Главная      Учебники - Геология     Лекции (геология) - часть 1

 

Поиск            

 

Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении

 

             

Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении

Дипломный проект содержит 152 страницы текста, в том числе 26 таблиц и 12 рисунков. В данной работе приведена геологическая характеристика Ельниковского нефтяного месторождения, анализ состояния разработки на сегодняшний день, состояние фонда скважин на месторождении. Проведен анализ проведенных в 2004-2005 годах на ряде скважин Ельниковского месторождения гидравлических разрывов пластов, рекомендации по проведению программы гидравлического разрыва пласта. На основе этого выбрано десять скважин для проведения гидравлического разрыва пласта (ГРП). Описана технология ГРП, применяемые материалы и техника. Рассчитан экономический эффект от получения дополнительной добычи нефти, учитывая основные расходы на ГРП, налоговые отчисления, затраты на подъем и транспортировку нефти. Включены разделы по охране труда и безопасности жизнедеятельности, охране недр и окружающей среды.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1.ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

1.1. Общие сведения о месторождении

1.2. Геолого-физическая характеристика месторождения

1.3.Физико-гидродинамическая характеристика месторождения продуктивных коллекторов, вмещающих пород и покрышек

1.4. Свойства и состав нефти, газа, конденсата и воды

1.5. Запасы нефти и газа

2.ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1. Текущее состояние разработки Ельниковского месторождения

2.2. Технико-эксплуатационные характеристики фонда скважин

2.3. Анализ текущего состояния разработки Ельниковского месторождения

2.4. Выбор и обоснование применения гидравлического разрыва пласта для условий Ельниковского местородения

2.4.1. Анализ проведения гидравлического разрыва пласта на скважинах Ельниковского месторождения в 2004-2005гг

2.4.2. Литературный обзор известных технических решений по теме проекта.

2.4.3. Патентный обзор известных технических решений по теме проекта

2.4.4. Анализ применения гидравлического разрыва пласта на других месторождениях

2.5. Проектирование гидравлического разрыва пласта

2.5.1. Подбор скважин для осуществления программы по проведению гидравлического разрыва пласта на Ельниковском месторождении

2.5.2. Выбор скважин-кандидатов

2.5.3. Технология проведения ГРП гидравлического разрыва пласта

2.5.4. Проведение перфорации

2.5.5. Дизайн гидравлического разрыва пласта

2.5.6. Заключительные работы

2.5.7. Техника для гидравлического разрыва пласта

2.5.8. Материалы, применяемые при гидравлического разрыва пласта

2.5.9. Факторы, определяющие эффективность гидроразрыва пласта

2.6. Расчет параметров гидравлического разрыва пласта

2.6.1. Расчет прогнозируемых показателей после проведения гидроразрыва пласта

2.7. Сравнение текущих и прогнозируемых показателей до и после проведения гидроразрыва пласта

3. ОХРАНА ТРУДА, ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ, БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

3.1. Нормативно-правовая база

3.2. Промышленная безопасность

3.2.1. Требования при подготовительных работах на скважине

3.2.2. Правила безопасности при проведении работ по гидроразрыву пласта..104

3.2.3. Правила безопасности при закачке химреагентов

3.2.4. Правила безопасности при прострелочно-взрывных работах

3.3. Санитарно-гигиенические требования

3.4. Пожарная безопасность

3.5. Безопасность жизнедеятельности в чрезвычайных ситуациях

3.6. Затраты на мероприятия для обеспечения безопасности при проведении гидравлического разрыва пласта

4. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ И ОХРАНА НЕДР

4.1. Нормативно-правовая база в области охраны окружающей среды и недр

4.2. Источники воздействия на атмосферу, гидросферу, литосферу, биоту

4.3. Оценка воздействия на окружающую среду

4.4. Мероприятия, обеспечивающие выполнение нормативных документов по охране окружающей среды при осуществлении гидроразрыва пласта

4.4.1. Природоохранная деятельность. Производственный мониторинг

4.5. Расчёт затрат от воздействия на атмосферу, гидросферу, литосферу.

5.ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

5.1. Обоснование показателей экономической эффективности

5.2. Исходные данные и нормативная база для расчета экономических показателей проекта

5.2.1. Выручка от реализации

5.2.2. Эксплуатационные затраты

5.2.3. Капитальные вложения

5.2.4. Платежи и налоги

5.2.5. Прибыль от реализации

5.3. Расчет экономических показателей проекта

5.3.1. Поток денежной наличности

5.3.2. Индекс доходности

5.3.3. Период окупаемости вложенных средств

5.4. Экономическая оценка проекта

5.5. Сравнение технико-экономических показателей базового варианта без проведения ГРП и варианта с проведением ГРП

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПЕРЕЧЕНЬ ГРАФИЧЕСКОГО МАТЕРИАЛА


ВВЕДЕНИЕ

В течение последних лет в нефтяной промышленности наблюдается устойчивая тенденция к ухудшению структуры запасов нефти, что проявляется в увеличении количества вводимых месторождений с осложненными геолого-физическими условиями, повышении доли карбонатных коллекторов с высокой вязкостью нефти. Это обуславливает необходимость поиска, создания и промышленного внедрения новых технологий воздействия на пласт и призабойную зону пласта.

При разработке низкопроницаемых коллекторов все большее применение находят технологии, связанные с применением гидравлического разрыва пласта (ГРП). ГРП является одним из мощных средств повышения технико-экономических показателей разработки месторождений. В результате ГРП при правильном выборе скважин и технологии можно существенно увеличить дебиты нефти обработанных скважин. ГРП в настоящее время является наиболее эффективным способом интенсификации нефти из низкопроницаемых коллекторов.

Выполнив анализ проведения ГРП на Ельниковском месторождении в течении ряда лет, показатели работы этих скважин, а также соседних с ними мы увидим насколько эффективно их применение.

Целью дипломного проекта является подбор скважин Ельниковского месторождения для осуществления программы по ГРП с наиболее большим эффектом по сравнению с другими методами опираясь также на опыт других месторождений. Экономический эффект мы должны получить при соблюдении законов Российской Федерации, требований техники безопасности и охраны окружающей среды.


1. ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

1.1. Общие сведения о месторождении

Ельниковское нефтяное месторождение нефти наряду с другими место­рождениями (Ончугинское, Котовское, Кырыкмасское, Заборское, Ломов­ское, Прикам­ское) разрабатывается силами НГДУ «Сарапул» ОАО «Удмурт­нефть». Ме­сторождение расположено на территории Каракулинского и Сарапуль­ского районов Удмуртской республики, в 100 километрах от го­рода Ижевска, в 35 километрах от города Сарапула (рис.1). Вдоль восточной границы месторождения проходит железнодорожная линия Москва - Казань - Екатеринбург.

Сеть автомобильных дорог в пределах месторождения представлена асфальтовым шоссе Ижевск – Сарапул – Камбарка, проходящим по терри­тории месторождения. Асфальтированное шоссе связывает Ельниковское, Вятское, Ончугинское, Котовское, Кырыкмасское, Ломовское месторожде­ния.

По территории месторождения протекает река Кама, отделяющая При­камский участок от Ельниковского месторождения. С другими действую­щими нефтепромыслами месторождение связано нефтепроводами. Также на территории месторождения расположены производственные базы сервисных организаций.

Электроснабжение обеспечивается ЛЭП-110 Воткинская ГЭС – Сара­пул и ЛЭП-35 Сарапул – Мостовое – Каракулино.

К наиболее крупным населенным пунктам относятся с.Мазунино, д.Соколовка, с.Тарасово. В 35 километрах от центра нефтяной площади располо­жен город Сарапул. Он является крупной железнодорожной стан­цией, важным речным портом и культурным историческим центром Удмур­тии. В орогидрографическом отношении Ельниковское месторождение рас­положено на Сарапульской возвышенности, служащей водоразделом между Камой и ее правым притоком реки Иж. С того же водораздела берет начало река Кырыкмасс (левый приток реки Иж), пересекающая месторождение с востока на запад. Местность представлена холмистой, глубоко изрезанной сетью ручьев и оврагов. Отметки рельефа в пределах рассматриваемой тер­ритории колеблются относительно уровня моря от 70 до 250 метров.

Климат района умеренно-континентальный с продолжительной (до 5 месяцев) зимой. Среднегодовая температура +2 о С, морозы в январе-феврале иногда достигают -40-45 о С. Средняя глубина промерзания грунта – 1,2-1,5м, толщина снежного покрова в марте достигает 60-80 см. Среднее годовое ко­личество осадков около 500мм.

Территория района в основном занята пашнями и небольшими лес­ными массивами. В экономике района месторождения большое значение имеет сельскохозяйственное производство. Под посевом занято примерно 70% его территории.

Из полезных ископаемых, кроме нефти, следует отметить аллювиально-деллювиальные суглинки, конгломераты и галечники татарского возраста, небольшие месторождения гравия, используемого для дорожного строитель­ства, и пресные воды с хорошими питьевыми качествами. Последние исполь­зуются для бытовых нужд, как работниками предприятия, так и местными жителями.

Рис. 1.


Геолого-физическая характеристика месторождения

По тектоническому строению Ельниковское месторождение является ти­пичным для месторождений, расположенных в прибортовой части Камско-Ки­нельской системы прогибов. Для них характерно наличие относительно боль­шой по площади приподнятой зоны, объединяющей целый ряд неболь­ших под­нятий, к которым приурочена основная залежь нефти. Контур залежи охваты­вает практически всю приподнятую зону.

Структурное строение месторождения и прилегающей территории наи­бо­лее полно изучено по пермским отложениям. По кровле стерлитамакского го­ризонта в пределах изогипсы минус 280м. Ельниковское месторождение пред­ставляет собой приподнятую зону северо-восточного простирания и включает ряд мелких поднятий с амплитудами 15-20м. В структурном плане на месторо­ждении выделяется три крупных поднятия: Соколовское, Ельни­ковское, Апа­лихинское.

Апалихинское и Ельниковское поднятия не отделяются друг от друга более или менее значительным прогибом. В пределах названных поднятий по изо­гипсе минус 280 четко прослеживается 7 небольших структур.

Соколовское поднятие также представляет собой сеть небольших струк­тур, разделенных узкими прогибами на три зоны.

В целом по разрезу наблюдается хорошее соответствие структурных пла­нов по пермским, средне и нижне-каменноугольным отложениям (рис. 2).

Сводный литолого-стратиграфический разрез

Рис.2


Структурный план месторождения представлен тремя поднятиями: собст­венно, Ельниковским, Апалихинским и Соколовским, причем следует отметить, что границей Ельниковского и Апалихинского поднятий служит не резко вы­раженный прогиб. На общем фоне поднятий выделяется целый ряд осложняю­щих их средних и мелких куполов, контролирующих самостоятельные залежи нефти в пластах карбонатной толщи турнейского яруса, визейской терригенной толщи нижнего карбона и карбонатной толщи каширо-подольских отложений среднего карбона. Все поднятия имеют тектоно‑седиментационное происхож­дение, как уже говорилось выше, характеризуются соответствием структурных планов по пермским и каменноугольным отложениям, приобретая с глубиной более резкие черты. Основу поднятий составляют рифогенные образования верхнетурнейско-франско-фаменского возраста.

В отложениях терригенной пачки нижнего карбона отмечается наличие большого количества врезов, в связи, с чем по скважинным данным отмечается резкое несоответствие по толщине структурных этажей в разрезе рядом стоя­щих скважин. Эрозионному разрушению подвергались карбонатные породы, подстилающие визейские терригенные отложения. Ширина врезов составляет 150-500 м, длина - несколько километров.

Врезы выполнены терригенными породами визейского возраста, которые облегают их борта. Как правило, нумерация пластов аргиллитов и песчаников во врезе и во вне его одинакова, но толщина пластов во врезе значительно воз­растает, и увеличение толщины тем больше, чем глубже залегает пласт. Из по­род визейского возраста, которые встречаются только во врезах и отсутствуют на прилегающих участках, следует отметить угленосные отложения, залегаю­щие в подошве терригенной пачки (пласта С-VI).

Промышленно нефтеносными на Ельниковском месторождении явля­ются карбонатные отложения турнейского яруса, терригенные отложения

горизонтальный 1:25000

Геологический профиль Ельниковского месторождения Масштаб --------------------------------

вертикальный 1:25000

Рис.3


яс­нопо­лянского и малиновского надгоризонтов нижнего карбона и карбонат­ные отло­жения каширо-подольского горизонта среднего карбона.

Общие, по месторождению, геолого-физические характеристики продуктивных пластов представлены в табл. 1.

Нефтяные залежи визейского яруса: залежи нефти терригенной толщи нижнего карбона имеют довольно слож­ное строение, они включают отложения тульского (пласты С II-C-IV), бобри­ковского (пласт С-V) горизонтов и малиновского (пласт С-VI) надгоризонта.

Однако на территории Удмуртии в визейском ярусе выделяются нижний подъярус в объеме кожимского надгоризонта и верхний в объеме окского над­горизонта. На территории Удмуртии кожимский надгоризонт представлен косьвинским, радаевским и бобриковским горизонтами. Ранее интерпретируе­мый в подсчете запасов нефти Малиновский надгоризонт отсутствует. Окский надгоризонт состоит из тульского, алексинского, михайловского и веневского горизонтов, которые сложены пачками песчаников, алевролитов и аргиллитов с тонкими прослоями каменных углей. В основании алексинского горизонта прослеживается пачка терригенных пород, которая не выдержана по толщине, распространены литологические замещения. Залежи нефти контролируются структурами тектоно-седиментационного и седиментационного генезиса, обле­кающие органогенные постройки франско-фаменско- турнейского возраста и в плане совпадающие с останцами карбонатных пород турнейского яруса.

Продуктивные пласты визейского яруса на Ельниковском месторождении приурочены к терригенным отложениям косьвинского (пласт С-VIII), радаев­ского (С-VII), бобриковского (пласты С-V, С-VI) горизонтов кожимского над­горизонта и тульского горизонта окского надгоризонта (пласты С-II, C-III, C-IV).

Таблица 1

Геолого-физические характеристики продуктивных пластов

Параметры

Поднятия

Соколовское

Ельниковское

Апалихинское

Средняя глубина залегания, м.

1380

1380

1380

Тип залежи

пласт.

пласт.

пласт.

Тип кллектора

терригенный

терригенный

терригенный

Площадь нефтеносности, тыс.м²

39014

21923

22094

Средняя общяя толщина, м.

32,7

32,6

25

Средняя нефтенасыщенная толщина, м.

4,3

4,9

3,6

Пористость, %

20,4

21

19,4

Средняя нефтенасыщенность ЧНЗ, д. ед.

0,79

0,86

0,73

Проницаемость, мкм²

0,315

0,415

0,445

Коэффициент песчанистости, д. ед.

0,67

0,68

0,54

Коэффициент расчлененности, д. ед.

5,1

4,3

3,8

Начальная пластовая температура, ºС

29

29

29

Начальное пластовое давление, МПа

12,6

13,9

13,2

Вязкость нефти в пластовых условиях, мПа·с

16,3

17,2

20

Плотность нефти в пластовых условиях, т/м³

0,879

0,897

0,886

Абсолютная отметка ВНК, м.

-1198

-1198

-1198

Объёмный коэффициент нефти, д. ед.

1,033

1,032

1,03

Содержание серы в нефти, %

2,33

2,48

2,66

Содержание парафина в нефти, %

4,21

4,32

4,45

Давление насыщения нефти газом, мПа·с

7,1

8,95

7,23

Газосодержание нефти, м³/т

13,4

15,42

12,35

Содержание стабильного конденсата, г/см³

-

-

-

Вязкость воды в пластовых условиях, мПа·с

1,5

1,5

1,5

Плотность воды в пластовых условиях, т/м³

1,117

1,117

1,117

Средняя продуктивность, м³/сут. МПа

1,17

1,17

1,17

Пласты визейской залежи отличаются значительной неоднородностью как по вертикали, так и по латерали и нередко сливаются, образуя единую песчано-алевролитовую пачку, к которой приурочены основные запасы нефти Ельни­ковского месторождения. Региональной покрышкой для толщи являются пачки аргиллитов и плотных известняков верхней части тульского горизонта.

Нефтеносность пластов С-VII и С-VIII вскрыта единичными скважинами.

Пласт С VI + VII + VIII залегает в отложениях бобриковского, радаевского и косьвинского горизонтов, литологически не выдержан как по разрезу, так и по простиранию и имеет линзовидное строение. Общая толщина пласта в пределах месторождения изменяется в пределах 1,4- 44,0 м, эффективная – 0,5- 28,0 м, эффективная нефтенасыщенная толщина – 0,6-22,0 м.

Нефтеносность месторождения определена по керну, материалам ГИС, опробованию и эксплуатации скважин. Пласт раздельно не испытан и нахо­дится в совместной эксплуатации с пластами С-II-C-V. Наибольшее распро­странение и толщины пласт имеет в пределах Ельниковского и Соколовского поднятий, в пределах Апалихинского купола развиты единичные линзы коллек­тора. По разрезу по материалам ГИС в пласте С-VI четко прослеживаются два -три продуктивных пропластка, которые, в свою очередь, состоят из 2 – 6 более мелких линз толщиной от 0,4 до 1,2 м, чаще всего не коррелируемых друг с другом даже по соседним скважинам. Пропластки разделены перемычками, сложенными аргиллитами, толщина перемычек составляет 0,0-5,6 м. Местами пропластки имеют окна слияния.

Уровень ВНК установлен по материалам ГИС и эксплуатации скважин и гипсометрически залегает по поднятиям и залежам на абсолютных отметках минус 1198 – 1269,3 м.

Коэффициент песчанистости для пласта С-VI в целом по месторождению составляет 0,38, изменяясь по поднятиям от 0,31 (Соколовское поднятие) до 0,44 (Ельниковское поднятие), коэффициент расчлененности в среднем равен 2,8 , изменяясь от 1,94 (Апалихинское поднятие) до 4,89 (Ельниковское подня­тие).

Коэффициент пористости по поднятиям изменяется от 0,14 д.ед. до 0,20 д.ед., в среднем по месторождению составляя 0,19 (ГИС). Следует отметить, что керн по пласту С-VI отобран лишь в одной скважине Ельниковского подня­тия. Среднее значение коэффициента пористости по 15 образцам составляет 0,24 д.ед..

Проницаемость пласта С- VI + VII + VIII определена по керну только для Ельни­ковского поднятия по одной скважине и составляет 0,067 мкм2 .

Пласт С V залегает в кровле бобриковского горизонта. Перемычки между пластами С V VI , практически отсутствуют, что говорит о наличии гидродина­мической связи между ними.

Пласт С-V развит повсеместно и также же как и пласт С-VI литологически не выдержан как по разрезу, так и по простиранию, имеет линзовидное строе­ние. Пласты песчаников и алевролитов повсеместно замещаются глинистыми породами. Причем, на Соколовском поднятии пласт представлен 1-3 пропласт­ками, на Ельниковском и Апалихинском – 1-2 пропластками. Общая толщина пласта составляет 2,4 – 23,1 м, в среднем составляя 4,2 м. Эф­фективная нефтенасыщенная толщина изменяется от 1,6 м на Апалихинском поднятии до 2,5 на Соколовском поднятии, в среднем по месторождению со­ставляет 1,9 м.

Коэффициент расчлененности по поднятиям изменяется в широких преде­лах: 2,11 – на Соколовском, 1,67 – на Ельниковском, 1,39 – на Апалихинском. Наименее расчленен пласт С-V на Апалихинском поднятии. Практически во всех скважинах он представлен одним или двумя пропластками. Коэффициент песчанистости изменяется по поднятиям незначительно (0,46-0,55), что говорит о его более высокой однородности по площади, по сравнению с пластом С-VI.

По результатам исследований керна коэффициент пористости по подня­тиям изменяется от 0,20 д.ед. (Соколовское и Ельниковское поднятия) до 0,23 д.ед. (Апалихинское поднятие), по результатам интерпретации ГИС коэффици­ент пористости варьирует от 0,19 (Соколовское и Апалихинское поднятия) до 0,20 (Ельниковское поднятие).

Проницаемость определена по керну и ее значения по отдельным образцам варьируют в широких пределах: от 0,013 мкм2 до 3,550 мкм2 .

Уровень ВНК залежей нефти пласта С-V при пересчете запасов принят по результатам интерпретации материалов ГИС, опробования скважин и данных эксплуатации на абсолютных отметках минус 1193,2 – 1205 м.

Пласт C - IV залегает в подошве тульского горизонта окского надгори­зонта. Пласт повсеместно имеет окна слияния с пластом С-V, особенно это ха­рактерно для Ельниковского и Апалихинского поднятий, где лишь в отдельных скважинах толщина перемычки не превышает 4,0-8,0 м. На Соколовском под­нятии перемычка между пластами распространена повсеместно, и ее толщина в отдельных скважинах достигает 15 м.

Пласт С-IV характеризуется фациальной неоднородностью, имеет много­численные зоны замещения пластов коллекторов, представленных песчано-алевролитовыми фракциями на глинистые разности. На Соколовском поднятии в 44% скважин пласт-коллектор замещен плотными породами, на Ельников­ском и Апалихинском поднятиях в – 81% скважин пласт-коллектор замещен плотными породами.

Общая толщина пласта составляет 0,7-15,2 м, в среднем по месторождению составляя 5,2 м. Эффективная нефтенасыщенная толщина изменяется от 1,8 м на Соколовском до 1,4 м на Ельниковском поднятии и 1,65 м на Апалихинском, в среднем составляя 1,74 м.

Коэффициент песчанистости в среднем по месторождению равен 0,32, варьируя по поднятиям от 0,3 (Соколовское поднятие), до 0,35 (Ельниковское и Апалихинское поднятия). Коэффициент расчлененности при этом колеблется от 1,6 (Ельниковское поднятие) до 1,7 (Соколовское поднятие). Коэффициент по­ристости по керну определен лишь на Соколовском и Ельниковском поднятиях и равен, соответственно, 0,22 д.ед. и 0,19 д.ед. По результатам интерпретации материалов ГИС по всем поднятиям коэффициент пористости равен 0,19 д.ед., проницаемость определена по керну и изменяется от 0,193 мкм2 до 0,416 мкм2 . Следует отметить, что керн отобран лишь в пяти скважинах на Соколовском поднятии и в двух скважинах на Ельниковском поднятии.

При пересчете запасов нефти для пласта С-IV, согласно материалам ГИС, опробования и эксплуатации скважин, принят уровень ВНК, гипсометрически залегающий на абсолютной отметке минус 1198,0 м. Хотя в отдельных сква­жинах по данным ГИС уровень ВНК отмечен как на более высоких, так и более низких отметках.

Пласт C - III как и пласт C-V имеет наибольшее распространение коллек­торов как по площади, так и по разрезу. Толщина перемычек между пластами С-III и C-IV изменяется от 0,0 м, достигая 12,0 м в отдельных скважинах.

Общая толщина пласта изменяется по отдельным поднятиям от 5,4 до 7,0 м, в среднем по месторождению составляя 6,5 м. Эффективная нефтенасыщен­ная толщина изменяется от 2,1 м на Апалихинском поднятии, до 2,9 м на Ель­никовском, в среднем по месторождению составляя 2,5 м. Коэффициент песчанистости по пласту С-III в среднем равен 0,41, изменяясь по поднятиям от 0,38 (Соколовское поднятие) до 0,44 (Ельниковское поднятие).

Пласт С-III достаточно однороден как по площади, так и по разрезу, пласт коллектор представлен одним – четырьмя пропластками, лишь в отдельных скважинах – шестью – восьмью пропластками. Коэффициент расчлененности для поднятий варьирует от 1,22 (Апалихинское поднятие) до 1,5 (Соколовское поднятие).

Коэффициент пористости по материалам ГИС на поднятиях изменяется от 0,19 до 0,20, в среднем по месторождению составляя 0,19, по данным керна ко­эффициент пористости изменяется от 0,19 (Апалихинское поднятие) до 0,24 (Соколовское поднятие), в среднем по месторождению соствляя 0,21. Прони­цаемость определена по керну и варьирует по поднятиям от 0,310 мкм2 до 0,522 мкм2 . Коэффициент нефтенасыщенности коллектора по керну определен лишь на Ельниковском и Апалихинском поднятиях, причем образцы исследованы по керну, отобранному из четырех скважин, коэффициент нефтенасыщенности изменяется в пределах 0,79 – 0,84; по данным ГИС коэффициент нефтенасы­щенности изменяется а пределах 0,7 – 0,77.

При пересчете запасов нефти уровень ВНК обоснован по данным ГИС, оп­робованию и эксплуатации скважин единым для всех залежей, гипсометриче­ски залегающим на абсолютной отметке минус 1198,0м. Пласт С-III в большинстве скважин опробован отдельно, но разрабатывается совместно с пластами С-II-C-VI. Пласты C-III, C-IV, С-V, С-VI практически по всей площади месторождения имеют окна слияния, образуя единую гидроди­намическую систему.

Пласт С II залегает в верхней части тульского горизонта и отделяется от пласта С-III пачкой аргиллитов толщиной 4,0-7,6 м. Залежи нефти пласта С-II литологически экранированные, почти повсеместно пласт-коллектор замещен на плотные разности.

Общая толщина пласта изменяется от 1,9 м (Апалихинское поднятие) до 3,6 м (Ельниковское поднятие). Эффективная нефтенасыщенная толщина изме­няется от от 1,0 м на Соколовском и Ельниковском поднятиях до 1,3 м на Апалихинском поднятии, в среднем по месторождению составляя 1,1 м.

Коэффициент песчанистости пласта С-II в среднем по месторождению из­меняется от 0,3 (Соколовское поднятие) до 0,53 (Апалихинское поднятие). Ко­эффициент расчлененности по поднятиям месторождения колеблется от 1,0 (Соколовское и Апалихинское поднятия) до 1,4 (Ельниковское поднятие).

Коэффициент пористости по керну изменяется от 0,16 до 0,20 д.ед., в среднем составляя 0,18 д.ед.; по результатам интерпретации материалов ГИС – от 0,17 до 0,18, в среднем составляя 0,17. Проницаемость определена по керну и изме­няется в широких пределах: от 0,037 мкм2 (Апалихинское поднятие) до 0,368 мкм2 (Ельниковское поднятие). Коэффициент нефтенасыщенности по керну оп­ределен лишь по Соколовскому поднятию и составляет 0,91; по результатам интерпретации ГИС коэффициент нефтенасыщенности колеблется в пределах от 0,61 (Соколовское поднятие) до 0,69 (Апалихинское поднятие), по месторо­ждению в целом составляя 0,62.

Для пласта С-II уровень ВНК принят на абсолютной отметке минус 1198,0 м. В целом по месторождению визейские залежи имеют общую толщину от 25,0 м до 119,2 м, в среднем составляя 31,5 м.

Эффективная нефтенасыщенная толщина при этом колеблется от 3,6 м до 17,3 м, в среднем составляя 4,2 м.

Коэффициент песчанистости в целом по визейской залежи варьирует от 0,54 (Апалихинское поднятие) до 0,679 (Ельниковское поднятие), в среднем по месторождению коэффициент песчанистости визейской залежи равен 0,629. Коэффициент расчлененности по поднятиям колеблется в пределах 3,8 – 5,1, в среднем составляя 4,6. Коэффициент пористости в среднем по визейским зале­жам равен 0,20; проницаемость по керну составила 0,488 мкм2 ; по результатам ГДИ скважин – 0,396 мкм2 . Начальные дебиты варьировали в достаточно широ­ком диапазоне, колебания по отдельным скважинам составляли 2,8 – 70,0 м3 /сут. /1/.

1.3. Физико-гидродинамическая характеристика месторождения продуктивных коллекторов, вмещающих пород и покрышек

Коллекторские свойства продуктивных пластов изучены по керну, геофи­зи­ческим и промысловым данным. Для характеристики коллекторских свойств пород учитывались образцы с проницаемостью выше 0,0001 мкм2 .

Визейский ярус: породы визейского яруса имеют преимущественно мономинеральный кварцевый состав и отличаются значительной неоднородностью литолого-фи­зических свойств по разрезу и по площади. Количество цементирующего мате­риала и размеры кварцевых зерен колеблются в широких пределах. Породы представляют собой преимущественно мелкозернистые песчаники и крупно- и среднезернистые алевролиты с разной степенью глинистости, не превышающей 10%, что характеризует породы продуктивных пластов как слабоглинистые.

Пласты СII , СIII , СIV сложены мелкозернистыми, кварцевыми песчаниками и разнозернистыми алевролитами. Примеси полевых шпатов и акцессорных ма­териалов составляют менее 1%. По данным гранулометрического анализа вы­деляются песчаники с незначительным содержанием алевритовой и пелитовой составляющей, песчаники алевритистые, хорошо отсортированные. Карбонат­ность пород низкая и в среднем для отдельных пластов не превышает 6%. Це­ментация пород осуществляется, в основном, посредством уплотнения. Участ­ками песчаники цементируются мелко- и крупнозернистым кальцитом. Тип це­мента – поровый. Поры угловатые. Цементация обломочного материала осуще­ствляется в результате уплотнения. Поры межзерновые, угловатые.

Алевролиты представлены крупнозернистыми разностями с различной примесью песчаного и глинистого материала. Состав их преимущественно кварцевый. В качестве примесей (до 1%) присутствуют акцессорные материалы (цирконий, турмалин, титан) и полевые шпаты. В небольшом количестве при­сутствует тонкочешуйчатое глинистое вещество. Цементация также осуществ­ляется путем уплотнения зерен, поры угловатые.

Нижний предел значения пористости принят на уровне 14,0 %. Нижний предел значения проницаемости для пород визейского яруса принят на уровне 0,0075мкм2 .

В среднем карбоне продуктивные отложения представлены известня­ками, доломита-ми и переходными между ними разностями каширского и по­доль­ского горизонтов. Доломитизация проявляется в виде крупных кристаллов до­ломита размером 0,04-0,1 мм. Вторичная карбонатизация привела к залечива­нию порового пространства, формированию закрытых водонасыщенных линз, возникновению микрокавернозности и микротрещиноватости. В связи отсутст­вием исследований по керну с определением процентного содержания доломи­тов, а также отсутствием разрешающей способности методов ГИС для опреде­ления доломитизации – достоверность определения параметров Кп и Кпр по доломитизированным разностям известняков достаточно низка.

Таблица 2

Характеристика вытеснения нефти водой

Объект, продук­тивные пласты

Прони-цае-мость,

мкм2

Вяз-кость нефти, мПа×с

Соде-ржание свя­занной воды, д.ед.

Начальная нефтенасы-щенность, д.ед.

Коэффи-циент остаточной нефтенасы­щенности, д.ед.

Коэффи-ци­ент
вытесне-ния нефти, д.ед.

Относительная про­ницаемость, д.ед.

для воды при оста­т нефтена­сыщ

для нефти при оста­т водона­сыщен-ности

Визейский ярус

(Апалихин-ское и Ельнико-вское под­нятия)

0,776

16,3

0,104

0,896

0,351

0,608

0,0330

0,4367

Визейский ярус

(Соколовс-кое под­нятие)

0,856

16,3

0,101

0,899

0,348

0,613

0,0335

0,4403

Таблица 3

Сравнение экспериментальных и расчетных значений коэффициента вытеснения

Месторожде-ние

Возраст

Продук­тивный пласт

Прони­цаемость по газу, мкм2

Вязкость нефти, мПа∙с

Квт экс­пер., д.ед.

Квт расч., д.ед.

Отклоне­ние от Квт экс­пер., %

Ельниковское

C1 v

СII – CVI

0,269

22,2

0,577

0,537

-7,0

0,0424

22,2

0,443

0,440

-0,7

0,886

23,5

0,587

0,596

1,6

0,877

21

0,587

0,601

2,5

C1 t

C1 t

0,08

23

0,467

0,491

5,2

Таблица 4

Характеристики смачиваемости поверхности каналов фильтрации пород по лабораторным данным

Возраст

Пласт

Количество
определений

Диапазон изменения значения

индекс

Амотта-Гервея

Краевой угол

смачи­вания

С2 pd

1

0,265

74,6

С2 ks

К1 , K2

3

0,096 ... 0,133

82,3 ... 84,5

K4

4

0,361 ... 0,765

40,1 ... 68,8

С1 v

CIV , CVI

32

-0,033 ... 0,288

73,3 ... 91,9

CII , CIII

12

-0,03 ... 0,089

84,9 ... 91,7

С1 t

С1t

10

0,138 ... 0,227

76,9 ... 82,1

1.4. Свойства и состав нефти, газа, конденсата и воды

Для оценки физико-химических характеристик нефти и газа из продуктив­ных отложений среднего и нижнего карбона отобраны пробы нефти, и газа.

По общепринятым классификациям нефти каширо-подольской залежи в целом по месторождению характеризуются как тяжелые по плотности (0,8797 г/см3), высокосернистые (> 2%), парафинистые (< 6%), смолистые (< 15%), вяз­кие в пластовых условиях (10,3 мПа∙с). На визейских и турнейских отложениях нефти битуминозные (плотность > 0,895 г/см3), имеют повышенную вязкость (16,85 мПа∙с и 21,41 мПа∙с, соответственно), высокосернистые, парафинистые, высокосмолистые.

Товарная характеристика нефти изучена в лаборатории предприятия. Для анализа были отобраны пробы из отложений турнейского яруса и тульского горизонта. Бензиновые дистилляты исследованных нефтей имеют повышенное содержание серы. Прямой перегонкой из нефтей турнейского яруса и тульского горизонта Ельниковского месторождения могут быть получены высокосернистые компоненты автомобильных бензинов в коли­честве соответственно 15,9% и 18,1%, а также высокосернистые компоненты дизельных топлив летних марок в количестве от 18% до 25% на нефть. После проведения карбомидной депарафинизации можно получить из исследуемых нефтей компоненты дизтоплив зимних марок. Для данных нефтей потенциал масел определен по ГОСТ 912-66 путем анализа остатков нефтей после отбора светлых фракций до 350о С. В результате проведенного анализа было установ­лено, что выход газовых масел с индексом вязкости 85 составляет 10,2% и 18,0%, соответственно, для турнейской и тульской нефтей. Кроме того, нефть Ельниковского месторождения может быть использована для производства би­тумов. По ГОСТ 912-66 нефти присвоен шифр технологической классифика­ции: турнейского пласта – III Т2 М4 И2 П3 , тульского – III Т2 М3 И1 П3 , каширо-по­дольского пластов – III Т1 М2 И1 П2 .

Газ по всем залежам и поднятиям по своему составу является углеводо­родно-азотным (содержание азота < 50%), с высоким содержанием этана, про­пана и нормального бутана.

По химическому составу подошвенные воды визейских отложений по трем поднятиям месторождения представляют рассолы, по классификации В.А. Су­лина эти воды относятся к хлоркальциевому типу. Степень минерализации и плотность в среднем по пробам изменяется незначительно, соответственно, на Ельниковском – 275,1 г/л и 1,178 г/см3 , на Апалихинском – 272,7 г/л и 1,177 г/см3 и на Соколовском – 245,4 г/л и 1,161 г/см3 . /1/.

1.5. Запасы нефти и газа

Первоначально подсчет запасов нефти и попутных компонентов выполнен Удмуртским трестом разведочного бурения в 1977 году по состоянию изучен­ности месторождения на 01.01.1977 г. Запасы утверждены ГКЗ СССР (протокол № 7980 от 23.12. 77).

После разбуривания месторождения институтом ТатНИПИнефть в 1989 году выполнен пересчет запасов нефти Ельниковского месторождения (прото­кол №10819 ГКЗ СССР от 28.03.1990 г).

Оценка категорийности запасов каждой из залежей была проведена с уче­том состояния достигнутой геолого-геофизической изученности месторожде­ния, распределение запасов нефти по категориям представлено на рисунке.

Запасы нефти категории С2 сосредоточены лишь в продуктивных пластах каширо-подольских залежей, причем 67% запасов категории приурочены к пла­сту К2+3 и 20% – к пласту К4 . По поднятиям запасы категории С2 среднего кар­бона распределены примерно равномерно.

Всего начальные извлекаемые запасы по категориям В+С1 на момент ут­верждения составили 38,0 млн. т, по категории С2 – 6,5 млн. т. /1/.

Распределение геологических запасов нефти по категориям на Ельниковском месторождении в целом

Рис.4

Распределение геологических запасов нефти по поднятиям

на Ельниковском месторождении

Рис.5

Распределение геологических запасов нефти по объектам

на Ельниковском месторождении

Рис.6

Таблица 5

Распределение геологических запасов категории С2 по пластам и

поднятиям Ельниковского месторождения

Запасы по пластам

Поднятия

Всего по пластам

Соколовское

Ельниковское

Апалихинское

П1, тыс.т.

45

-

-

45

П2, тыс.т.

34

125

-

159

П3, тыс.т.

-

-

-

-

П4, тыс.т.

181

279

-

460

К1, тыс.т.

1178

2112

-

3290

К2 + 3, тыс.т.

9366

3653

7714

20733

К4, тыс.т.

-

1985

4280

6265

Всего, тыс.т.

10804

8154

11994

30952

Всего, %

34,90

26,30

38,80

В нижнем карбоне основные запасы приурочены к пластам CIII (50,2%) и CV (28,1%) визейского яруса, причем 49,8% запасов нефти – на Соколовском поднятии, 28,3% и 21,9% - на Ельниковском и Апалихинском поднятиях, соответственно. /1/.

Распределение запасов нефти по продуктивным пластам

визейского яруса на Ельниковском месторождении

Рис.7

В среднем карбоне основные запасы промышленных категорий сосредото­чены в пластах П3 подольского горизонта и пласте К4 каширского горизонта.

На 01.01.2005 года остаточные извлекаемые запасы по объектам разра­ботки распределены : каширо-подольский - 14 845 тыс. т., визейский – 7 453 тыс. т, турнейский – 1 220 тыс. т. /1/.

Распределение запасов нефти по продуктивным пластам

каширо-подольского горизонта на Ельниковском месторождении

Рис.8

Сравнение начальных извлекаемых запасов по объектам Ельниковского месторождения с остаточными извлекаемыми запасами на 01.01.2006 г.

Рис.9

Накопленная добыча нефти по объектам на 01.01.2006 г. составила: турнейский объект - 45,0 тыс. т; визейский объект – 20928,0 тыс. т; каширо-подольский – 99,0 тыс. т. /1/.

Таблица 6

Запасы нефти по объектам

Пласт

Категория

Начальные запасы нефти, тыс. т

Остаточные запасы нефти, тыс. т

балансовые

извлекаемые

балансовые

извлекаемые

Турнейский объект

С1 t-I

С1

7830

1271

7785

1226

Визейский объект

С-II, III, IV,

V, VI

В+С1

68004

28302

47076

7374

Каширо-подольский объект

П1234 + К13+24

С1

35447

8471

35365

8389

С2

30952

6463

30936

6447

2. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1. Текущее состояние разработки Ельниковского месторождения

Ельниковское месторождение введено в разработку в 1977 году в соответ­ствии с «Проектом опытно-промышленной эксплуатации Ельниковского ме­сторождения. С 1991 года разработка ведется на основании технологической схемы, составленной УКО ТатНИПИнефть. Месторождение многопластовое, промышленная нефтеносность выявлена в турнейских, визейских (пласты С-II, С-III, C-IV, С-V и С-VI) отложениях нижнего карбона, а также в каширо-по­дольских отложениях (пласты К1-4, KS-V и Р1-Р4) среднего карбона. Нефти всех пластов характеризуются повышенной вязкостью. Эти объективные фак­торы влияют на развитие процессов разработки и отрицательно влияют на сте­пень выработки запасов нефти.

В промышленной эксплуатации находится визейский (по существовавшей ранее номенклатуре – яснополянский) объект, и каширо-подольский объект. Турнейский объект разрабатывается единичными скважинами.

На 01.01.06 г. отобрано 21072,3 тыс. т нефти и 67287,7 тыс. т жидкости. Среднегодовая обводненность добываемой продукции составила 82,4 %. Среднесуточный дебит по нефти – 4,6 т/сут, по жидкости – 26,2 т/сут. Текущий коэффициент извлечения нефти составляет 0,189.

Распределение добычи нефти по объектам разработки следующее: каширо-подольский – 99,4 тыс.т; визейский – 20927,7 тыс.т; турнейский – 45,2 тыс.т.

Разработка визейского объекта ведется с поддержанием пластового давления, каширо-подольского и турнейского - на естественном режиме./1/

2.2 . Технико-экплуатационная характеристика фонда скважин

На конец 2006 года по месторождению пробурено всего 615 скважин. Ос­новной пробуренный фонд скважин приходится на визейский объект разра­ботки. Следующим по значимости является каширо-подольский объект, весь фонд скважин этого объекта был возвращен с нижележащих объектов. В про­цессе разработки месторождения скважины с визейского объекта переводились и на турнейский объект, но, ввиду низких дебитов, практически, все были пере­ведены на каширо-подольский объект.

По способу эксплуатации все скважины являются механизированными. Скважины визейского объекта оборудованы ШГН и ЭЦН, каширо-подольский объект, характеризующийся более низкими дебитами по жидкости, эксплуати­руется только ШГН. Средний дебит действующих скважин по месторождению составляет: по нефти – 4,6 т/сут, по жидкости – 26,1 т/сут; средняя обводнен­ность – 82,4%; максимальный дебит по нефти 47,0 т/сут (скв. 3782), по жидко­сти – 383,8 т/сут (скв. 3606). Средняя приемистость нагнетательных скважин – 59,1 м3 /сут, максимальная приемистость – 200 м3 /сут (скв. 3696 и 3702).

На основании проведенного анализа текущего состояния разработки каширо-подольского объекта следует:

1) скважины эксплуатируются с забойными давлениями значительно ниже давления насыщения;

2) при массовом переводе скважин на объект (что происходит в настоящее время) и увеличении отборов нефти без внедрения системы ППД будет происходить значительное снижение пластового давления и ухудшение условий разработки объекта;

3) высокие депрессии на пласт при эксплуатации скважин объекта, разрабатываемого на естественном режиме, могут приводить к преждевременному росту обводненности за счет подстилающей и краевой воды, а также к обводнению скважин из-за перетоков воды вдоль эксплуатационной колонны при некачественном цементировании;

4) при переводе скважин на каширо-подольский объект рекомендуется проводить раздельное исследование пластов для оценки их продуктивности и гидродинамических свойств и возможности в дальнейшем контролировать и регулировать выработку запасов.

Разработка визейского объекта осуществляется с 1977 года. В соответствии с утвержденными проектными решениями реализована площадная семиточечная система заводнения. Объект находится в III стадии разработки. Отмечается снижение количества действующих добывающих скважин, связанное с переводом на возвратные объекты, в основном – каширо-подольский. Основными видами ГТМ, поддерживающими отборы нефти, являются ОПЗ, оптимизация работы ГНО, вывод скважин из временного бездействия, РИР. Проведение ГТМ на нагнетательном фонде (пенокислотная обработка, ОПЗ полисилом и растворителем, ПГКО + УОС, ДПСКО, ИДВ, гидроимпульсная обработка, селективно-кислотное воздействие и др.) позволяет поддерживать приемистость нагнетательных скважин на необходимом уровне. Проведенный анализ текущего состояния разработки визейского объекта позволяет сделать следующие выводы:

1) состояние разработки визейского объекта оценивается удовлетворительно;

2) запроектированная система разработки реализована в проектных объемах и обеспечивает темпы нефтедобычи на уровне проектных;

3) довыработка запасов БГС эффективна, особенно пласта С-III;

4) рекомендуется проведение мероприятий по установлению наличия гидродинамической связи нагнетательных и добывающих скважин (закачка жидкостей-трассеров, гидропрослушивание).

Турнейский объект предусматривалось эксплуатировать возвратным фондом скважин. На дату составления отчета объект находится в пробной эксплуатации и эксплуатируется единичными возвратными скважинами. Всего с начала разработки в эксплуатации на этом объекте перебывало 32 скважины, из них 2 БГС, пробуренные из обводнившихся скважин визейского объекта. В связи с низкой продуктивностью большинство скважин после периода пробной эксплуатации были переведены на визейский объект. В целях получения дополнительной добычи нефти применяются вывод из бездействия и ОПЗ. На основании проведенного анализа текущего состояния разработки турнейского объекта можно сделать следующие выводы:

1) около 70 % выработанных запасов турнейского объекта приходится на небольшой купол Соколовского поднятия (скв. № 3752);

2) окончательный вывод об активности водонапорных систем сделать сложно ввиду небольшого количества специальных исследований и малого фонда скважин;

3) необходимо проведение периодических замеров пластового давления в добывающих скважинах, снятие КВД, проведение гидродинамических и специальных исследований, предусмотренных РД 153-39.0-109-01;

4) рекомендуется увеличение плотности сетки скважин путем перевода с визейского объекта и проведение многократных кислотных обработок скважин, кислотных и локальных ГРП;

5) эффективность бурения БГС оценить трудно, так как пробурено всего две скважины. В целом по Ельниковскому месторождению, при падающей базовой добыче нефти и отсутствии ввода новых скважин, отмечается поддержание уровня добычи нефти за счёт проведения ГТМ.


2.3.Анализ текущего состояния разработки Ельниковского месторождения

Сопоставление фактических показателей с проектными уровнями за 2001-2006 гг. визейскому объектам разработки приведено в табл..

Визейский объект – объект разбурен в проектных объемах и реализована площадная 7-точечная система заводнения. По состоянию на 1.01.2006 г. на визейском объекте числится 264 добывающие скважины (на 25 % меньше проектного показателя технологической схемы и на 3,6 % меньше проектного показателя последнего авторского надзора), в эксплуатации находится 222 скважин (на 33,6% и 13,9% меньше, чем по технологической схеме и авторскому надзору соответственно). Фактический фонд нагнетательных скважин составляет 197 скважин, что превышает проектный фонд технологической схемы на 8,2 % и соответствует фонду по авторскому надзору, однако действующий фонд нагнетательных скважин (120 скважин) значительно меньше проектного (на 32,6% и 37,2% соответственно). За 2004 год добыто 399,7 тыс. т нефти, что на 4,6% превышает проектный уровень технологической схемы. По состоянию на 01.01.2005 г. накопленная добыча нефти ниже проектной на 3,5% (20927,7 тыс. т против 21686 тыс. т по технологической схеме) и составляет 73,9% от НИЗ, текущий КИН составил 0,308 при утвержденном значении 0,416. В сравнении с «Авторским надзором» (2001г.) добыча нефти осуществляется более высокими темпами - за 2004 год добыто на 19,1% больше запроектированного (399,7 тыс. т против 335,5 тыс. т), при этом накопленная добыча нефти по состоянию на 01.01.2006г. находится на уровне проектной.


Таблица 7

Сравнение проектных и фактических показателей

разработки визейского объекта

Показатели

2001 год

2002 год

2003 год

Проект

ТС

Факт

Проект

ТС

Факт

Проект

ТС

Факт

Добыча нефти всего, тыс. т

447

382,4

424

369,1

402

383,5

Накопленная добыча нефти, тыс.т

20478

19775,3

20902

20144,5

21304

20527,9

Коэффициент нефтеизвлечения, доли ед.

0,301

0,29

0,307

0,295

0,313

0,301

Темп отбора от начальных извлекаемых запасов, %

1,6

1,4

1,5

1,3

1,4

1,4

Отбор от НИЗ, %

72,4

69,9

73,9

71,2

75,3

72,5

Обводненность среднегодовая

по (массе), %

88,2

80,9

88,8

81,9

89,3

82,4

Добыча жидкости всего,

тыс. т/год

3786

2003,6

3778

2043,5

3771

2176,6

Накопленная добыча жидкости, тыс. т

71113

60298,3

74891

62341,7

78661

64518,3

Закачка рабочего агента, тыс. м3

4329

2145.2

4313

2414

4298

2399

Компенсация отборов жидкости в пл. усл., %

124

107,1

124

126,1

124

117,3

Пластовое давление, МПа

13,9

13,0

13,9

13,1

13,9

13,1

Газовый фактор, м3

9,1

9,1

9,1

9,1

9,1

9,1

Плотность сетки добывающих и нагнет-х скв. 104 м2 /га

15

17,4

15,2

17,3

15,3

17,5

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти,

3,6

3,8

3,5

3,9

3,3

4,2

по жидкости

30,6

20

30,9

21,8

31,1

24

Среднесуточная приемистость нагнет-х скважины, м3 /сут

66,9

42,7

67,6

54,8

68,3

58,8

Среднее давление на забоях добыв-х скважин, МПа

5-8

7,1

5-8

6,7

5-8

6,2


Таблица 7 (продолжение)

Показатели

2004 год

2005 год

2006 год

Проект

ТС

Факт

Проект

ТС

Факт

Проект

ТС

Факт

Добыча нефти всего, тыс. т

382

399,7

362

452,7

342

431,2

Накопленная добыча нефти, тыс.т

21686

20927,7

22048

21380,4

22390

21811,7

Коэффициент нефтеизвлечения, доли ед.

0,319

0,308

0,324

0,314

0,328

0,321

Темп отбора от начальных извлекаемых запасов, %

1,4

1,4

1,3

1,6

1,1

1,52

Отбор от НИЗ, %

76,6

73,9

77,9

75,5

78,6

77,1

Обводненность среднегодовая

по (массе), %

89,9

83,2

90,3

82,8

90,8

84,6

Добыча жидкости всего,

тыс. т/год

3761

2381,0

3746

2637,2

3689

2805,2

Накопленная добыча жидкости, тыс. т

82422

66898,7

86168

69535,9

88645

72341,1

Закачка рабочего агента, тыс. м3

4281

2402,9

4259

2662,8

41432

2862,1

Компенсация отборов жидкости в пл. усл., %

124

107,6

124

111,6

124

113,2

Пластовое давление, МПа

13,9

13,1

13,9

12,8

13,9

13,1

Газовый фактор, м3

9,1

9,1

9,1

9,1

9,1

9,1

Плотность сетки добывающих и нагнет-х скв. 104 м2 /га

15,6

18,0

15,7

18,5

15,9

18,7

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти,

3,2

4,8

3

5,6

2,8

5,9

по жидкости

31,3

28,3

31,4

32,5

30,8

38,1

Среднесуточная приемистость нагнет-х скважины, м3 /сут

69

59,1

69,6

37,7

70,3

42,1

Среднее давление на забоях добыв-х скважин, МПа

5-8

5,9

5-8

5,8

5-8

6,1

2.4. Выбор и обоснование применения гидравлического разрыва пласта для условий Ельниковского месторождения

ГРП – это одно из геолого-технических мероприятий (ГТМ) на добывающем фонде, направленное на восстановление производительности скважин и интенсификацию добычи нефти, а также на устранение притока воды в добывающие скважины. Исходя из этого, эффективность ГТМ оценивается по трём основным характеристикам:

1) прирост дебита нефти после мероприятия;

2) рост обводнённости продукции скважины после мероприятия;

3) длительность эффекта прироста дебита нефти после мероприятия.

С целью определения эффективности ГТМ, проведённых на Ельниковском месторождении за последние годы, выполнена статистическая обработка дебитов скважин по нефти и жидкости до и после мероприятий. Наиболее востребованными ГТМ являются различные виды воздействия на ПЗП. В силу высокой расчленённости продуктивного разреза при различии фильтрационных характеристик продуктивных пластов рекомендуется продолжение работ по селективному воздействию на пласты с целью увеличения притока в добывающих скважинах (интенсификация притока из отдельных пропластков и вовлечение в работу ранее не дренируемых пропластков с низкими фильтрационными характеристиками).

Для условий Ельниковского месторождения с высоковязкой нефтью и низкими коллекторскими свойствами метод ГРП наиболее применим. Мы опираемся также на опыт применения ГРП на месторождениях Западной Сибири.


Таблица 8

Эффективность ГТМ на добывающем фонде визейского объекта за 2001-2006 г.

Группи-ровка ГТМ

Название ГТМ

Количест-во операций

Дебит нефти до ГТМ, т/сут

Дебит жидкости до ГТМ, т/сут

Прирост дебита нефти за 3 месяца, т/сут

Ввод БГС

12

0,6

5,4

4,1

Ввод из бездействия

7

0,3

39,9

1,2

Ввод бокового пологого ствола

1

-

-

0,7

Исслед-ования

Чистка забоя

1

2,6

16,1

0,5

ОПЗ

ГРП

21

2,1

3,0

3,6

ОПЗ СБС

2

5,3

31,7

3,3

ВПП ПАА

1

0,4

15,0

2,4

Компрессирование

8

0,8

8,2

2,3

Перестрел + ПСКО

1

0,8

1,5

1,9

КСПЭО-2

1

1,1

2,3

1,9

ГКО в динамическом режиме

1

1,1

1,6

1,8

ОПЗ РТ-1

18

4,0

17,4

1,6

Перестрел + УОС + ГКО

4

0,3

2,4

1,6

ОПЗ растворителем

14

2,9

29,0

1,4

ГКО

1

4,3

10,7

1,3

ПГКО

12

2,8

7,7

1,3

Дострел

2

6,4

134,1

1,3

ПГКО + УОС

7

2,3

27,8

1,2

Перестрел

10

0,6

2,3

1,0

Растворитель + УОС

19

2,4

16,1

0,8

Компрессирование + ГКО

2

0,4

1,4

0,7

СКО с щелочными металлами

1

1,3

15,0

0,6

 

 

 

Группи-ровка ГТМ

Название ГТМ

Количест-во операций