=11 МВт – для генераторов ТВВ-220-2ЕУЗ

Расчёт перетока через АТ связи I – варианта

Pпер. max =2×120-2×6-260=-32 МВт

Pпер. min =2×120-2×6-230=-2 МВт

Расчёт перетока через АТ связи I – варианта

Pпер. max =3×120-3×6-260=82 МВт

Pпер. min =3×120-3×6-230=118 МВт

Вывод: I - вариант по перетоку мощности более экономичен.

Провожу расчёт реактивных составляющих

Qс.н.с.н. =cos

С. Н. Qc .н.с.н ­× =6× =4,2 МВар

С. Н. Qc .н.с.н ­× =11× =7,7 МВар

Qг1г1 × =120× =90 МВар

Qг2г2 × =220× =132 МВар

Qmax =Pmax × =260× =130 МВар

Qmin =Pmin × =230× =115 МВар


4. ВЫБОР ТРАНСФОРМАТОРОВ

4.1 Выбор блочных трансформаторов I и II варианта мощности провожу по [уч. 1, стр. 390 т. 5,4]

МВА

МВА

МВА

В качестве блочных трансформаторов принимаю [по уч. 2 стр. 146-156 табл. 3,6] на стороне:

- 110 кВ – трансформатор типа ТДЦ-200000/110

- 220 кВ – трансформатор типа ТДЦ-400000/220 – для генератора

ТВВ-220-2ЕУЗ

- 220 кВ – трансформатор типа ТДЦ-200000/220 – для генератора

ТВФ-120-2УЗ

4.2. Выбор автотрансформаторов связи

I – вариант

Sрасч. =

Sрасч. min . = МВА

Sрасч. max . = МВА

Sрасч.ав.. = МВА

По наиболее тяжёлому режиму выбирают мощность автотрансформатора связи.

Sтреб.АТ = =109 мВА

Где Кn =1,4 т.к. график нагрузки и условия работы автотрансформатора неизвестны.

Выбираю два автотрансформатора: АТДЦТН-125000/220/110

II – вариант

Sрасч. =

Sрасч. min . = МВА

Sрасч. max . = МВА

Sрасч.ав.. = МВА

По наиболее тяжёлому режиму выбирают мощность автотрансформатора связи.

Sтреб.АТ = =129.4 мВА

Где Кn =1,4 т.к. график нагрузки и условия работы автотрансформатора неизвестны.

Выбираю два автотрансформатора: АТДЦТН-200000/220/110

Данные выбранных трансформаторов свожу в таблицу 2

Таблица 2

Тип

трансформатора

Кол- во

IВ/IIВ

Uном кВ

Р0

кВт

Рк кВт Uк %

ВН

СН

НН

ВН- -СН ВН--НН

СН-

-НН

ВН- -СН ВН- -НН СН- -НН

2×АТДЦТН

200000/220/110

-/2 230 121 38,5 105 430 - - 11 32 20

2×АТДЦТН

125000/220/110

2/- 230 121 10,5 65 315 - - 11 45 28

ТДЦ

200000/220

2/1 242 - 18 130 - 660 - - 11 -

ТДЦ

200000/110

2/3 121 - 15,75 170 - 550 - - 10,5 -

ТДЦ

400000/220

2/2 237 - 21 315 - 850 - - 11 -

5 . ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ВАРИАНТОВ

Капитальные затраты рассчитываю учитывая стоимость основного оборудования. Данные свожу в таблицу.

Капитальные затраты

Таблица 3

Тип оборудования

Стоимость ед. обор-я

тыс. у.е.

I-вариант II-вариант

Кол-во

шт.

Стоимость

тыс. у.е.

Кол-во

шт

Стоимость

тыс. у.е.

Блочные трансформаторы
ТДЦ-200000/110 222 2 444 3 666
ТДЦ-400000/220 389 2 778 2 778
ТДЦ-200000/220 253 2 506 1 253
Автотрансформаторы связи

АТДЦТН-

125000/220/110

195 2 390 - -

АТДЦТН-

200000/220/110

270 - - 2 540
Ячейки ОРУ
220 кВ 78 8 624 7 546
110 кВ 32 10 320 11 352
Итого 3062 3135

Потери электрической энергии в блочном трансформаторе ТДЦ-200000/110 присоединённом к сборным шинам 110 кВ [уч. 1 стр. 395 (5,13)]

τ кВТ×ч

Т=Тгодрем =8760-600=8160 час

τ=4600 час – время потерь

Тmax =6000 ч. по [уч. 1 стр. 396 рис. 5,6]

Δ W 1 =8160×170+550× ×4600=2,7×106 кВт× час

Потери в блочном трансформаторе ТДЦ-400000/220 – для генератора ТВВ-220

Δ W 2 =8160×315+850× ×4600=4,09×106 кВт× час

Потери в блочном трансформаторе ТДЦ-200000/220

Δ W 3 =8160×130+660× ×4600=2,6×106 кВт× час

Потери электроэнергии в автотрансформаторе связи в I-варианта по [уч. 1 стр 396 (5,14)] с учётом того, что обмотка НН не нагружена.

τ τC

I – вариант автотрансформатор АТДЦТН-125000/220/110

= кВт×ч

Где РКВКС =0,5×РКВ =0,5×315=157,5

SmaxB =SmaxC = МВА

Т=Тгод =8760 год

II – вариант автотрансформатор АТДЦТН-200000/220/110

= кВт×ч

Где РКВКС =0,5×РКВ =0,5×430=215

SmaxB =SmaxC = МВА

Т=Тгод =8760 год

Суммарные годовые потери I – варианта

2×1,12×106 +2×2,7×106 +2×4,09×106 +2×2,6×106 =21,02×106 кВт×ч

Суммарные годовые потери II – варианта

2×1,3×106 +3×2,7×106 +2×4,09×106 +1×2,6×106 =21,48×106 кВт×ч

Годовые эксплутационные издержки

Где Ра =6,4 %, Ро =2 %, =0,6×10-2 у.е. кВт×ч по уч. 2 стр. 545

т. у. е.

т. у. е.

Приведённые затраты по уч. 1 стр.395

З=РН ×К+U

Где РН =0,12 – нормативный коэффициент экономической эффективности для энергетики

ЗI =0,12×3062+383,328=750,8 т.у.е.

ЗII =0,12×3135+392,220=768,4 т.у.е.

Разница в затратах

Вывод: Варианты равноценны т.к. ∆З<5 %, принимаю вариант – I т. к. по перетоку мощности более экономичнее.


6. ВЫБОР ТРАНСФОРМАТОРОВ С. Н.

6.1 Выбор ТСН рабочих

Рабочие ТСН подключаются отпайкой к блоку их количество равно количеству генераторов. Требуемая мощность рабочих Т.С.Н.

- коэффициент спроса по уч. 1 стр. 20 т. 1,17

Требуемая мощность Т.С.Н.

SСН ≥0,85×6=5,1 МВА

По каталогу принимаю для блоков 120 МВт трансформатор ТМН-6300/20

UВН =13,8 кВ

UНН =6,3 кВ

PХ =8 кВт

PК =46,5 кВт

UК = 7,5 %

Требуемая мощность Т.С.Н.

SСН ≥0,85×11=9,35 МВА

По каталогу принимаю для блоков 220 МВт трансформатор ТДНС-10000/35

UВН =15,75 кВ

UНН =6,3 кВ

PХ =12 кВт

PК =60 кВт

UК = 8 %

6,2 Выбор резервных трансформаторов С.Н.

Так как на ГРЭС количество блоков больше трёх устанавливаю два РТСН. Один подключён к НН АТ связи, другой в резерве.

Требуемая мощность РТСН

SРТСН ≥1,5×SСН max =1.5×9.35=14.03 МВА

По каталогу принимаю ТДНС-16000/20

UВН =15,75 кВ

UНН =6,3 кВ

PХ =17 кВт

PК =85 кВт

UК = 10 %

Схема ТСН

Рис. 3 схема ТСН


7. ВЫБОР И ОБОСНОВАНИЕ УПРОЩЁННЫХ СХЕМ РУ ВСЕХ НАПРЯЖЕНИЙ

Для РУ 110 и 220 кВ выбираю схему с двумя рабочими и обходной системами шин с одним выключателем на цепь. Как правило, обе системы шин находятся в работе при соответствующем фиксированном распределении всех присоединений. Такое распределение присоединений увеличивает надёжность схемы, т.к. при КЗ на шинах отключается шиносоединительный выключатель QA и только половина присоединений переводят на исправную систему шин перерыв эл. снабжения половины присоединений определяется длительностью переключений.

1. 220 кВ число присоединений n=10 принимаю схему с двумя рабочими и обходной системами сборных шин по уч. 1, стр. 416 рис. 515.

Рис. 4

Фиксация на присоединение: 220 кВ

А1 : W1 , W2 , Т1 , Т2 , АТ1

QO; QA

А2 : W3 , W4 , Т3 , Т4 , АТ2 .

2. 110 кВ число присоединений n=10 принимаю схему с двумя рабочими и обходной системами сборных шин уч. 1, стр. 416 рис. 515.

Рис. 5

Фиксация на присоединение: 110 кВ

А1 : W5 , W6 , W7 , Т5 , АТ1

QO; QA

А2 , W8 , W9 , W10 , Т6 , АТ2 .

8. РАСЧЁТ ТОКОВ КЗ

8.1. Составляем схему замещения

Рис. 6 Схема замещения

Схема замещения для расчёта трёхфазного КЗ представлена на рис. 5. каждому сопротивлению в схеме присваивается свой порядковый номер, который сохраняется за данным сопротивлением в течении всего расчёта. В схеме сопротивление дробное значение, где числитель – номер сопротивления, знаменатель – численное значение сопротивления.

Определяем сопротивление схемы (рис. 5) при базовой мощности Sб =10000 МВА.

Сопротивление генераторов G1 ; G2 ; G3 ; G4 ; G5 ; G6 .

X1* =X2* =

X3* =X4* =X5* =X6* =

Для упрощения обозначенный индекс «*» опускаю подразумеваю, что все полученные значения сопротивлений даются в относительных единицах и приведены к базовым условиям. Таким образом:

X1 =X2 =0.1906× о.е.

Х34 =X5 =X6 =0.192× о.е.

Сопротивление трансформаторов Т1 , Т2 – ТДЦ-400000/220 и Т3 , Т4 – ТДЦ-200000/220

Х78 =

Х910 =

Х78 = о. е.

Х910 = о.е.

Сопротивление трансформаторов Т5 , Т6 – ТДЦ-200000/110

Х1112 =

Х1112 = о.е.

Сопротивление линий электропередач W1 ,W2 .

Х1617уд ×l×

Худ =0.32 Ом/км – удельное сопротивление ВЛ-220 кВ по уч. 1 стр. 130

Х1617 =0,32×100× о.е.

Сопротивление АТ связи АТДЦТН-125000/220/110

Сопротивление в процентах

ХТВ %=0,5(UкВ-Н +UкВ-С -UкС-Н )=0,5(45+11-28)=14 %

ХТС %=0,5(UкВ-С +UкС-Н -UкВ-Н )=0,5(11+28-45)=-3 %

ХТН %=0,5(UкВ-Н +UкС-Н -UкВ-С )=0,5(45+28-11)=31 %

Сопротивление в о. е.

Х13 = о. е.

Х14 =0 т. к. ХТС % - отрицательное число

Х15 = о. е.

Сопротивление системы

Х18с × о.е.


8.2. Упростим схему относительно точки КЗ К1 , результирующие сопротивление цепи генератора G1

Х1917 =7,38+2,75=10,13 о. е. Х1920 =10,13 о. е. X19 =X20 =10.31 о. е.

Х2139 =15,36+5,5=20,86 о. е. Х2122 =20,86 о. е. X21 =X22 =20,86 о. е.

Х23511 =15,36+5,25=20,61 о. е. Х2324 =20,61 о. е. X23 =X24 =20,61 о. е.

Результирующее сопротивление цепи однотипных генераторов G1 , G2 , G3 , G4 , G5 , G6 .

Х26 = о. е.

Х27 = о. е.

Х28 = о. е.

Объединяются генераторы G1 ,G2 , G3 , G4 .

о. е.

Х2516 //Х1718 = о. е.

Получили схему замещения

Рис. 7 Лучевая схема замещения

Необходимо произвести разделение цепей связанных цепей КЗ т. к. через сопротивление (13) проходят токи от двух источников.

Эквивалентное сопротивление

Хэкв29 //Х25 = о.е.

Результирующие сопротивление

Хрезэкв13 =1,9+5,6=7,5 о. е.

Коэффициент распределение токов КЗ по связанным ветвям КЗ

проверка: С12 =1 0,4+0,6=1

Результирующие сопротивление по связанным ветвям

о. е.

о. е.

Рис. 8

Начальное значение периодической составляющей тока КЗ

Ino =

Где Х* - результирующие сопротивление ветви схемы

Iб – базовый ток

кА

Ветвь энергосистемы

Ino С = кА

Ветвь эквивалентного источника G1-4

InoG 1-4 = кА

Ветвь эквивалентного источника G5-6

InoG 5-6 = кА

Суммарный ток

ΣInoK 1 =Inoc +InoG 1-4 +InoG 5-6 =2.7+4.54+5,5=12,74 кА

8.3. Короткое замыкание в точке К2 (на выводе генератора G4 ) использую частично результаты преобразования предыдущую схему замещения для данной точки КЗ можно представить в виде, показанном на рис. 8.

Рис. 9

Объединяю генераторы G1-2 -G3 в G1-3

о. е.

Объединяю генераторы G1-3 c энергосистемой

о. е.

Рис. 10

Провожу разделение цепей для точки КЗ

Определяю эквивалентное сопротивление

Хэкв28 //Х30 = о. е.

Определяю результирующие сопротивление

Хрезэкв10 =1,72+5,5=7,22 о.е.

Определяю коэффициент распределения тока КЗ по ветвям

проверка: С12 =1 0,16+0,84=1

Проверяю сопротивление ветвей с учётом распределения

о. е.

о. е.

Определяю начальную периодическую составляющую тока КЗ в точке К2 по ветвям

Ino =

Где Х* - результирующие сопротивление ветви схемы

Iб – базовый ток

кА

Ветвь генератора и энергосистемы (Ст-G1-3 )

Ino Ст- G 1-3 = кА

Ветвь генератора G4

InoG 4 = кА

Ветвь генератора источника G5-6

InoG 5-6 = кА

Суммарное значение начальной периодической составляющей тока КЗ в точке К2 .

ΣInoK1 =Ino Ст -G1-3 +InoG4 +InoG5-6 =72,3+10,5+13,8=126,6 кА

8.4. Ударный ток

Определяем ударные коэффициенты для ветвей схемы замещения по [уч. 1 стр. 149 т. 3,7] и [уч. 1 стр. 150 т.3,8]

Таблица 4

Точка КЗ Ветвь КЗ Та hy
К1 СШ 110 кВ

Система

G1-4

G5-6

0,02

0,26

0,26

1,608

1,965

1,965

К2 ввод G4

Ст-G1-3

G5-6

G4

0,15

0,26

0,4

1,935

1,965

1,975

8.4.1. Ударный ток в точке К1

Где hy - ударный коэффициент

iy с = кА

iyG 1-4 = кА

iyG 5-6 = кА

Суммарное значение ударного тока в точке К1

кА

8,4,2 Ударный ток в точке К2

iy Ст- G 1-3 = кА

iyG 5-6 = кА

iyG 4 = кА

Суммарное значение ударного тока в точке К2

кА

8.5. Определение токов для любого момента времени переходящего момента КЗ

Значение периодической и апериодических составляющих тока КЗ для времени τ > 0 необходимо знать для выбора коммутационной аппаратуры.

Расчётное время, для которого определяем точки КЗ выделяю как τ=tсв +0,01 сек где tсв – собственное время выключателя помечаю предварительно элегазовый выключатель типа ЯЭ-110Л-23(13)У4 [по уч. 2 стр. 242] tсв =0,04 сек, тогда τ=0,04+0,01=0,05 сек.

8,5,1 Апериодическая составляющая тока КЗ в точке К1 согласно [уч. 1 стр. 113 (3,5)]

Где е – функция определяется по типовым кривым [уч. 1 стр. 151 р. 3,25]

кА

кА

кА

Суммарное апериодической составляющей

кА

8.5.2. Апериодическая составляющая тока КЗ в точке К2 согласно [уч. 1 стр. 113 (3,5)]

Выключатель ЯЭ-220Л-11(21)У4

tсв =0,04 сек, тогда τ=0,04+0,01=0,05 сек.

Где е – функция определяется по типовым кривым [уч. 1 стр. 151 р. 3,25]

кА

кА

кА

Суммарное апериодической составляющей

кА


8.6. Определяю значение периодической составляющей тока КЗ момента времени τ методом типовых кривых [уч. 1 стр. 151 (3,44)рис. 3,26]

Для этого предварительно определяю номинальный ток генератора.

8.6.1. Точка КЗ К1

Ветвь генератора G1-4

I`ном G 1-4 =

I`ном G 1-4 = кА

Отношение начального значения периодической составляющей тока КЗ от генераторов G1-4 в точке К1 к номинальному току [уч. 1 стр.152 прим.3,4]

кривая

По данному соотношению и времени τ=0,05 сек определяю с помощью кривых [уч. 1 стр. 152 рис. 3,26] отношение:

Таким образом, периодическая составляющая от генераторов G1-4 к моменту времени τ будет:

кА

Ветвь генератора G5-6

I`ном G 5-6 =

I`ном G 5-6 = кА

Отношение начального значения периодической составляющей тока КЗ от генераторов G5-6 в точке К1 к номинальному току [уч. 1 стр.152 прим.3,4]

кривая

По данному соотношению и времени τ=0,05 сек определяю с помощью кривых [уч. 1 стр. 152 рис. 3,26] отношение:

Таким образом, периодическая составляющая от генераторов G5-6 к моменту времени τ будет:

кА

Ветвь энергосистемы

Периодическая составляющая тока КЗ от энергосистемы рассчитывалось как поступающая в место КЗ от шин неизвестного напряжения.

Inτc =Inoc =2.7 кА

кА

8.6.2. определяю значение периодической составляющей тока КЗ К2 для момента времени τ=0,05 сек

Периодическая составляющая тока КЗ от энергосистемы и присоединённых к ней генераторов G1-3 рассчитывалось как поступающая в место КЗ от шин неизменного напряжения через эквивалентное резертирующие сопротивление поэтому она может быть принята неизменной во времени и равной

Ветвь системы и присоединённых к ней генераторов

I Ст- G 1-3 =Ino Ст- G 1-3 =72,3 кА

Ветвь генератора G1-4

I`ном G 1-4 =

I`ном G 1-4 = кА

Отношение начального значения периодической составляющей тока КЗ от генераторов G1-4 в точке К1 к номинальному току [уч. 1 стр.152 прим.3,4]

кривая

По данному соотношению и времени τ=0,05 сек определяю с помощью кривых [уч. 1 стр. 152 рис. 3,26] отношение:

Таким образом, периодическая составляющая от генераторов G1-4 к моменту времени τ будет:

кА

Ветвь генератора G5-6

I`ном G 5-6 =

I`ном G 5-6 = кА

Отношение начального значения периодической составляющей тока КЗ от генераторов G5-6 в точке К1 к номинальному току [уч. 1 стр.152 прим.3,4]

кривая

По данному соотношению и времени τ=0,05 сек определяю с помощью кривых [уч. 1 стр. 152 рис. 3,26] отношение:

Таким образом, периодическая составляющая от генераторов G5-6 к моменту времени τ будет:

кА

кА

8.7. Расчётные токи КЗ

Таблица 5

Точка КЗ Ветвь КЗ Ino ; кА iy ; кА i ; кА I ; кА
1 2 3 4 5 6
К1 СШ 110 кВ

Система

G1-4

G5-6

2,7

4,54

5,5

12,74

6,14

12,62

15,29

34,05

0,57

5,78

7

13,35

2,7

4,4

4,95

12,05

1 2 3 4 5 6
К2 ввод G4

Ст-G1-3

G5-6

G4

72,3

13,8

40,5

126,6

197,9

38,4

113,1

349,4

76,7

17,6

51,6

145,9

72,3

13,11

34,42

119,83


9. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ТОКОВЕДУЩИХ ЧАСТЕЙ

9.1. Выбор системы шин 110 кВ шины выполняются голыми сталеалюминевыми проводами марки АС

Условия выбора: Imax ≤Iном ;Iном =Imax

Iном =

Iном = А

Выбираю: 2×АС – 300/66 [по уч. 1 стр. 624], Iдоп =2×680=1360 А

Имеем Imax =656,1А<1360А=Iдоп

1. На термическую стойкость проверка не проводится т. к. шины выполнены голыми проводами на открытом воздухе.

2. Проверку на коронирование не проводим т. к. провод выбран с учётом коронирования.

3. Проверку на электродинамическую стойкость не проводят т. к. Ino =10,8<20 кА.

9.2. Выбор ошиновки 110 кВ.

Выполняются таким же проводом, с тем же сечением, что и СШ 110 кВ.

qэ = мм2

где Iэ =1 А/мм2 при Тmax =6000

принимаю два провода в фазе АС-300/66 наружный диаметр – 24,5 мм, допустимый ток 2×680=1360 А

Imax =656,1А<1360А=Iдоп

9.3. выбор связи между генератором и трансформатором, цепь выполняется комплектным пофазно-экранированным проводом

Условия выбора: Uном ≥Uден ;Iном ≥Imax

Условия проверки: iy ≤iдин

Расчётные токи продолжительных режимов

а) Нормальный:

Iнорм =Iном =

Iнорм =Iном = А

б) Выбор провода АС по условию с учётом рекомендаций ПУЭ на отсутствие короны. Условия выбора Imax <Iдоп

Принимаю: 2×АС-400/22

q=2×400=800 мм2 >qэ =787 мм2

Iдоп =2×830=1660 А>Imax =787 А


9.4. Выбор выключателей и разъединителей

СШ 110 кВ

Расчётно тепловой импульс:

Вк рас =Iпо 2 ×(tотка )

tотк =0.1-0.2 – зона 1 [по уч. 1, стр. 210 р. 3,61]

Та =0,14 - [по уч. 1, стр. 190]

Вк рас =12,742 ×(0,2+0,14)=55,19 кА2 ×сек

Дальнейший расчёт сведён в таблицу 6

Таблица 6

Расчётные данные Исходные данные

выключатель

ЯЭ-110Л-23(13)У4

разъединитель

РНД-110У/2000У1

1) Uуст =110 кВ

2) Imax =656,1 А

3) Iпτ =12,05 кА

4) iаτ =14,69 кА

5) Iпо =12,74 кА

6) iу =31,73 кА

7) Bк рас =55,19 кА2 ×сек

1) Uном =110 кВ

2) Iном =1250 А

3) Iном отк =40 кА

4) iном отк = ×Iном ×βн =

= ×40×0,3=16,97 кА

5) Iдин =50 кА

6) iдин =125 кА

7) Bк зав =I2 тер ×tтер =

=502 ×3=7500 кА2 ×с

1) Uном =110 кВ

2) Iном =2000 А

3)

4)

5)

6) iдин =100 кА

7) Bк зав =I2 ×tтер =

=402×3=4800 кА2 ×с

βн =30% для τ=0,01+tc .в. =0,01+0,04=0,05 сек [по уч.1. стр. 296 рис. 4,54]

9,5 Выбор ТТ и ТН

Рис. 11

Тип ТТ выбирается по более нагруженному присоединению например тупиковая ВЛ.

Определяется мощность приборов подключённых к более нагруженному ТТ – см. таблицу 7.

Нагрузка ТТ 110 кВ

Таблица 7

Прибор Тип прибора Нагрузка фаз (В×А)
А В С
1) Амперметр Э - 350 0,5 0,5 0,5
2) Ваттметр Д - 304 0,5 0,5
3) Ваттметр Д - 345 0,5 0,5
4) Счётчик активной энергии САЗ – И 670 2,5 2,5
5) Счётчик реактивной энергии СР4 – И676 2,5 2,5
Итого: 6,5 0,5 6,5

Sприб =6,5 ВА – полная мощность приборов более нагруженной фазы.

Сопротивление приборов:

rприб = =0,26

Указание: тип приборов и потребляемая мощность обмоток см. [1, стр.635-636]

ТТ=5 А – вторичный номинальный ток ТТ серии ТФЗМ 110Б – 1

[2, стр. 306 табл. 5, 9]

Допустимое сопротивление проводов

rпров =r2ном - rприб - rк =1,2-0,26-0,1=0,84 Ом

r2ном =1,2 Ом – вторичная номинальная нагрузка в Омах ТФЗМ 110Б – 1 в классе точности 0,5 который необходимо иметь при подключении счётчиков [2, стр. 306, таб. 5,9]

Определение требуемого сечения соединительных проводов.

Используется контрольный кабель с медными жилами (ρ=0,0175 ОМ/м – удельное сопротивление) т. к. на электростанции установлены генераторы мощностью более 100 мВт; соединение обмоток ТТ – «звезда», поэтому Iрасч =L=100 км [1, стр. 374-375 рис. 4]

qтреб > q× =0,0175× =3,125 мм2

Рекомендуется принимать сечение для медных жил (2,5 - 6) мм2 , поэтому принимается кабель с жилами q=3.5 мм2 .

Уточняется сопротивление проводов и вторичная нагрузка ТТ

rпров = =0,0175× =0,5 Ом

r2 =0.26+0.5+0.1=0.86 Ом

Выбираю - ТТ 110 кВ ТФЗМ 110Б – III


Таблица 8

Расчётные данные Каталожные данные
Uуст =110 кВ Uном =110 кВ
Imax =656 А Iном =100 А
iу =46,71 кА iдин =30 кА
Bк расч =55,19 кА2 ×с Bк зав =I2 тер ×t тер =
r2 =0,86 Ом r2 ном =1,2

Вк рас =12,742 ×(0,2+0,14)=55,19 кА2 ×сек

Выбор ТН 110кВ

Таблица 9

Приборы Тип прибора S одной обмотки Число обмоток Число приборов

Потребляемая

мощность

Рприб Qприб
Вольтметр реги- страционный Н-394 10 1 2 0,1 20

Частотомер реги-

страционный

Н-397 7 1 2 0,1 14
Вльтметр Э-335 2 1 2 0,1 4
Частотомер Э-362 1 1 2 0,1 1
Ваттметр Д-304 2 2 8 0,1 32
Ваттметр Д-345 2 2 8 0,1 32

Счётчик активной

энергии

САЗ-И/

/670

1,5 2 7

0,925

0,38

21 51

Счётчик реактив-

ной энергии

СР-4/

/676

3 2 7

0,925

0,38

42 102
166 153

Q=P×tgφ= =21× =51 Вар

Суммарная вторичная нагрузка ТН

S2∑ = =225,7 ВА

По каталогу [2, стр.336, табл. 5,13] принимаем ТН типа НКФ – 110 – 83У1 кВ, имеющий в классе точности 0,5 Sном =400 ВА.

Имеем: S2∑=225,7 ВА < Sном =400 ВА, что означает, что выбранный ТН будет работать в классе 0,5, который необходимо иметь при подключении счётчиков.

Таблица 10

Прибор Тип прибора Нагрузка фаз (В×А)
А В С
1) Амперметр Э - 335 0,5 0,5 0,5
2) Амперметр регистрирующий Н-393 - 10 -
3) Ваттметр Д - 335 0,5 - 0,5
4) Ваттметр регистрирующий Н-395 10 - 10
5) Ваттметр Д-335 0,5 - 0,5
6) Счётчик активной энергии САЗ-и-681 2,5 - 2,5
Итого: 14 10,5 14

Ом

R2 =Rпров +Rприб +Rк =0,2+0,56+0,1=0,86 Ом

Где Ом

I2ном – вторичный номинальный ток ТТ серии ТШ-20-10000/5 со встроенным токопроводом

А

А

Imax =9590,6 А<10000 А=Iном

Принимаю ТТ, выбор которого представлен в таблице 11. Токопровод ГРТЕ-20-10000-300

Таблица 11

Расчётные данные

Каталожные данные:

ТШ-20-10000/5

Uуст =10,5 кВ Uном =10,5 кВ
Imax =9590,6 А Iном =10000 А
iу =349,4 кА не проверяется
Bк расч =5449,4 кА2 ×с Bк зав =I2 тер ×t тер =1602×3=76800
r2 =0,86 Ом r2 ном =1,2

Вк рас =126,62 ×(0,2+0,14)=5449,4 кА2 ×сек

Rпров =R2ном -Rприб -Rк =1,2-0,56-0,1=0,54 Ом

Выбор ТН 10,5 кВ

Таблица 12

Приборы Тип прибора Мощ. одной обмотки Число обмоток cosφ sinφ Число приборов Общая мощ.
Р Q
Вольтметр Э-335 2 1 1 0 1 2 -
Ваттметр Д-335 1,5 2 1 0 2 6 -
Варметр Д-335 1,5 2 1 0 1 3 -
Счётчик активной энергии И-680 2 2 0,38 0,925 1 4 9,7
Датчик активной энергии Е-829 10 - 1 0 1 10 -
Вольтметр регистрирующий Н-344 10 1 1 0 1 10 -
Датчик реактивной мощности Е-830 10 - 1 0 1 10 -
Ваттметр регистрирующий Н-348 10 2 1 0 1 20 -
Частотомер Э-372 3 1 1 0 2 6 -
Итого: 71 9,7

Суммарная вторичная нагрузка ТН

S2∑ = =71,66 ВА

По каталогу принимаю ЗНОМ-15-63УII для которого Sном =75 ВА в классе точности 0,5 необходимо для подключения к счётчика.

Имею: S2∑ ==71,66 ВА<Sном =75 ВА


10. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ ПО НОМИНАЛЬНЫМ ПАРАМЕТРАМ

10.1. СШ 220 кВ

А

Выключатель: Элегазовый ЯЭ-220Л-11(21)У4

Uном =220 кВ

Iномвык =1250 А>Iном =677,9

Iномотк =40 кА

Iдим =40 кА

iу =100 кА

Iт 2 ×tт =502 ×3=7500 кА2 ×сек

Разъединитель: РНД-220/1000

Uном =220 кВ

Iном