Главная      Учебники - Геология     Лекции (геология) - часть 1

 

Поиск            

 

Проектирование и строительство двух воздушных линии электропередачи 500 кВ

 

             

Проектирование и строительство двух воздушных линии электропередачи 500 кВ

ГОУ ВПО Иркутский государственный технический университет

Геологоразведочный техникум

Пояснительная записка

К ДИПЛОМНОМУ ПРОЕКТУ

Тема проекта: Проектирование и строительство двух воздушных линии электропередачи (500 кВ) – от строящейся Богучанской ГЭС до подстанции «Ангара», 1-ая воздушная линия. Стадия «Проект».

Проектировал: ст. гр. Гг-07-1 Лоншаков Г.С. ( )

Руководитель: куратор гр. Гг-07-1 Ильина А.А. ( )

Консультант: Загороднюк А.А. ( )

Консультант: Губенский А.П. ( )

Допущен к защите:«_____» _________________ 2010 г.

Зам. директора по учебной работе__________________

Иркутск

2010


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ОБЩАЯ ЧАСТЬ

1. ХАРАКТЕРИСТИКА ПРИРОДНЫХ УСЛОВИЙ РАЙОНА РАБОТ

1.1 Физико-географические условия района работ

1.2 Краткая характеристика климата

2. ХАРАКТЕРИСТИКА ТРАССЫ ВЛ

3. ПЕРЕХОД ЧЕРЕЗ Р. КАРАБУЛА

4. ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ РАЙОНА

4.1 Инженерно-геологическая изученность района

4.2 Геолого-геоморфологическая характеристика района строительства…

4.2.1 Стратиграфия

4.2.2 Магматизм

4.2.3 Тектоника

4.3 Гидрогеологические условия

4.4 Инженерно-геологический очерк

ПРОЕКТНАЯ ЧАСТЬ

5. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ РАБОТЫ

5.1 Задачи, объемы и виды работ

5.2 Методика выполнения запроектированных видов работ

5.2.1 Подготовительный период

5.2.2 Рекогносцировочное обследование

5.2.3 Буровые работы

5.2.4 Опробование грунтов несущей толщи

5.2.5 Лабораторные исследования физико-технических свойств грунтов

5.2.6 Топогеодезические работы

5.2.7 Камеральные работы

6. ГЕОФИЗИЧЕСКИЕ РАБОТЫ

7. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

8. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

9. ЗАКЛЮЧЕНИЕ

ЭКОНОМИЧЕСКАЯ ЧАСТЬ

10. ОРГАНИЗАЦИЯ РАБОТ

11. РАСЧЕТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ

12. СМЕТНО-ФИНАНСОВЫЕ РАСЧЕТЫ

13. ЗАКЛЮЧЕНИЕ ПО ЭКОНОМИЧЕСКОЙ ЧАСТИ

14. Список использованной литературы


ВВЕДЕНИЕ

Целью данного дипломного проекта является проведение инженерно-геологических изыскании для обеспечения необходимой информацией необходимой для строительства ВЛ 500 кВ. Инженерно-геологические изыскания будут выполнены от Уг.13 до Уг.23. Общая протяженность трассы 60 033 м.

Территория объекта находится в Богучанском районе, Красноярского края. Село Богучаны расположено в 580 км к северо-востоку от г. Красноярска и является центром развитого района. Сообщение между районным центром и г. Красноярском осуществляется по автодороге, воздушным и речным транспортом. Ближайшие населенные пункты: п. Ярки, п. Ангарский, п. Гремучий, ж/д станция «Карабула». Населенные пункты соединяются между собой автодорогами. Основной водной артерией является р. Ангара. Через р. Ангара в летнее время действует паромная переправа, зимой перевозки грузов и населения осуществляются по льду.

Территория характеризуется довольно развитой сетью путей транспорта. Основными транспортными магистралями являются наземные пути, основу которых составляют дороги общего пользования и лесовозные дороги с твердым покрытием.

Инженерные изыскания обеспечивают надежную и безопасную эксплуатацию объекта на весь срок эксплуатации, изучение инженерно-геологических и гидрогеологических условии в районе строительства трассы, выявляют последствия строительства проектируемого объекта в плане взаимодействия с окружающей средой и помогают разработать способы борьбы с ними, выявляют развивающиеся на площадке опасные геологические процессы различного характера и способы защиты проектируемого сооружения от их влияния.

Для выполнения изыскании под строительство ВЛ 500 кВ «Богучанская ГЭС-ПС Ангара» запроектированы:

- проектно-сметные, организационные и подготовительные работы;

- топогеодезические работы, с целью привязки трассы к пунктам государственной геодезической сети, разбивки трассы на пикеты, выноса в натуру и привязки мест заложения буровых выработок;

- рекогносцировочные обследования, с целью первичного исследования трассы ВЛ, характера развития геологических процессов и явлении, выявления условии проходимости;

-буровые работы, с целью детального изучения геологической среды, с сопутствующими работами – гидрогеологические исследования, опробование скважин и их крепление;

- отбор монолитов, с целью изучения физико-механических свойств грунтов слагающих несущую толщу;

- геофизические работы, с целью дополнительного изучения геологического строения несущей толщи, определения кажущегося сопротивления грунтов для проектирования заземления опор;

- ликвидация работ, с целью сохранения природных условий площадки строительства;

- камеральная обработка результатов бурения, геофизических работ и лабораторных исследовании, составление отчета.

Инженерно-геологические изыскания на стадии рабочей документации будут выполнены ООО «Сибстройизыскания+».

Все виды работ будут производится в соответствии с требованиями действующих нормативных документов и государственных стандартов по инженерным изысканиям (СНиП 2.02.01-83, 11-02-96; СП 11-105-97, ГОСТ 25100-95, 12071-84, 5180-84, СНиП 11-104-97, ПТБ-88, «Руководство по инженерным изысканиям трасс воздушных линий электропередачи 35-1150 кВ).

Графическое оформление и составление проекта выполнены на персональном компьютере в программах «MicrosoftOfficeWord, Exel», «CREDO» и «AutoCAD-2008».

Проект составлен в электронном виде и на бумажном носителе.


ОБЩАЯ ЧАСТЬ

1. Характеристика природных условий района работ

1.1 Физико-географические условия района работ

В административном отношении площадь работ входит в состав Богучанского района Красноярского края. Село Богучаны расположено в 580 км к северо-востоку от г. Красноярска и является центром развитого района. Сообщение между районным центром и г. Красноярском осуществляется по автодороге, воздушным и речным транспортом. Ближайшие населенные пункты: п. Ярки, п. Ангарский, п. Гремучий, ж/д станция «Карабула». Населенные пункты соединяются между собой автодорогами. Основной водной артерией является р. Ангара. Через р. Ангара в летнее время действует паромная переправа, зимой перевозки грузов и населения осуществляются по льду.

В географическом отношении район работ расположен в юго-западной части Средне-Сибирского плоскогорья и представляет собой холмистое, холмисто-грядовое густорасчлененное плато.

Территория характеризуется довольно развитой сетью путей транспорта. Основными транспортными магистралями являются наземные пути, основу которых составляют дороги общего пользования и лесовозные дороги с твердым покрытием.

Речная сеть рассматриваемой территории широко развита и относится к бассейну р. Енисей. Основной водной артерией является Ангара с ее многочисленными притоками.

Река Ангара вытекает из оз. Байкал и впадает в р. Енисей справа, в 83 км выше г. Енисейска. Длина реки – 1 779 км, общая площадь водосбора – 1 039 тыс. км2 . Бассейн Ангары вытянут с юго-востока на северо-запад и занимает площадь 468 тыс. км2 без бассейна оз. Байкал. На юге он граничит с притоками оз. Байкал, на западе и севере – с р. Енисей, на востоке – с р. Лена.

Река Ангара зарегулирована тремя водохранилищами: Иркутским с 1957 г., Братским с 1961 г. и Усть-Илимским с 1974 г. Заполнение Усть-Илимского водохранилища продолжалось до 25 мая 1977 г. Создается Богучанское водохранилище в 121 км выше с. Богучаны.

Уклон поверхности в пределах участка принимается 0,00013, продольный профиль русла ступенчатый, порожистый.

В период летне-осенней межени средняя скорость течения в русле на участке строительства колеблется от 0,7 до 1,2 м/с, наибольшая может достигать 1,2-1,8 м/с.

В период весеннего половодья средняя скорость может достигать 1,4-1,6 м/с, наибольшая до 2,4 м/с. В зимний период средняя скорость в русле может колебаться от 0,2 до 1,1 м/с, а наибольшая – 0,3-1,5 м/с.

Мощность рыхлых отложений в русле не превышает 5,0 м, в среднем принимается 2,0 м.

Подземные воды имеют распространение по долинам рек и ручьев, в аллювиальных отложениях. Глубина их залегания от 0,0 до 2,0 – 5,0 м и глубже.

Гидрохимическая характеристика реки составлена по данным наблюдений за химическим составом воды у с. Богучаны. Гидрохимический режим Ангары характеризуется малыми изменениями минерализации воды в течение года. На пике половодья вода очень мало минерализована, сумма ионов составляет менее 100 мг/л. В период летне-осенней межени вода малой минерализации с суммой ионов до 200 мг/л. В период зимней межени минерализация повышается до средней, с суммой ионов до 300 мг/л. Вода относится к гидрокарбонатному классу группы кальция. Вода очень мягкая на пике половодья и становится мягкой в период межени, жесткость не превышает 3 мг-экв/л. Содержание органических веществ в воде Ангары среднее, перманганатная окисляемость составляет 5-9 мг О/л и только во время сильных подъемов уровней окисляемость возрастает до 19-34 мг О/л, составляя 44-46% бихроматной. Цветность воды в зимнюю межень равна 9-240 , в половодье – 75-1320 . Концентрации биогенных веществ, как правило, не превышают предельных. В половодье наблюдается повышенное содержание железа (0,5-1,5 мг/л). Содержание растворенного кислорода колеблется от 6,45 до 14,7 мг/л, содержание СО2 от 2,1 до 36 мг/л; рН колеблется в течение года от 6,8 до 7,85. Бикарбонатная щелочность в весеннее половодье составляет 47,3-73,4 мг/л, в межень 76,4-91,1 мг/л. При очень малой минерализации вода Ангары обладает выщелачивающей углекислой агрессивностью. Ангара у с. Богучаны подвергается загрязнению сточными водами очистных сооружений пос. Кодинска, речфлотом и лесосплавом. Максимальные концентрации загрязняющих веществ нефтепродуктов составили 1,2 мг/л (24 ПДК), фенолов – 0,018 мг/л (18 ПДК), азота аммонитного – 0,54 мг/л.

Пределы колебаний величин основных показателей качества воды р. Ангара – с. Богучаны приведены в таблице 1.

Таблица 1

Показатель Форма выражения Весенне половодье Межень
Минерализация мг/л 78,3-121 129-157
Концентрация ионов водорода мг/л 7,25-7,65 7,15-7,85
Кислород мг/л 7,68-12,4 6,45-14,7
Бикарбонатная щелочность мг/л 47,3-73,4 76,4-91,1
Спав мг/л 1,01 0-0,03
Нитратный азот мг/л 0 0-0,42
Нитритный азот мг/л 0 0-0,012
БПК5 мг/л 0,3-2,0 0,5-2,8
БПК20 мг/л - 7,39
Нефтепродукты мг/л 0,44-0,52 0-1,20
Фенолы мг/л 0,001-0,013 0,002-0,018
Содержание органических веществ по ХПК мг/л 24,4-37,0 11,9-27,0

1.2. Краткая характеристика климата

1.2.1 Климатические характеристики по результатам изучения и обследования

Трасса ВЛ 500 кВ расположена в бассейне р. Ангары, в юго-западной части Среднесибирского плоскогорья и характеризуется крупнохолмистым рельефом, изрезанным долинами рек. Река Ангара в этом месте имеет направление преимущественно с востока на запад и является естественной границей, разделяющей Заангарское плато (расположено к северу от реки Ангара с высотами местности 400-800 м, максимальная отметка -1104 м) и Приангарское плато (расположено к югу от реки Ангара с высотами местности 200-400 м, максимальная отметка - 504 м). С запада Заангарское и Приангарское плато ограничены Енисейским кряжем (высота в центральной части 800 - 900 м, максимальная отметка - г. Енашимский Полкан, 1104 м), который тянется с юга на северо-запад вдоль русла р. Енисей.

От Уг.13 до Уг.15, трасса ВЛ 500 кВ проходит по левобережью реки Ангары, вдоль ее русла. Местность крупнохолмистая, изрезанная долинами небольших рек, являющихся притоками Ангары. Абсолютные высоты местности колеблются от 160 м до 450 м.

Климат района резко континентальный с продолжительной суровой зимой и коротким, теплым, с обильными осадками летом. Для второй половины зимы и начала весны характерны проявления деятельности Сибирского антициклона, в остальное время года - циклонической формы циркуляции.

Сведения о метеостанциях, материалы наблюдений которых использованы, приведены в таблице 2.


Таблица 2

Сведения о метеорологических станциях

Название метеостанции

Высота над

уровнем моря, м

Начало метеонаблюдений (год) Начало наблюдений (год) Местоположение станции, форма рельефа. Удаленность от трассы, км.

По флюгеру с

тяжелой доской

По анемо-румбометру М-63 По гололедному станку
Кежма 183 1928 1952 1967 1952 Долина р. Ангары. Лесная зона. Местность слабохолмистая. 120 км.
Богучаны 131 1930 1951 1978 - Долина р. Ангары. Местность холмистая, таежная. 7 км
Климино 146 1942 1957 - 1953 Долина р. Ангары. Рельеф крупнохолмистый. Лесная зона. 7 км
Гонда 378 1929 1957 1979 - Водораздел р.Ангары и р. Чуны. Зона тайги. Местность слабохолмистая. 25км

По данным о среднемноголетнем распределении ветра по направлениям за год (таблица 3) очевидно, что преобладающими направлениями ветра являются западные и юго-западные.

Таблица 3

Повторяемость направлений ветра и штилей, %

Метеостанция С СВ В ЮВ Ю ЮЗ З СЗ Штиль
Кежма 5 6 17 6 6 27 23 10 32
Богучаны 3 10 8 3 7 28 32 9 33
Климино 6 19 6 2 5 42 13 7 26
Мотыгино 10 18 5 7 9 28 18 5 29

В холодный и теплый периоды года преобладающими направлениями ветра также являются, в основном, западные и юго-западные (таблицы 4, 5). В летний период года отмечается значительное увеличение ветров северо-восточного направления (таблица 5).

Таблица 4

Повторяемость направлений ветра и штилей за январь, %

Метеостанция С СВ В ЮВ ю ЮЗ 3 СЗ Штиль
Богучаны 2 7 5 1 6 35 38 6 50
Климино 4 24 6 1 2 48 10 5 36
Мотыгино 8 20 2 3 9 37 17 4 44
Гонда 6 4 3 2 8 38 36 3 28

Таблица 5

Повторяемость направлений ветра и штилей за июль, %

Метеостанция С СВ В ЮВ Ю ЮЗ 3 СЗ Штиль
Богучаны 6 17 12 4 5 21 23 12 26
Климино 10 24 10 4 6 28 10 8 28
Мотыгино 14 26 6 8 10 18 13 5 26
Гонда 12 18 8 4 4 15 27 12 34

В таблице 6 приведена средняя месячная и годовая максимальная скорости ветра (м/с).

Таблица 6

месяц 01 02 03 04 05 06 07 08 09 10 11 12 Год
Средняя скорость ветра, м/с 2,2 1,9 2,6 3,1 3,2 2,7 2,0 2,1 2,4 3,6 3,3 2,3 2,6
Максим. скорость ветра, м/с 20 20 25 24 28 17 17 18 20 24 24 27 28

Ярко выраженная континентальность климата и низкие зимние температуры воздуха создают более благоприятные условия для образования кристаллической изморози и менее благоприятные - для гололеда. Максимум случаев с кристаллической изморозью наблюдается в декабре- январе. Другие виды гололедно-изморозевых образований (гололед, зернистая изморозь, сложное отложение и отложение мокрого снега) наблюдаются не ежегодно и их появление приурочено, в основном, к переходным сезонам года (сентябрь-ноябрь, март-апрель), когда наблюдается циклоническая деятельность.

Максимальная толщина стенки гололеда с повторяемостью 1 раз в 5, 25 лет и максимальные значения за период наблюдений по метеостанциям приведены в таблице 7.

Таблица 7

Максимальная толщина стенки гололеда

Метеостанция Высота над уровнем моря, м Период наблюдений (годы) Максимальная толщина стенки гололеда, мм
Повторяемостью 1 раз в за период наблюдений
5 лет 25 лет
Кежма 183 1952-1994 3,0 4,8 8,0
Мотыгино 161 1954-2007 1,8 2,8 4,5
Богучаны 131 1960-2007 1,5 2,1 3,9
Климино 146 1953-1985 4,4 7,2 8,4

Значения толщин стенок гололеда с повторяемостью 1 раз в 25 лет за период наблюдений по 2006 г. по рассматриваемым метеостанциям не превышают величины первого гололедного района, то есть 10 мм.

Данные наблюдений метеостанций не в полной мере характеризуют условия образования гололедно-изморозевых отложений и отложений мокрого снега по длине трассы ВЛ 500 кВ, проложенной в сильно пересеченной местности. Большинство метеостанций расположены в долинах рек. При определении границ районов по гололеду учитывалось влияние микроклиматических условий на величину гололедных отложений по трассе ВЛ, а также опыт эксплуатации существующих ВЛ. С учетом требований п.2.5.46 ПУЭ-7 в отношении минимальных значений нормативной толщины стенки гололеда для ВЛ 500 кВ рекомендуются: на участке Уг.13 – Уг.23 ПС Ангара – 15 мм (II район по гололеду).

Данные показаний метеостанций также не в полной мере характеризуют трассы ВЛ по ветровым нагрузкам при гололеде. Региональная карта районирования территории по ветровой нагрузке при гололеде для Красноярского края не разработана.

Период с отрицательными средними месячными температурами продолжается с октября по апрель. Средняя месячная и годовая температура воздуха приведена в таблице 8.

Таблица 8

Средняя месячная и годовая температура воздуха, °С

Метеостанция I II III IV V VI VII VIII IX X XI XII Год
Кежма -27,4 -25,1 -14,1 -2,2 6,3 14,9 18,1 14,2 7,1 -1,9 -15,8 -25,7 -4,3
Мотыгино -22,4 -20,8 -11.0 -0,7 6,8 15,1 18,3 14,4 7,8 -1,0 -13,5 -21,7 -2,4
Богучаны -24,4 -22,4 -12.1 0,5 7,2 15,7 18,8 14,9 8,0 -0,5 -13,4 -22,8 -2,6
Климино -25,5 -24,1 -13,3 -1,6 7,0 15,6 18,7 14,8 7,8 -1,3 -14,7 -24,5 -3,5
Гонда -21,8 -18,7 -10,0 -0,9 6,7 14,2 17,2 13,4 6,8 -2,1 -13,5 -21,4 -2,5

Лето короткое, жаркое. Абсолютная максимальная температура в летние месяцы может повышаться до плюс 38 °С. Абсолютная максимальная температура воздуха приведена в таблице 9.


Таблица 9

Абсолютная максимальная температура воздуха, °С

Метеостанция I II III IV V VI VII VIII IX X XI XII Год
Кежма 4 4 11 21 34 36 34 33 31 23 7 3 36
Мотыгино 6 5 13 24 33 34 36 33 27 23 9 5 36
Богучаны 4 7 14 25 35 38 37 33 31 24 9 5 38
Климино 4 5 10 22 35 36 35 33 30 21 8 4 36
Гонда 4 7 13 23 32 33 34 31 29 22 9 4 34

Осенью температура воздуха постепенно понижается и в конце октября уже устанавливается зима. Наиболее холодным месяцем является январь. В отдельные холодные зимы абсолютная минимальная температура понижается до минус 60 °С. Абсолютная минимальная температура воздуха приведена в таблице 10.

Таблица 10

Абсолютная минимальная температура воздуха, °С

Метеостанция I II III IV V VI VII VIII IX X X XII Год
Кежма -57 -54 -47 -34 -19 -7 0 -4 -13 -35 -50 -60 -60
Мотыгино -52 -48 -42 -33 -12 -5 -0 -2 -11 -30 -47 -51 -52
Богучаны -54 -52 -44 -31 -15 -5 2 -2 -9 -28 -49 -51 -54
Климино -56 -53 -46 -33 -11 -5 1 -1 -10 -31 -50 -55 -56
Гонда -52 -47 -39 -31 -14 -8 -1 -4 -13 -31 -45 -50 -52

Переход температуры через 0 °С весной происходит в конце второй декады апреля, осенью - в начале второй декады октября. Средняя продолжительность безморозного периода по метеостанциям Богучаны и Гонда равна соответственно 109, 91 дней; сумма отрицательных среднемесячных температур соответственно – 96,1 °С, 88,4 °С. Средний из абсолютных минимумов температуры воздуха по метеостанциям Кежма, Климино, Богучаны, и Гонда составляет соответственно минус 51 °С, минус 50 °С, минус 47 °С и минус 44 °С.

Годовые суммы осадков рассматриваемого района изменяются от 377 до 457 мм в год. Твёрдые осадки выпадают с октября по май, жидкие с мая по сентябрь. На первый из этих периодов приходится 25-40% годовой суммы осадков, на второй - 60 - 75%. Наибольшее количество осадков приходится на июнь-сентябрь. Максимальное суточное количество на июль-август. Среднемесячные и годовые суммы осадков приведены в таблице 11.

Таблица 11

Среднемесячные и годовые суммы осадков, мм

Станция I II III IV V VI VII VIII IX X XI XII Год
Богучаны 17 11 12 17 35 47 55 61 47 30 25 20 377
Гонда 24 17 17 23 37 50 59 64 50 47 40 29 457
Климино 21 12 11 16 37 45 51 63 43 28 28 24 379

На большей части территории снежный покров образуется в середине октября и разрушается в третьей декаде апреля. Под влиянием ветра и особенностей подстилающей поверхности снег перераспределяется. Наиболее равномерно он залегает в залесённой местности. Здесь высота снега достигает 100 см. Средняя декадная высота снежного покрова, из наибольших за зиму, по постоянной рейке приведена в таблице 12.

Таблица 12

Средняя декадная высота снежного покрова, из наибольших за зиму, см

Станция средняя максимальная минимальная Место установки рейки
Кежма 34 79 14 Открытое
Климино 35 56 14 Открытое
Богучаны 32 78 12 Открытое
Гонда 72 100 44 Защищенное

Плотность снежного покрова в поле 0,21-0,22 г/см, в лесу 0,18 - 0,20 г/см.

В среднем за год наблюдается 21 день с грозой, средней продолжительностью 34 часа в год. По опыту эксплуатации аварийных ситуаций на существующих подстанциях и ВЛ по метеоусловиям не наблюдалось. Предприятия, загрязняющие атмосферу, отсутствуют.

Климатическая характеристика составлена по материалам комплексных инженерных изысканий проектной документации «Две ВЛ 500 кВ Богучанская ГЭС – ПС Ангара» ЗАО «Сибэнергосетьпроект».

1.2.2 Климатические характеристики по нормативным документам

Климатический район для строительства I, подрайон IB.

Климатические параметры по ветру и гололеду приведены по фоновым картам районирования территории РФ по ветровому давлению и по толщине стенки гололеда. Ветровой район II. Нормативная скорость ветра (V0 ) повторяемостью 1 раз в 25 лет на уровне 10 м от поверхности земли 29 м/с. Район по гололеду II. Нормативная толщина стенки эквивалентного гололеда (bэ ) повторяемостью 1 раз в 25 лет на уровне 10 м от поверхности земли составляет 15 мм. Температура воздуха при гололеде минус 10 °С.

Согласно требованиям главы 2.5 ПУЭ-7 при отсутствии региональных карт и данных наблюдений метеостанций скорость ветра при гололеде принимается равной 0,5 V0 но не менее 16 м/с; условная толщина стенки гололеда (bу ) равной нормативной толщине стенки эквивалентного гололеда (bэ ).

Температура воздуха наиболее холодной пятидневки обеспеченностью 0.92 равна минус 46 °С, наиболее холодных суток обеспеченностью 0.92 - минус 49 °С.

Снеговой район, согласно районированию территории Российской Федерации по расчетному значению веса снегового покрова земли, IV. Расчетное значение веса снегового покрова 240 кгс/м. Среднегодовая продолжительность гроз 20-40 часов, пляска проводов умеренная.

Степень загрязнения (СЗ) с учетом розы ветров 1 -я.

1.2.3 Климатические характеристики рекомендуемые для проектирования

Преобладающее направление ветра западное и юго-западное. Климатические параметры по ветру и гололеду приведены в таблице 13.

Таблица 13

Климатические условия

Углы ВЛ
Уг.13--ПС Ангара

Район по ветру и нормативная максимальная

скорость ветра, с повторяемостью 1 раз в 25 лет, м/с

II 29
Район по гололеду и нормативная максимальная толщина стенки гололеда, с повторяемостью 1 раз в 25 лет, мм II 15
Максимальная скорость ветра при гололеде с повторяемостью 1 раз в 25 лет, Vr , м/с 16
Условная толщина стенки гололеда для определения ветровой нагрузки при гололеде, bу , мм 15

Температура воздуха:

cреднегодовая минус 5°С

абсолютная максимальная плюс 35 °С

абсолютная минимальная минус 55 °С

наиболее холодных суток обеспеченностью 0.92 минус 49 °С

наиболее холодной пятидневки обеспеченностью 0.92 минус 46 °С

при гололеде минус 10 °С

средняя из ежегодных абсолютных минимумов минус 47 °С

Среднегодовое количество осадков 377 - 457 мм. Средняя из наибольших декадных высот снежного покрова за зиму на открытых участках 35 см. Плотность снежного покрова в поле 0,22 г/см, в лесу 0,20 г/см. Расчетное значение веса снегового покрова 240 кгс/м.

Среднегодовая продолжительность гроз 20 - 40 часов. Пляска проводов умеренная.

Степень загрязнения 1-я.


2. Характеристика трассы ВЛ

Трасса ВЛ 500 кВ ПС «Ангара» проходит по малообжитой, таёжной, пересечённой местности Богучанского района Красноярского края.. На участке 10 углов поворота.

Конечной точкой трассы ВЛ является портал Уг.23 - ОРУ 500 кВ ПС Ангара.

На участке Уг.13 - Уг.15 траса ВЛ 500 кВ проходит вдоль р. Ангара в западном направлении, и проложена в одном коридоре с трассами двух ВЛ 220 кВ Богучанская ГЭС - ПС Приангарская, проходящими в 40 м друг от друга. Расстояние от оси правой ВЛ 500 кВ до оси левой ВЛ 220 кВ составляет 50 м.

В коридоре совместного прохождения трасс ВЛ 500 кВ и ВЛ 220 кВ углы поворота намечены с учётом рельефных и гидрографических условий местности, при этом, расстояние от трасс ВЛ до существующей (реконструируемой) автодороги Абан - Богучаны - Кодинск колеблется от 0 м до 8 км.

На этом участке трассы ВЛ пересекают множество ручьёв, малую реку Бол. Мельничный.

На углах 15 и 16 трасса ВЛ 500 кВ меняет своё направление на южное. От Уг.16 до Уг.18 трасса ВЛ 500 кВ следует с минимальным расстоянием 50 м восточнее существующей ВЛ 110 кВ ПС Чунояр - ПС Богучаны.

На углу 18 трасса ВЛ поворачивает на запад и по прямой Уг.18 - Уг.19 пересекает реку Карабула и железную дорогу ст. Решёты - ст. Карабула.

Пересечение трассой ВЛ реки Карабула выбрано с таким расчётом, чтобы пересечь её одним нормальным пролётом.

На Уг.19трасса ВЛ поворачивает на юг, в сторону ПС Ангара. Углы 20, 21, 22 и 23 предусмотрены для захода трассы ВЛ на ОРУ 500 кВ ПС Ангара.

3. переход через р. Карабула

Трассы ВЛ пересекают р. Карабула в двух километрах ниже поселка Карабула.

Река Карабула, левобережный приток р. Ангары, берет начало в отрогах Бирюсинского плато. Длина реки до створа перехода 140 км, площадь водосбора 4 190 км2 . Долина реки трапецеидальной формы, ширина дна долины в створе перехода 2,0 км. Склоны долины высокие, пологие.

Русло реки очень извилистое, однорукавное, шириной 20,0 – 30,0 м. Глубина реки в межень составляет 0,6—2,0 м, скорости течения изменяются от 0,5 до 1,2 м/с, на перекатах 2,0 м/с. Берега реки крутые, высотой 2,0-2,5 м, сложены песчаным грунтом с прослойками гальки, в период половодья сильно разрушаются. Дно реки сильно засорено топляками, грунт дна - пески и галька. В летний период русло частично зарастает водной растительностью, местами наблюдаются запруды из упавших в воду деревьев.

Пойма реки, шириной 1,1 км, возвышается над меженным урезом на 2,0-3,0 м. В прирусловой части и по понижениям она заросла густым кустарником, местами заболочена. Поверхность поймы, с отметками 182,0-183,7 м БС, изрезана большим количеством староречий и ложбин между береговых валов разного возраста, действующими в период весеннего половодья. Затопление поймы происходит не ежегодно, в среднем 1 раз в 4 - 5 лет. При прохождении весеннего половодья с 1 % расчетной обеспеченностью глубины на пойме составляют 1,0 - 2,0 м, в старицах – до 3,5 м; скорости течения воды на пойме, вычисленные по формуле Шези, изменяются соответственно от 0,5 до 1,0 м/с.

Описание гидрологического режима р. Карабулы дано на основании 72 - летнего ряда наблюдений (1933-2007 гг.) на гидрологическом посту, расположенному в 4,5 км выше по течению (поселок Карабула).

Водный режим реки характеризуется высоким весенним половодьем и очень низкими дождевыми паводками, устойчивыми летне-осенней и зимней меженями. Половодье начинается в конце апреля - начале мая, при крайних датах 01.05.1953 г. и 28.05.1976 г. Подъем уровня в многоводные годы составляет 3,5-4,0 м. Наивысшие наблюденные уровни воды на посту (обеспеченностью около 1 и 2 %) достигали 471 см и 442 см над нулем графика в 1999 и 2001 годах соответственно. Общая продолжительность половодья колеблется от 36 до 72 дней, в среднем около 1,5 месяца.

Расчетный уровень воды обеспеченностью 1% (УВВ1%) равен 460 см над нулем графика поста. Отметка УВВ 1% подтверждена данными ООО «ПИИ ГИДЭП», проводившего изыскания водозабора для БоАЗ в районе поселка Карабула (2007 г.).

Ледовый режим реки характеризуется установлением ледостава в конце октября, при крайних датах 08.10.1962 г. и 13.11.1990 г. Продолжительность ледостава колеблется от 173 до 213 дней, в среднем - 192 дня. Лед ровный, толщиной от 40 до 60 см. Максимальная наблюденная толщина льда достигала 99 см (10.04.57). Начало весеннего ледохода приходится на первые числа мая, крайние даты - 14.04.38 и 15.05 (7% случаев).

Русловой процесс на рассматриваемом участке реки развивается по типичной схеме свободного меандрирования и носит активный характер. Русло реки чрезвычайно извилистое, местами образует меандры второго и даже третьего порядка. Ширина пояса меандрирования составляет 700-800 м. Анализ положения излучин на аэрофотоснимках 1988 г., планов ООО «ОПТЭН» 2007 г. и сравнение их с картой масштаба 1:25000 (1974 г.) показали, что средняя скорость размыва берегов за рассматриваемый период составляет, в зависимости от поперечника, 0,5-1,0 м/год. Наибольшие скорости размыва в районе перехода трассы ВЛ, от 0,5 до 0,8 м/год, наблюдаются в верховом и низовом изгибах правого берега П - образной излучины II. Следов местного размыва на участке перехода и районе нижерасположенной существующей ВЛ 110 кВ не обнаружено.

За расчетный срок эксплуатации ВЛ возможно завершение цикла развития излучины II с прорывом перешейка и образованием нового положения русла на месте левобережной старицы. В результате этого участок склона левобережной надпойменной террасы (правая линия ПК 1523+11.75, левая - ПК 1549+31.01) окажется в зоне деформации. Полевое обследование аналогичного участка в вершине соседней излучины III показало, что разрушение склона террасы в этом случае, несмотря на высоту до 6 м, может протекать достаточно интенсивно. Следует учитывать и тот фактор, что при строительстве ВЛ экологическое равновесие на участке перехода будет значительно нарушено.

4. ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ РАЙОНА

4.1. Инженерно-геологическая изученность

В районе проложения трассы ВЛ 500кВ институтом «Сибэнергосетьпроект» в разные годы выполнялись изыскания по нескольким электросетевым объектам.

Отчет ЗАО «Сибэнергосетьпроект» по комплексным инженерным изысканиям «Две ВЛ 500 кВ Богучанская ГЭС – ПС Ангара» проектная документация (том 12, 7686-01-ИЗ, 2008 г.), отчет ООО «Картограф» по комплексным инженерным изысканиям «ВЛ110 кВ для питания ЛПК в с. Богучаны» (2008 г.) были использованы для получения общих сведений о районе производства работ и при совместной статистической обработке данных.

4.2. Геолого-геоморфологическая характеристика района строительства ВЛ 500 кВ ПС « Ангара»

В геоморфологическом отношении трасса ВЛ располагается в юго-западной части Сибирской платформы, представляющей собой холмистую, среднерасчлененную местность с обширными плоскими водоразделами, местами плавно переходящими в широкие речные долины, которые имеют ящикообразный поперечный профиль с абсолютными отметками от 150 до 340 м. И только на узкой полосе шириной 6-10 м вдоль долины р. Ангары наблюдаются резкие поднятия поверхности, придающие ей грядохолмистый характер рельефа. Водоразделы здесь узкие с сильно изрезанными склонами и V-образным профилем речных долин. Относительные превышения поверхности земли достигают 180 - 200 м.

Ведущими факторами рельефообразования являлись тектонические движения, денудационно-эрозионные, эрозионно-акумулятивные процессы и литологический состав отложений.

Денудационно-эрозионный рельеф развит вдоль р. Ангара полосой 3 – 8 км. Характерны максимальные отметки, большая глубина вреза, четкие гряды, ориентированные вдоль долины реки.

Эрозионно-аккумулятивные формы рельефа характерны для террас р. Ангары.

На исследуемом участке р. Ангара пересекает западную окраину Средне-Сибирского плоскогорья. Ширина долины реки непостоянна и колеблется в пределах от 2,5 – 3 км до 7 – 8 км, соответственно изменяется и ширина русла.

Долина реки Ангара в основном симметричная, коренные берега ее высокие, крутые, террасы узкие и имеют небольшое распространение. В местах, где река пересекает легко размываемые породы кембрия и ордовика встречаются широкие террасы всех комплексов.

4.2.1 Стратиграфия

Палеозойская группа. Кембрийская система, средний и верхний отделы.

Эвенкийская свита (€2-3 ev ).

Эти отложения широко развиты, слагают водораздельные пространства. Несогласно залегают на карбонатной толще нижнего кембрия. Представлены переслаивающейся толщей мергелей, алевролитов, аргиллитов. Мощность отложений – до 300 м.

Ордовикская система нижний отдел

Усть-кутская свита (О1 uk )

Отложения усть-кутского яруса согласно залегают на пестроцветах эвенкийской свиты и представлены в основном терригенными отложениями. Нижняя часть толщи сложена песчаниками мелко и среднезернистыми серыми, зеленовато-серыми и малиново-серыми, тонкоплитчатыми. В составе песчаников угловато окатанные зерна кварца, полевого шпата, редко зерна роговой обманки с окатанными обломками кварцитов, сланцев, чешуйками слюды. Цемент породы карбонатный, кремнисто-слюдисто-железистый. В песчаниках присутствуют прослои алевролитов и аргиллитов. Верхняя часть яруса представлена чередованием песчаников, алевролитов и аргиллитов. Мощность отложений – до 200 м.

Чуньский ярус

Бадарановская свита (О1 bd )

Отложения свиты прослеживаются по левому склону долины р. Ангары на участке между р. Бол. Мельничной и восточной границей района. Она широко развита в районе пос. Карабулы, а также вскрыта в междуречье Карабулы - Кежмы. Бадарановская свита залегает согласно на ийской, граница между ними проводится несколько условно по резкой смене преимущественно красноцветных отложений сероцветными.

Толща сложена красноцветными, олигомиктовыми серыми, зеленовато-серыми песчаниками с прослоями алевролитов и аргиллитов. Обломки слабоокатаны, изъедены цементом. Цемент карбонатный, реже кремнисто-слюдистый и очень редко железистый. Тип цемента базальный, выполнения пор, иногда разъедания. Мощность отложений достигает 90 м.

Каменноугольная система средний и верхний отделы объединенные

Катская свита ( C 2+3 kt )

Свита широко развита по долинам рек Карабулы, Кежмы, Бол. Мельничной, а также в междуречье Карабулы и Кежмы.

Породы катской свиты с размывом и незначительным угловым несогласием залегают на различных горизонтах нижнего ордовика, в основании свиты иногда отмечаются маломощные прослои конгломератов. Сложена свита полимиктовыми песчаниками, алевролитами, аргиллитами и пластами углей. Редко отмечаются маломощные прослои известняков.

Мощность свиты составляет 58 м.

Пермская система нижний отдел

Бургуклинская свита ( P 1 br )

Свита широко распространена к югу от р. Ангары. В междуречье Карабулы и Кежмы, а также в районе пос. Карабулы. Бургуклинская свита залегает согласно на породах катской свиты и с размывом перекрывается верхнепермскими или мезозойско-кайнозойскими отложениями. Представлена свита серыми и зеленовато-серыми полимиктовыми и олигомиктовыми песчаниками, алевролитами, аргиллитами и пластами каменных углей. Мощность свиты от 7 до 90 м.

Верхний отдел

Стрелкинская свита ( P 2 st )

Свита с размывом и стратиграфическим несогласием перекрывает различные горизонты катской и бургуклинской свит. Выходы пород известны в междуречье Кежмы, Тины и Чулюндея. Сложена стрелкинская свита песчаниками, алевролитами, аргиллитами, конгломератами, гравелитами и углями. Мощность свиты 43 м.

Мезозойская группа. Триасовая система, нижний отдел

Корвунчанская свита (Т1 kr )

Свита широко развита в междуречье Карабулы – Тины и на водоразделе рек Бол. Мельничный, Чельчета – Бубенихи. Небольшие выходы ее отмечаются в верховьях р. Моткалея, в нижнем течении р. Речной Арюзихи. Свита несогласно залегает на различные горизонты палеозойских отложений.

Сложена корвунчанская свита агломератными туфами и туфобрекчиями основного состава, туфоалевролитами, туфопесчаниками и туффитами. Обломочный материал в туфобрекчиях представлен долеритами, базальтами, туффитами, песчаниками и углистыми аргиллитами. Содержание обломков 30-50%, размеры их меняются от 1-2 до 10-50 см. Агломератные туфы содержат лапилли и бомбы долеритов размером до 0,5 – 3,0 м. Мощность толщи от 30 до 60-70 м.

Юрская система нижний отдел

Переясловская свита ( P 1 pr )

Свита широко развита на всей южной части территории, где она слагает обычно водораздельные участки. Породы нижней юры с размывом и незначительным угловым несогласием перекрывают различные горизонты ордовика, карбона, перми и нижнего триаса. Они представлены песчаниками, алевролитами, аргиллитами, бурыми углями, известковистыми песчаниками и конгломератами. Для нижнеюрских отложений района характерна фациальная изменчивость, выражающаяся в увеличении песчанистости разреза в северном направлении, быстром выклинивании по простиранию угольных пластов. Мощность свиты 80-100 м.

Кайнозойская группа. Четвертичная система

Средний отдел ( QII )

Среднечетвертичные отложения слагают II надпойменную террасу р. Ангары. Представлены коричневато-бурыми среднезернистыми песками, в которых содержатся галька и валуны долеритов, кварцитов. Мощность отложений – 30 м.

Верхний отдел ( QIII )

Верхнечетвертичные отложения слагают I надпойменную террасу р. Ангары. В основании террасы на коренных горных породах залегает тонкий слой галечникового грунта, который перекрывается мощной пачкой песков, супесей, суглинков. Мощность аллювиальных верхнечетвертичных отложений составляет 10 – 12 м.

Современные отложения ( QIV ).

К ним относятся аллювиальные осадки, слагающие пойменные террасы, бечевники, отмели, косы и острова. Представлены двумя фациями:

- русловая фация сложена гравием, галькой, разнозернистыми песками;

- пойменная фация представлена песками, суглинками, глинами.

Вблизи развития трапповых тел в большом количестве встречаются валуны, глыбы и щебень долеритов.

Мощность современных отложений 9 – 10 м.

Породы кембрийской системы эвенкийской свиты нижней подсвиты предсталены мергелями различной степени выветрелости с прослоями и линзами алевролитов и известняков, доломитов.

В разрезе пород кембрийской системы выделяются два слоя выветривания до глубины 30 м.

Глубокого выветривания и разгрузки (дисперсная зона коры выветривания) характеризующаяся наибольшей степенью выветривания. Здесь полускальные породы ослаблены, превращены в супесчаный и суглинистый материал с реликтами менее выветрелых пород, причем прослои и линзы известняков, разбитые многочисленными трещинами, сохранили свои прочностные свойства. В породе изредка встречаются слои и линзы гипса волокнистого. Мощность отложений зоны составляет порядка 17 – 19 м.

Слабого выветривания (обломочная зона коры выветривания) – пачка переслаивающихся мергелей, алевролитов и песчаников разбита трещинами открытыми и закрытыми. Трещины различного направления и генезиса с преобладанием сингенетических трещин напластования. Вскрытая мощность пород составляет порядка 4 -7,5 м.

4.2.2 Магматизм

Формация Сибирских траппов. Ангарский комплекс ( β - πμβ Т1 an )

Ангарский комплекс представлен слабодифференцированными интрузиями. Изверженные породы распространенны в долинах рек Ангары, Карабулы, Бол. Мельничной. Выходы коренных отложений вскрыты по трассе изысканий ВЛ 500: Уг.13 –Уг.14, Уг.14 - Уг.15, Уг.15 - Уг.16; на глубине от 0,8 м до 4,0 м. В керне наблюдается II системы трещин, I-я система субвертикальная под углом 900 , II-я система под углом 450 . Трещины залечены вторичным кальцитом (рисунок. 4.1).

Рисунок 4.1. Системы трещин в керне долерита

Делювиально-элювиальные отложения долеритов вскрыты скважинами: Уг.13 - Уг.14, от 0,5 м до 5,0 м (рисунок 4.2).

Рисунок 4.2. Керн долерита. Уг.13 – Уг.14

Приконтактовые слабометаморфизованные породы представлены: красноцветными алевролитами и брекчиями на кремниевом цементе. Алевролиты вскрыты на участке: Уг.13 - Уг.14, на глубине от 4,4 м до 5,0 м. Брекчии вскрыты на участке: Уг.13 - Уг.14, на глубине от 2,1 до 2,5 м, Уг.15 – Уг.16 на глубине 2,10-2,20 м. (рисунок. 5.3).

Рисунок 4.3. Брекчия. Уг.15 – Уг.16

Распространение траппов в значительной степени контролируются зонами разломов в фундаменте платформы (Ангарские разломы, Чельчетский разлом). По морфологии интрузивные тела подразделяются на пластовые, пластообразные секущие, тела неправильной формы и дайки.

Пластовые и пластообразные тела приурочены к определенным стратиграфическим горизонтам. Мощность пластовых и пластообразных тел меняется от 10 до 70 м. Для интрузий характерны четкие прямые контакты, обычно параллельные общему простиранию вмещающих пород.

Секущие тела неправильной формы и дайки приурочены, в основном, к долинам рек Карабулы, Бубенихи и Кежмы и, предположительно, контролируются разломами. Они прорывают отложения нижнего ордовика, перми, карбона и нижнего триаса. Мощность даек меняется от 10-20 до 30 м, протяженность 1-2,5 км, простирание их обычно субширотное.

Секущие интрузии неправильной формы характеризуются неровными извилистыми контактами, дайки имеют простое строение и характеризуются четкими прямыми контактами. Центральные части интрузий сложены мелко-среднекристаллическими, иногда пегматоидными долеритами, краевые – микродолеритами, афанитовыми долеритами и долерит-порфиритами. Дайки сложены мелко-среднекристаллическими долеритами, в эндоконтактах их отмечаются маломощные зоны микродолеритов и афанитовых долеритов. Для долеритов характерны столбчатая, параллелепипедная и реже шаровая формы отдельности. Преобладающее направление трещин северо-восточное и северо-западное.

По химическому и минералогическому составу, по структурным особенностям среди долеритов выделяются следующие разности: оливиновые долериты и габбро-долериты, троктолитовые долериты, пегматоидные долериты и лейкократовые долериты, толеитовые долериты, долерит-порфириты, микродолериты, миндалекаменные долериты, атакситовые порфириты и долеритовые афаниты.

4.2.3 Тектоника

Рассматриваемая территория расположена в юго-западной части Сибирской платформы. В ее строении принимают участие Иркинеевский выступ, зона Ангарских складок и Мурский прогиб. Все эти структуры рассматриваются как платформенные образования и граница фундамента платформы проводится по подошве тассеевской серии.

В строении района отчетливо выделяется два структурных этажа: нижний этаж, сложенный интенсивно дислоцированными верхнепротерозойскими породами фундамента платформы (исключая тасеевскую серию); верхний этаж, представленный позднекембрийскими, палеозойскими и мезозойско-кайнозойскими отложениями платформенного чехла.

В составе верхнего этажа выделяется пять структурных ярусов, разделенных стратиграфическими перерывами и незначительными угловатыми несогласиями: позднекембрийский, сложенный отложениями тасеевской серии дислоцированными в конце позднего докембрия; низжнепалеозойский – отложения кембрия и нижнего ордовика дислоцированные в докаменноугольное время; верхнепалеозойский - дислокации верхнепермского времени; нижнемезозойский – дислокации верхнетриасового времени; юрско-меловой, отложеня этого яруса недислоцированные или слабодислоцированные.

Выделенные структурные этажи характеризуются резко различной степенью дислоцированности слагающих их пород и разделены четкими и стратиграфическими несогласиями.

Разрывные нарушения в районе подразделяются на две крупные группы: а) глубинные – фундамента платформы и связанные с ними нарушения в осадочном чехле; б) разломы северного борта Мурского прогиба.

В составе первой группы выделяются долгоживущие разломы глубинного положения – Ангарские разломы. Эти разломы имеют субширотное простирание и примерно совпадают с долиной реки Ангары.

В составе второй группы выделяются разломы донижнетриасового возраста, предшествующие трапповому магматизму, и мезозойские нарушения. С первыми связаны многочисленные субширотные секущие дайки долеритов в низовьях р. Карабулы.

Мезозойские разрывные нарушения в районе преобладают. Это разломы сбросового типа. Они секут интрузии долеритов, четко ограничивают блоки с выходами туфогенных пород, смещают юрские отложения.

Расчетная сейсмичность . Согласно СНиП II-7-81* и карте общего сейсмического районирования Российской Федерации (ОСР-97) расчетная сейсмическая интенсивность в баллах шкалы МSК-64 для средних грунтовых условий в пределах района составляет:

- 6 баллов – соответствует 5% вероятности;

- 7 баллов – соответствует 1% вероятности.

4.3 Гидрогеологические условия

Территория находится в области Енисейской гидрогеологической складчатой области, имеющей сложное геологическое строение. В пределах области выделяются гидрогеологические массивы, сложенные архейскими и протерозойскими кристаллическими породами, адартезианские бассейны, в строении которых принимают участие разнообразные терригенные и карбонатные породы верхнего протерозоя, нижнего кембрия, и артезианские бассейны, выполненные терригенно-карбонатными отложениями палеозоя, мезозоя и кайнозоя. В гидрогеологических массивах развиты трещинные и трещинно-жильные пресные и ультрапресные подземные воды, в адартезианских и артезианских бассейнах преимущественным распространением пользуются трещинно-пластовые и порово-пластовые пресные подземные воды.

В долине р. Ангары имеют место подземные воды аллювиальных отложений. Уровень подземных вод в пойме на глубине 5,0 м и 14 – 15 м в пределах первой надпойменной террасы. Уровенный режим водоносного горизонта напрямую зависит от уровня воды в р. Ангара. По химическому составу подземные воды гидрокарбонатные кальциево-магниевые.

Подземные воды пород кембрийской системы вскрыты в прослоях известняков и песчаников, воды имеют слабый напор. По химическому составу подземные воды гидрокарбонатные кальциевые.

Водоносный комплекс четвертичных отложений. Распространен в долине р. Ангара и ее крупных притоков. Глубина залегания зеркала подземных вод изменяется от 1 – 2 м на низких террасах и до 8 – 20 м на высоких террасах. Мощность водовмещающих горных пород от 1 до 10 м. Дебит скважин – 1-5 л/сек. По химическому составу воды гидрокарбонатные кальциевые с минерализацией до 0,5 г/л. Используются населением п. Ангарский и п. Богучаны.

Водоносный комплекс триасовых вулканогенно-осадочных образований и траппов . Характеризуется развитием трещинных вод зон трещиноватости. Наиболее обводнена верхняя трещиноватая зона, глубина которой составляет около 100 м. Дебиты родников изменяются от 0,5 до нескольких 1-2 л/сек. Воды гидрокарбонатные, с минерализацией не более 0,5 г/л.

Водоносный комплекс терригенно-карбонатных отложений эвенкийской свиты и нижнего ордовика. Характерно развитие трещинно-пластовых вод. Родники имеют расход до 3 л/сек. По химическому составу воды сульфатные кальциевые, иногда с резким запахом сероводорода. Минерализация от 0,5 до 4,5 г/л.

Водоносный комплекс карбонатных отложений нижнего кембрия. Развит на правобережье р. Ангара. Воды пластово-карстового, трещинно-карстового типа. Расход родников до 10 л/сек. Характерно высокое содержание хлор-иона, связанного с процессами выщелачивания соленосных фаций. Соленые родники отмечаются в районе п. Ангарский, в бассейне р. Ельчимо (правого притока р. Ангара). Минерализация вод составляет от 0,5 до 10 г/л.

Подземные воды встречены на глубине 0,35-2,70 м, что соответствует абсолютным отметкам 252,30-347,10 м. Водовмещающими грунтами являются суглинки, супеси, щебенистый грунт.

Воды безнапорные. По химическому составу на Уг.13 – Уг.14 и Уг.17 – Уг.18 воды гидрокарбонатно-кальциевые, с очень слабокислой реакцией, на Уг.15 –Уг.16 гидрокарбонатно-кальциево-магниевые, с нейтральной реакцией (по классификации В.А. Александрова).

По степени агрессивного воздействия на конструкции из бетона марок W4 , W6 , воды слабоагрессивные, и среднеагрессивные для бетона марки W4 - по содержанию агрессивной углекислоты (при коэффициенте фильтрации < 0.1 м/сут).

При воздействии на арматуру железобетонных конструкций подземные воды неагрессивные при постоянном погружении, слабоагрессивные при периодическом погружении и среднеагрессивные по водородному показателю, сумме хлоридов и сульфатов по скорости движения до 1 м/с. Подземные воды обладают низкой, средней коррозионной активностью к алюминиевой оболочке кабеля, средней и высокой – к свинцовой.

4.4 Инженерно-геологический очерк

Одним из основных показателей инженерно-геологических условий района прохождения трасс ВЛ 500кВ являются экзогенные геологические процессы и явления. По результатам исследований, в пределах изученной территории отмечены: выветривание, развитие островной многолетней мерзлоты, сезонное промерзание грунтов, гравитационные процессы (обвалы, оползни, камнепады), оврагообразование и заболачивание.

Выветривание. Характер выветривания в значительной степени обусловлен суровыми климатическими условиями региона. Наиболее важными факторами, влияющими на динамику процесса выветривания, является большая амплитуда суточных (18°) и годовых (82°) колебаний температуры с частыми переходами через 0° в осенне-весеннее время. В этих условиях дробление пород осуществляется главным образом за счет температурного и морозного выветривания.

Устойчивость различных отложений к выветриванию определяется структурно-литологическими особенностями и свойствами разрушающихся пород.

В результате физико-химических преобразований существующий профиль коры выветривания имеет три зоны: дисперсную, крупнообломочную и трещиноватую.

Для дисперсной зоны характерно изменение химического состава с сохранением некоторых структурных особенностей. Мощность этой зоны меняется в пределах от 1,0 до 6,0-8,0 м.

Крупнообломочная зона сложена щебенисто-дресвяным материалом с песчано-глинистым заполнителем.

Для трещиноватой зоны выветривания характерно слабое изменение состава пород и значительное уменьшение их прочности.

Многолетнемерзлые породы и криогенные процессы. Мерзлотные условия района прохождения трассы ВЛ характеризуются распространением многолетнемерзлых пород и развитием криогенных процессов.

Многолетнемерзлые породы по условия залегания относятся к долинному типу и встречаются на затененных и залесенных склонах северной экспозиции, по днищам речных долин и глубоких падей. Острова и линзы многолетнемерзлых пород различной конфигурации и размеры их в плане колеблются от десятков до нескольких сотен метров.

Многолетнемерзлые грунты подсечены скважинами 0914-0919, 0921 Уг.13 – Уг.14. Вскрытая мощность от 0,5 до 4,0 м. Данные бурения подтверждены данными вертикального электрического зондирования.

Верхняя граница многолетнемерзлых пород обычно сливается со слоем сезонного промерзания грунтов и находится на заболоченных участках, в торфяных отложениях, на глубине от 0,5 до 1,5 м, а в суглинках, супесях, песках и щебенистых грунтах на глубине от 1,5 до 2,5м.

Температура многолетнемерзлых пород колеблется от 0° до минус 1,1° (по данным наблюдений Ангарской экспедиции Гидропроекта).

Мерзлые грунты характеризуются большой льдистостью и в них отмечаются слоистые и массивные криогенные текстуры.

В результате нарушений природных условий (вырубка леса, распахивание земель и т.п.) мерзлота быстро деградирует.

При оттаивании глинистые грунты приобретают текучепластичную и текучую консистенцию.

С сезонным промерзанием и оттаиванием и многолетней мерзлотой связаны многие криогенные процессы и образования. Среди них пучение грунтов, заболоченность, наледи, термокарст, солифлюкция. Очень часто встречаются реликтовые образования (бугристо-западинный микрорельеф). Встречается данный тип рельефа по долинам рек Ангары и Муры в районе деревень Климино, Говорково, Гольтявино и др.

Рельеф представляет собой чередование пологовыпуклых, округлой и эллипсовидной формы, бугров с западинами. Диаметры бугров изменяются от 2,0 до 10,0-15,0 м, а глубина западин 2,0-3,0 м. Формирование бугристо-западинного рельефа является результатом образования системы морозобойных полигональных трещин, заполнения их льдом и последующим вымыванием, суффозией окружающих жилу грунтов.

В настоящее время идет медленный процесс нивелирования бугристо-западинного рельефа. Наиболее интенсивно он протекает на вырубках и пашнях.

Гравитационные процессы. В пределах проходимой территории отмечено проявление обвалов, осыпей и курумов. Локальное распространение имеют оползни.

Наибольшее развитие обвалы и осыпи получили на склонах, сложенных породами трапповой формации и песчано-глинистыми отложениями, проявляются они в виде обрушения одиночных глыб или небольших блоков породы или смещения участков массива. Обвально-осыпной материал представлен обломками разной формы и размеров. Примером распространения осыпей являются осыпи в долине р. Муры. Эти осыпи имеют выпуклый продольный профиль и характеризуются большой подвижностью.

В пределах района развиты курумы, формирующиеся у подножий трапповых обнажений и питающиеся за счет разрушения последних. Курумы имеют вид обвальных конусов, протяженностью 200-300 м, при ширине 100-120 м. Все курумы находятся в стабильном состоянии, на что указывает ровный лес, которым они покрыты.

Овраги. В настоящее время в связи с хозяйственным освоением территории наблюдается значительное оживление процесса оврагообразования. Благоприятными факторами, способствующими образованию оврагов, является пересеченность рельефа, наличие легкоразмываемых грунтов, ливневый характер осадков и, самое главное, деятельность человека (вырубка леса, нарушение дернового покрова и т.д.).

Одним из примеров образования оврагов могут служить овраги в районе д. Климино, д. Гольтявино и др., зарождение которых началось с колеи, проложенной транспортом. Размеры оврагов самые различные, длина от 10,0 до 500,0 м, ширина от 2,0-3,0 до 10,0-12,0 м при глубине от 3,0 до 12,0-15,0 м.

Техногенное вмешательство в природную среду, при стоительстве ЛЭП 220 кВ и проложение дорог при лесозаготовительных работах, привело к образованию молодых, растущих оврагов, встреченных в притрассовой зоне ВЛ 500 кВ Уг.14 – Уг.15, Уг.17 – Уг.18. Овраги имеют V-образную форму, глубиной до 3,0 м, ширина в верхней части оврага от 1,0 до 1,5 м

Оврагообразование происходит скачкообразно во время интенсивного выпадения дождевых осадков. Снеготаяние существенной роли в образовании оврагов не имеет, так как глинистые грунты в это время находятся в мерзлом состоянии.

Поперечный профиль оврагов V образный, редко U образный. По мере выработки продольного профиля глубинное врезание оврага замедляется, его дно покрывается слоем песка и дресвы, которые поступают со склонов и не успевают выноситься временными водотоками. С замедлением глубинной эрозии дальнейшее формирование оврагов продолжается за счет разрушения бортов и образования многочисленных ответвлений, т.е. разрастания овражной сети вширь, с захватом значительных пространств.

Поэтому при интенсивном освоении территории, сопровождающемся нарушением растительного покрова и вырубкой леса, следует иметь ввиду, что это может привести к значительной активизации оврагов и нарушению устойчивости сооружений.

Заболачивание. На исследуемой территории заболоченные массивы отмечены в долине р. Карабула, Мура и других притоках р. Ангары.

Река Карабула меандрирует по площади, что создает благоприятные условия для заболачивания поймы реки, особенно правый берег р. Карабула (район трассы Уг.18 – Уг.19).

Длина участков, в основном, от 300 до 500 м.

Все заболоченные участки располагаются по поймам и старицам рек, а также по днищам долин и широких оврагов. Заболачивание осуществляется за счет атмосферных осадков.

При производстве работ заболоченные участки встречались на всем протяжении трассы – Уг.13 – Уг.14, Уг.14 – Уг.15, Уг.15 – Уг.16, Уг.17 – Уг.18, Уг.18 – Уг.19, Уг.19 – Уг.20.

Нормативная глубина промерзания грунтов, определенная по формулам СНиП 2.02.04-88 и СН 510-78 для глинистых грунтов меняется от 2,1 до 2,5 м, в зависимости от физических (влажность, плотность, пределы пластичности) характеристик. Для крупнообломочных грунтов глубина промерзания принята по литературным источникам и составляет от 3,0 до 4,0 м. В слое сезонного промерзания грунты от практически непучинистых до сильнопучинистых и чрезмерно пучинистых (согласно таблице Б.27 ГОСТ 25100-95).

В результате изучения фондовых, литературных геологических материалов и выполнения комплекса полевых инженерно-геологических, геофизических и лабораторных работ по генезису, литологическому составу и физико-механическим свойствам грунтов по трассам ВЛ выделено 3 типа грунта:

- скальные;

- делювиальные;

- аллювиальные.

Скальные грунты, встреченные по трассе ВЛ, представлены долеритами, глыбами брекчий, алевролитами.

По литературным источникам в скальных грунтах, в зависимости от состава, до глубины 25,0 – 40,0 м распространена трещинная зона коры выветривания. Для нее характерно слабое изменение состава и значительное уменьшение прочности. Выходы коренных пород по трассе наблюдаются редко, в виде отдельных останцев, карнизов и обнажений на крутых склонах. Встречены по трассе на участке Уг.13 – Уг.14, Уг.14 – Уг.15, Уг.16 – Уг.17.

Чаще скальные грунты покрыты чехлом из элювиальных и элювиально-делювиальных отложений.

Делювиальные образования развиты на выположенных водоразделах и крутых склонах. Представлены они песками различной крупности, различными типами глинистых грунтов с включением обломочного материала в виде дресвы и щебня от единичных включений до 45%. Так же в эти отложения входят и крупнообломочные грунты с песчано-глинистым заполнителем.

Маловлажные грунты распространены в основном на вершинах водоразделов, и их мощность не превышает 0,5-3,0 м, влажные и сильно влажные встречаются на склонах водоразделов и у подножий склонов, их мощность может достигать 6 м

Аллювиальные отложения распространены в пределах дна долин рек и ручьев и на пологих заболоченных склонах. Эти отложения, как правило, обводнены. Представлены они различными типами глинистых грунтов, песчано-галечниковыми фракциями.

Все вышеперечисленные отложения разделены на инженерно-геологические элементы, описание которых приведено далее.

Категория сложности инженерно-геологических условий исследуемого района –III (сложные), согласно приложения Б СП 11-105-97.

ПРОЕКТНАЯ ЧАСТЬ

5. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ РАБОТЫ

5.1 Задачи, объемы и виды работ

Инженерно-геологические изыскания на стадии проект выполнены для проектирования и строительства трассы ВЛ 500 кВ ПС «Ангара» Богучанского района Красноярского края.

Методика, виды и объемы геологических работ определялись поставленными инженерно-геологическими задачами.

Схема работ сводится к следующему:

- сбор и обобщение архивных материалов в камеральный период;

- проведение буровых работ с комплексным опробованием;

- геофизические исследования;

- лабораторные исследования физико-механических свойств грунтов;

- камеральная обработка полевых и лабораторных работ;

- составление отчета об инженерно-геологических изысканиях.

Бурение скважин в ходе инженерно-геологических изысканий выполнялось для следующих целей:

- изучение геологического разреза;

- определения современного состояния грунтов и положения уровня грунтовых вод;

- отбора проб грунта для определения их состава, состояния и свойств;

- изучение фильтрационных свойств грунтов.

Бурение будет выполнено механическим колонковым способом установкой УРБ – 2А2, на самоходном гусеничном шасси. Будет применено колонковое вращательное бурение диаметром 132 мм «всухую» в соответствии со СНиП 11-02-96 и СП 11-105-97 (приложение Г). Длина рейса 0,30-0,50 м. Выход керна 100%.

Скважины, после проходки и отбора проб будут ликвидированы методом послойной засыпки ствола извлеченным грунтом.

В процессе бурения будет произведен непрерывный осмотр керна и отбор проб нарушенной и ненарушенной структуры с соблюдением технологии бурения в соответствии с «Рекомендациями производства буровых работ при инженерно-геологических изысканиях для строительства». Ведение документации и опробование будет производится в соответствии с ГОСТ 12071-2000.

Общий объем разведочного бурения составит 1136,00 п.м.

Всего планируется пройти 142 скважин, глубиной от 5,00 до 8,00 м.

Лабораторные исследования грунтов выполняются с целью определения их состава и физических свойств. По результатам этих определений были выделены их типы, виды и разновидности в соответствии с ГОСТ 25100-95, выявлена степень однородности (выдержанности) грунтов по площади и глубине, выделены инженерно-геологические элементы, определены их нормативные и расчетные показатели прочностных и деформационных характеристик.

В состав лабораторных работ входили следующие виды определений свойств грунтов:

- гранулометрический состав,

- природная влажность, влажность на границе текучести и раскатывания,

- плотность грунта, плотность частиц грунта,

- компрессионные испытания,

- сопротивление срезу,

- определение коррозионной активности грунтов к стали;

- определение агрессивного воздействия грунта на конструкции из бетона;

- химический анализ водных вытяжек из грунтов;

- химический анализ воды.

Всего будет отобрано 500 проб ненарушенной и 500 проб нарушенной структуры.

В камеральный период будет производится изучение и анализ материалов предшествующих работ, обработка лабораторных исследований, оформление графических материалов.

В процессе выполнения полевых работ будет производится текущая камеральная обработка первичных материалов геологической документации.

В окончательный камеральный период будут составлены графические и текстовые приложения и текстовая часть инженерно-геологического отчета.

Камеральные работы будут выполнены с соблюдением требований ГОСТ 25100-95, 20522-96, 21.302-96, СНиП 11-02-96.

Состав и объемы запроектированных работ приведены в таблице 15.

Таблица 15.

Виды запроектированных работ: Обьем (ед. изм.):
Инженерно-геолологическая рекогносцировка при плохой проходимости III кат. сложности

60 (км.)

Прокладка тахеометрического хода, точностью 1:1000 / Плановая и высотная привязка и выноска в натуру при расстоянии между геологическими выработками свыше 350 м, III категории сложности

180 км. / 142 (скв.)

Механическое колонковое бурение 142 скважин диам. 132 мм, гл.до 10 м, всего: 1136 п.м., в т. ч. в грунтах:

II категории

III категории

IV категории

V категории

VI категории

142 (п.м.)

284 (п.м.)

284 (п.м.)

284 (п.м.)

142 (п.м.)

Отбор монолитов из скважины в интервале 0-10 м. 500 (монолитов)
Гидрогеологические наблюдения при бурении скважин диаметром до 132мм 1136 (п.м.)
Монтажно–демонтажные работы, с планировкой площадки вручную (100 кв.м) 142 (МДР)
Круговое вертикальное электрозондирование, КВЭЗ / Вертикальное электрозондирование, ВЭЗ

4/2 (точек)

Сокращенный комплекс физико-механических свойств грунтов при компрессионных испытаниях по одной кривой

500 (определений)

Коррозионная активность грунтов по отношению к металлу 142 (определения)
Коррозионная активность грунтов и воды по отношению к бетону 142 (определения)
Камеральная обработка материалов буровых работ, III кат. сложности 1136 (п.м.)
Камеральная обработка :
Составление отчета, III категории сложности 1136 п.м. /1 (отчет)

5.2 Методика выполнения запроектированных видов работ

5.2.1 Подготовительный период

В подготовительный период проводится сбор и обработка имеющегося фондового материала, составляются проектно-сметные расчеты и выполняются все организационно-хозяйственные мероприятия.

В состав материалов, подлежащих сбору и обработке, включаются сведения о климате, природных условиях района, гидрографической сети района исследований, характере рельефа, геоморфологических особенностях, геологическом строении, геодинамических процессах, гидрогеологических условиях, геологических и инженерно-геологических процессах, физико-механических свойствах грунтов, составе подземных вод, техногенных воздействиях и последствиях хозяйственного освоения территории. Так же собираются и сопоставляются имеющиеся топографические планы прошлых лет, в том числе составленные до начала строительства объекта. Необходимо также иметь сведения, влияющие на организацию работ: проходимость, наличие дорог, возможность обеспечения горюче-смазочными материалами.

По результатам сбора, обработки и анализа материалов изысканий прошлых лет и других данных приводится характеристика степени изученности инженерно-геологических условий исследуемой территории и оценка возможности использования этих материалов (с учетом срока их давности) для решения соответствующих проектных задач.

На основании собранных материалов формируется рабочая гипотеза об инженерно-геологических условиях исследуемой территории и устанавливается категория сложности этих условий, в соответствии, с чем проектируется состав, объемы, методика и технология изыскательских работ.

5.2.2 Рекогносцировочное обследование

В задачу рекогносцировочного обследования согласно СП 11-105-97 п.п. 5.4, 5.5 территории входит: осмотр места изыскательских работ; визуальная оценка рельефа; описание имеющихся обнажении, в том числе карьеров, строительных выработок и др.; описание водопроявлений; описание геоботанических индикаторов гидрогеологических и экологических условий; описание внешних проявлений геодинамических процессов; опрос местного населения о проявлении опасных геологических и инженерно-геологических процессов, об имевших место чрезвычайных ситуациях и др.

Рекогносцировочные исследования выполняются методом маршрутных исхаживаний. М аршрутные наблюдения следует осуществлять для выявления и изучения основных особенностей (отдельных факторов) инженерно-геологических условий исследуемой территории.

Маршрутные наблюдения следует выполнять с использованием топографических планов и карт в масштабе не мельче, чем масштаб намечаемой инженерно-геологической съемки, аэро- и космоснимков и других материалов, отображающих результаты сбора и обобщения материалов изысканий прошлых лет (схематические инженерно-геологические и другие карты).

При маршрутных наблюдениях необходимо выполнять описание естественных и искусственных обнажении горных пород (опорных разрезов), выходов подземных вод (родники, мочажины и т.п.) и других водопроявлений, искусственных водных объектов (с замером дебитов источников, уровней воды в колодцах и скважинах, температуры), проявлений геологических и инженерно-геологических процессов, типов ландшафтов, геоморфологических условий.

Наибольшее внимание необходимо уделять наиболее неблагоприятным для освоения участкам территории (наличие опасных геологических и инженерно-геологических процессов, слабоустойчивых и других специфических грунтов, близкое залегание грунтовых вод, пестрый литологический состав грунтов, высокая расчлененность рельефа и т.п.).

Маршрутные наблюдения следует осуществлять по направлениям, ориентированным перпендикулярно к границам основных геоморфологических элементов и контурам геологических структур и тел, простиранию пород, тектоническим нарушениям, а также вдоль элементов эрозионной и гидрографической сети, по намечаемым проложениям трассы линейного сооружения, участкам с наличием геологических и инженерно-геологических процессов и др.

Определение направлений маршрутов должно проводиться с учетом результатов дешифрирования аэро- и космоматериалов и аэровизуальных наблюдений.

Количество маршрутов, состав и объем сопутствующих работ следует устанавливать в зависимости от детальности изысканий, их назначения и сложности инженерно-геологических условий исследуемой территории.

При маршрутных наблюдениях на застроенной (освоенной) территории следует дополнительно выявлять дефекты планировки территории, развитие заболоченности, подтопления, просадок поверхности земли, степень (избыточность, норма или недостаточность) полива газонов и древесных насаждений и другие факторы, обусловливающие изменение геологической среды или являющиеся их следствием.

По результатам маршрутных наблюдений следует намечать места размещения ключевых участков для проведения более детальных исследований, составления опорных геолого-гидрогеологических разрезов, определения характеристик состава, состояния и свойств грунтов основных литогенетических типов, гидрогеологических параметров водоносных горизонтов и т.п. с выполнением комплекса горнопроходческих работ, геофизических, полевых и лабораторных исследований, а также (при необходимости) стационарных наблюдений.

Инженерно-геологическую рекогносцировку следует выполнить в местах проходки скважин на переходах через реки, ручьи, автодороги, ЛЭП. Маршрутные наблюдения необходимо выполнить вдоль оси трассы ЛЭП, вдоль элементов эрозионной и гидрографической сети.

5.2.3 Буровые работы

Целью буровых работ является изучение и уточнение инженерно – геологических и гидрогеологических условий, физико – механических свойств пород слагающих площадку строительства. Категория сложности инженерно – геологических условии – III; уровень ответственности зданий и сооружений средний и в соответствии с СП 11-105-97 пп. 8.5; 8.12, табл. 8.3 проектом предусмотрено бурение 142 инженерно – геологических скважин, глубиной 5-8 метров, колонковым способом, «всухую», общим объемом 1136 п.м.. Скважины будут расположены вдоль оси трассы ЛЭП, на предполагаемом месте строительства каждой опоры. Диаметр 132 мм.

Выбор способа бурения диктовался необходимостью получения наиболее достоверной информации об инженерно-геологическом разрезе и сохранения природного состояния грунтов, слагающих площадку.

Буровые работы оказывают решающее влияние на формирование ремонтно–механической базы изыскательских организации, их материально–техническое обеспечение и функционирование подсобно–вспомогательных служб.

В процессе бурения скважин будет производится документация керна.

5.2.3.1 Документация керна

Описание керна, т.е. его документация в процессе бурения инженерно – геологических скважин должно обеспечить правильное наименование горных пород, их состав, состояние и свойства. Это достигается специальной технологией бурения скважин и соблюдением правил ведения полевой документации.

Особые требования к ведению полевой документации обусловлены практической невозможностью улучшить полевую документацию при камеральных работах; стремлением исключить разночтения одних и тех же признаков; влиянием природных условий на качество записи и сохранение документации и, главное, высокой стоимостью буровых работ, результаты которых фиксируются только на полевых документах.

Поэтому правила ведения полевой документации сводятся к следующему:

Все полевые документы (буровые журналы, коллекторские журналы, журналы производства наблюдений и т.д.) должны иметь четкий адрес – наименование организации, экспедиции, партии, отряда; наименование объекта исследовании, номер буровой выработки;

записи следует производить в определенной последовательности, четко и ясно, без сокращения слов. Цифры пишутся стилизованным шрифтом. Допущенные при описаниях ошибки исправляются зачеркиванием и правильным написанием. Помарки и исправления «цифра по цифре» не допускаются;

Записи ведут простым мягким карандашом или шариковой ручкой, химического карандаша и чернил не допускается;

полевая документация должна быть первичной , т.е. необходимо вести ее непосредственно в поле. Переписка ради достижения чистоты документа не допускается;

все исправления в полевой документации, проводимые должностными лицами, должны быть сделаны как дополнительные, заменяющие первоначальную запись, и подписаны должностным лицом;

все полевые документы должны содержать дату их заполнения, быть подписанными как составителем, так и соответствующим должностным лицами.

Многообразие горных пород, их состава и свойств представляет известные трудности при составлении полевого описания выработки. При визуальном рассмотрении породы в поле геолог получает самую разнообразную информацию о минеральном составе породы, ее структуре, текстуре, прочности, трещинноватости, влажности и т.д. Очень важно вести описание в определенной последовательности, например для глинистых это:

- Наименование породы;

- Разновидность;

- Минеральный состав породы, включений, примесей;

- Цвет;

- Структура, текстура;

- Соотношение обломков и заполнителя;

- Консистенция;

- Влажность;

- Реакция с HCl;

- Излом;

- Мажущие свойства;

- Скатывание в шнур и шарик;

- Тиксотропия;

- Резание ножом;

- Генетическая или фациальная принадлежность;

- Палеонтологические останки


5.2.3.2 Методика бурения колонковым способом «всухую»

Бурение скважин колонковым способом всухую достаточно широко распространено на изысканиях, так как его целесообразно использовать при проходке обводненных грунтов I-III категории по буримости и позволяет сохранить природную влажность грунта, а так же в некоторых случаях (при бурении глинистых полутвердых или твердых грунтов) его структуру, в пригодном для испытаний на определение физико – механических свойств грунтов виде.

Обычно ведется укороченными рейсами (длина рейса не превышает 0.8 – 1.0 м.) , при 80 – 150 об\мин и нагрузке на забой 3 – 6 кН.

Заклинивание керна проводят «затиркой», для чего необходимо последние 5 – 10 см. рейса пройти с повышенной осевой нагрузкой. Для получения качественного керна величина рейса должна составлять не более 0.5 – 0.7 м. В глинистых грунтах полутвердой и твердой консистенции рекомендуется бурить обуривающими грунтоносами.

Для сокращения времени на извлечение керна при бурении «всухую» в песчано – глинистых породах и повышения качества керна используют метод выдавливания с помощью сжатого воздуха, для этого компрессор буровой установки соединяют с отверстием во фрезерном переходе колонковой трубы.

При бурении инженерно-геологических скважин колонковым способом применяется твердосплавный породоразрушающий инструмент:

М1 – для пород I-III категории по буримости. Диаметры коронки 132 мм.;

СМ3 – для бурения малоабразивных монолитных пород IV- VI категорий по буримости. Диаметр коронки 132мм.

5.2.3.3 Технические характеристики УРБ – 2А2

Установка разведочного бурения УРБ-2А2предназначена для бурения геофизических и структурно-поисковых скважин на нефть и газ, разведка месторождений твердых полезных ископаемых, строительных материалов и подземных вод, инженерно-геологических изысканий, бурения водозаборных и взрывных скважин. Бурение производится вращательным способом с промывкой или продувкой скважины или шнеками.

Перемещающийся по мачте вращатель с гидроприводом используется при бурении, наращивании бурильного инструмента без отрыва от забоя и выполняет совместно с гидроподъемником работу по спуску (подъему) инструмента и его подачу при бурении. Вращатель перемещается по мачте при помощи гидроцилиндра и талевой системы.

Управление установкой полностью гидрофицировано и сконцентрировано на пульте бурильщика. На пульте находятся контрольные приборы и регуляторы усилия на забой, скорости подачи и подъема, а также частоты вращения шпинделя вращателя.

Технические характеристики:

Таблица 16

Глубина бурения геофизических скважин, м 100 (с промывкой)
Глубина бурения структурно-поисковых скважин с промывкой, м 300
Глубина бурения структурно-поисковых с продувкой забоя воздухом, м 30
Глубина бурения шнеками, м 30
Начальный диаметр бурения с промывкой, мм 190
Конечный диаметр бурения геофизических скважин, мм 118
Конечный диаметр бурения структурно-поисковых скважин, мм 93
Диаметр бурения с промывкой, мм 135
Диаметр бурения с продувкой забоя воздухом, мм 135
Вращатель
Тип подвижный. частота вращения, с-1 (об/мин) I скорость - 2,33 (140)
II скорость - 3,75 (225)
III скорость - 5,42 (325)
Ход, мм 5 200
Момент силы, Н-м (кгс-м) I скорость := 2010 (205)
II скорость - 1210 (123)
III скорость - 830 (85)
Привод Гидропривод через аксиально-поршневой гидромотор
Рабочее давление в гидросистеме, Па (кгс/см.кв.) 9,8.10*8 (100)
Мачта
Тип сварная с гидравлическими опорными домкратами.
Грузоподъемность, Н (кгс) 58 800 (6 000)
Механизм для спуска, подъема и подачи инструмента
Тип Домкрат гидравлический с полиспастной системой.
Грузоподъемность, Н (кгс) 45 (4600)
Усилие вниз, Н (кгс) при давлении 8,3.10*6 Па (85 кгс/см.кв.) 25 500 ( 2600)
Скорость подъема инструмента, м/с 0 - 1.1
Трубы бурильные
Диаметр, мм 50 (60,3)
Длина, мм 4 500
Буровой насос
Марка грязевой НБ-32 (50)
Наибольшая объемная подача бурового насоса, куб.м/с 0.011
Наибольшее давление на выходе из бурового насоса, МПа 6.3
Компрессорная станция
Тип КСБУ1-5А (К-5А) или КСБУ-4ВУ1-5/9 (4ВУ1)
Производительность компрессора, куб.м/мин 10 (+-5)
Наибольшее избыточное давление на выходе компрессора, МПа (кгс/см2) 0.8 (8)
Дополнительные характеристики
Частота вращения бурового снаряда, 1/с 2.33; 3.75; 5.42
Наибольший крутящий момент, Н*м 2 010
Ход вращателя, мм +5 200
Скорость подъема бурового снаряда, м/с до 1.25
Общие характеристики
Габаритные размеры, мм 8 450 х 2 50 0 х 3 350
Снаряженная масса, кг 12 850
Полная масса, кг 13 000
Распределение полной массы на переднюю ось, кг 4 140
Распределение полной массы на заднюю тележку, кг 8 860

Рисуноук 5.1 «УРБ-2А2, на базе шасси МТЛБу»

Рисуноук 5.2 «УРБ-2А2, на базе шасси МТЛБу»


5.2.3.4 Мероприятия по повышению выхода керна

Для повышения выхода керна предусматривается проводить бурение укороченными рейсами (не более 0,5м), не допускается превышение осевой нагрузки на забой более 3кН. Заклинивание керна проводят затиркой, для чего необходимо последние 0,05-0,1м рейса пройти с повышенной осевой нагрузкой на забой.

Для достижения наибольшей достоверности изысканий необходимо извлечение керна с наименьшим механическим воздействием на него. В мягких, дисперсных грунтах опробование будет вестись при помощи обуривающего грунтоноса, в скальных и полускальных породах будет отбираться керн.

Для сокращения затрат времени на извлечение керна при бурении в песчано-глинистых породах и повышения качества керна используют метод выдавливания с помощью сжатого воздуха. Для этого используется компрессор, входящий в комплектацию буровой установки. В отверстии во фрезерном переходнике колонковой трубы нарезают резьбу под штуцер; воздух подают по шлангу.

Не допускаются в работу искривленные колонковые и буровые снаряды, затупившиеся коронки.

Согласно с материалами работ прошлых лет по трассе ВЛ имеют широкое распространение твердые, полутвердые, тугопластичные суглинки ; твердые супеси; плотные песчаные грунты, наиболее подходящим грунтоносом является – обуривающий грунтонос нормального ряда ГО-1 (табл.17)


Основные параметры и назначение грунтоносов нормального ряда для отбора монолитов из скважин:

Табл.17

Тип Шифр Максимальный наружный диаметр грунтоноса по башмаку, мм. Длина, мм. Наружный диаметр корпуса, мм Диаметр входного отверстия башмака, мм Длина приемной гильзы, мм Диаметр гильзы, мм Угол заточки башмака, градус Масса грунтоноса, кг Назначение грунтоноса
наружный внутренний

Обуривающий

Забивной

Вдавливаемый:

первая

модель

вторая

модель

третья

модель

ГО – 1

ГО – 2

ГЗ – 1

ГЗ – 2

ГВ-1

ГВ-2

В-3

ГВ-4

ГВ-5

160

185

106

125

108

127

116

132

150

925

925

685

685

605

605

785

785

910

127

146

106

125

108

113

108

127

127

94

113

92

108

96

108

96

112

98

400

400

400

400

-

-

450

450

300

99.5

118

97

113

-

-

100

116

108

96

115

94

110

-

-

97

113

98.2

30

30

15

15

7

7

10

11

10

27

34

15.5

17

8.6

9.3

13.5

14.5

15

Для отбора монолитов:

Из плотных и средней плотности песчаных грунтов, глинистых грунтов полутвердой консистенции,

Плотных заторфованных грунтов; из глин с коэффициентом пористости менее 1.1; суглинков с коэффициентом пористости менее 0.9, супесей с коэффициентом пористости менее 0.7 при показателе консистенции менее 0.75;

Из глинистых грунтов полутвердой и тугопластичной консистенции, рыхлых связных песчаных грунтов;

Из глинистых грунтов мягкопластичной консистенции;

Из глинистых грунтов текучепластичной и текучей консистенции, илов, разложившихся торфов, водонасыщенных рыхлых песчаных грунтов.

5.2.4 Опробование грунтов несущей толщи

Целью данного вида работ является получение характеристик состава, состояния и физико-механических свойств пород, состава и свойств грунтовых вод, изучение изменения этих свойств в пространстве и времени в зависимости от природных и техногенных факторов.

Отбор образцов грунтов из горных выработок и естественных обнажении, а также их упаковку, доставку в лабораторию и хранение следует производить в соответствии с ГОСТ 12071-2000. Отбор, консервацию, хранение и транспортирование проб воды для лабораторных исследований следует осуществлять в соответствии с предъявляемыми требованиями.

Планируемый интервал опробования скважин через 1,0-2,0м. Отбор образцов грунта нарушенного или ненарушенного сложения (монолитов) следует осуществлять в зависимости от свойств грунта и целевого назначения инженерно-геологических работ. Монолиты сразу после отбора должны быть ориентированы (отмечают верх монолита). Размеры образцов и их число должны быть достаточными для выполнения необходимого комплекса лабораторных работ по определению состава, состояния и свойств грунта и отвечать требованиям соответствующих стандартов на методы определения характеристик грунтов. Минимальные размеры монолитов, отбираемых из буровых скважин, должны будут соответствовать требованиям ГОСТ 12071-2000 (табл. 18)

Таблица 18

Грунты Минимальная высота монолита, мм Минимальный диаметр монолита, мм Размер нарушенной периферийной зоны, мм
Скальные 60-70 40 3
Крупнообломочные - 200 20
Пески 100 90 10
Глинистые 150 90 10

тугопластичные

пластичные

мягкопластичные

150 100 10

текучепластичные

текучие

100 80 5

Горные выработки, из которых производят отбор образцов, должны быть защищены от проникновения поверхностных вод и атмосферных осадков. В процессе работ должно быть отобрано такое количество проб, которое обеспечит получение не менее 6 механических и 10 физических характеристик для каждой выделенной разновидности грунтов

Для отбора образцов грунта из буровых скважин в зависимости от вида грунта и его состояния необходимо применять следующие буровые инструменты: для отбора проб нарушенного сложения – забивной стакан (пески и глинистые), для отбора монолитов обуривающий грунтонос.

Для упаковки монолитов тару изготовляют из коррозионностойких материалов (парафинированная бумага, пластмасса и т.п.). Для изоляции монолитов применяют парафин с добавкой 35-50% (по массе) гудрона и марлю.

Образцы грунта нарушенного сложения, для которых не требуется сохранения природной влажности, укладывают в тару, обеспечивающую сохранение мелких частиц грунта (мешочки из синтетической плёнки, плотной ткани). Образцы грунта нарушенного сложения, для которых требуется сохранение природной влажности, укладывают в тару с герметически закрывающимися крышками (бюксы).

Вместе с образцом грунта нарушенного сложения внутрь тары укладывают этикетку завернутую в кальку, покрытую слоем парафина; вторую этикетку - наклеивают на тару. Содержание этикетки допускается надписывать на таре.

Монолиты грунта, отобранные без жесткой тары, необходимо немедленно изолировать от наружного воздуха способом парафинирования. Смесь парафина с гудроном, применяемая для изоляции монолитов, должна иметь температуру 55-60°С.

До парафинирования на верхнюю грань монолита следует положить этикетку, завернутую в кальку, покрытую парафином. Второй экземпляр этикетки, смоченной расплавленным парафином, необходимо прикрепить сверху запарафинированного монолита и также покрыть слоем парафина.

На сопроводительной этикетке должны быть указаны:

-наименование организации, производящей изыскания;

-название или номер изыскательской партии (экспедиции);

-наименование объекта (участка);

-название выработки и ее номер;

-глубина отбора образца;

-наименование грунта по визуальному определению;

-должность и фамилия лица, производящего отбор образцов, и его подпись;

-дата отбора образца.

Этикетки должны быть заполнены четко простым карандашом, исключающим возможность обесцвечивания или расплывания записей.

Образцы грунта, предназначенные для транспортирования в лаборатории, упаковывают в ящики. Укладка монолитов грунта в ящик должна быть плотной, с заполнением свободного пространства между ними влажными древесными опилками, стружкой или аналогичными им по свойствам материалами. При укладке монолиты отделяют от стен ящика слоем заполнителя толщиной 3-4см и друг от друга слоем толщиной 2-3см. Под крышку ящика следует положить завернутую в кальку ведомость образцов. Ящики нумеруют, снабжают надписями: «Верх», «Не бросать» и «Не кантовать», а также адресами получателя и отправителя.

Монолиты грунта при транспортировании не должны подвергаться резким динамическим и температурным воздействиям.

Упакованные образцы грунта, доставленные в лабораторию без документации, соответствующей требованиям принимать на хранение и производство лабораторных испытаний запрещается.

Упакованные образцы немерзлого грунта нарушенного сложения, для которых требуется сохранение природной влажности, а также упакованные монолиты следует хранить в помещениях или камерах, в которых соблюдаются следующие требования:

-воздух в помещениях или камерах должен иметь относительную влажность 70-80% и температуру плюс 2-10°С при хранении монолитов и образцов немерзлого грунта;

-воздух в помещениях или камерах должен иметь относительную влажность 80-90% и отрицательную температуру при хранении монолитов мерзлого грунта;

-помещения или камеры, в которых хранятся монолиты, не должны подвергаться резким динамическим воздействиям;

-на полках помещения или камеры монолиты размещают в один ярус таким образом, чтобы этикетки находились сверху;

-монолиты не должны касаться друг друга и стоек полок;

-монолит должен быть размещен на полке всей нижней поверхностью;

-на монолитах запрещается помещать какие-либо предметы.

Сроки хранения монолитов (с момента отбора до начала лабораторных испытаний) в помещениях или камерах, соответствующих требованиям не должны превышать: для немерзлых грунтов с жесткими структурными связями, маловлажных песчаных, а также пылевато-глинистых грунтов твердой и полутвердой консистенции - 3мес; для других разновидностей немерзлых грунтов - 1,5 мес.

Срок хранения упакованных монолитов (с момента отбора до начала лабораторных испытаний) при отсутствии помещений или камер, соответствующих требованиям не должен превышать 15 сут.

Срок хранения упакованных образцов грунта нарушенного сложения, для которых требуется сохранение природной влажности (с момента отбора проб до начала лабораторных испытаний), не должен превышать 2сут.

Монолиты грунта, имеющие повреждения гидроизоляционного слоя и дефекты упаковки или хранения, допускается принимать к лабораторным испытаниям только как образцы грунта нарушенного сложения.

Количество отобранных проб воды должно составить не менее 3 проб на каждый водоносный горизонт (при возможности отбора). Т.к. на данной территории выявлен один водоносный горизонт, то из него необходимо отобрать пробы на стандартный химический анализ и агрессивность воды.

Пробы воды отбираются в специально подготовленную посуду. Для этого она тщательно моется с моющими средствами, затем споласкивается несколько раз. После этого емкости ополаскиваются дистиллированной водой и высушиваются. Пробки тщательно моются, а затем кипятятся в 1% содовом растворе, прополаскиваются дистиллированной водой. Пробы воды из скважин будут отбираться пробоотборником.

Проба должна снабжаться 2 этикетками, одна приклеивается на бутылку, а вторая привязывается к горлышку. В этикетках указывается: организация, номер пробы, вид анализа, вид водопункта, место и глубина взятия пробы, температура воды и воздуха, фамилия и дата отбора пробы, подпись лица отобравшего пробу.

Доставка проб воды в химико-аналитическую лабораторию.

Сведения об отобранных пробах заносятся в журнал отобранных проб. При отправке проб в лабораторию составляется сопроводительная ведомость, в которой указываются все необходимые сведения. Ведомость составляется в двух экземплярах, один остается в лаборатории, второй у исполнителя. Для транспортировки емкости с пробами используют специальные ящики, при необходимости, снабженные изоляционным материалом.

5.2.5 Лабораторные исследования физико – технических свойств грунтов:

Исследования физико–технических свойств проводятся для установления тех количественных показателей, которые обусловливают прочность и устойчивость грунтов при длительном взаимодействии со строительными объектами, согласно с приложением «М», СП 11 – 105 – 97

Методика определения показателей физико – технических свойств грунтов должна выбираться , исходя из состава и состояния грунта, условий работы в основании сооружений с учетом изменения показателей свойств в процессе эксплуатации сооружения. В следующей таблице приведены виды лабораторных исследовании, необходимые для определения физико – механических свойств грунтов, заложенных в данном проекте.

Виды лабораторных определений показателей состава и физико – технических свойств грунтов:

Табл.19

Показатель состава и физико – механических свойств грунтов Обьем пробы Правила определения Область применения показателя

Гранулометрический состав

Естественная влажность

Плотность частиц грунта

Плотность грунта

Пластичность

Сопротивление грунтов сдвигающим усилиям

Сопротивление грунтов компрессионному сжатию

Глинистые, супесчаные – от 50 до 250 см3 , песчаные от 200 до 500 см3 ; гравелистые – от 600 до 3000 см3 ; крупнообломочные – от 0.05 до 0.2 м3

30 – 50 см3

30 – 50 см3

Глинистые до 1000 см3 ; песчаные – 500 см3

100 см3

Монолит – до 1000 см3

Монолит – до 1000 см3

ГОСТ 12536 – 79

ГОСТ 5180 – 84

ГОСТ 5180 – 84

ГОСТ 5180 – 84

ГОСТ 5180 – 84

ГОСТ 12248 – 96

ГОСТ 23908 – 96

Классификация грунтов. Приближенное вычисление коэффициента фильтрации. Подбор оптимальных смесей грунта и материалов для обратных фильтров. Выбор отверстий фильтров. Определение механической суффозии, однородности грунтов и т. д.

Определение относительной характеристики грунта. Определение консистенции глинистых грунтов. Вычисление объемной массы скелета грунта.

Вычисление пористости, коэффициента пористости, полной влагоемкости, степени водонасыщения.

Определение давления грунта. Вычисление плотности сухого грунта.

Классификация грунтов. Определение консистенции грунтов. Определение показателей глинистых грунтов в соответствии с требованиями второй части глав СниП по проектированию

основании зданий и сооружений

Определение устойчивости основания. Расчет устойчивости бортов откосов. Расчет величины давления на подпорную стенку.

Определение деформационных характеристик скальных, полускальных, песчаных и глинистых грунтов.

5 .2.5.1 Лабораторные исследования глинистых грунтов

Согласно проекту для полного комплексного определения физико механических свойств грунтов нужно провести следующий комплекс определений:

- Объемный вес грунта (плотность);

- Плотность минеральных частиц грунта;

- Пластичность;

- Влажность;

- Сопротивление грунта сдвигу;

- Сопротивление грунта сжатию.

Определение объемного веса (плотности) грунта:

Для определения плотности грунта выбран способ парафинирования, для чего из грунта ножом вырезается образец объемом не менее 30 см3 так, чтобы по возможности его поверхность стала округлой, и взвешивается на технических весах с точностью до 0,01 г. Взвешенный образец опускают в расплавленный при температуре 60 о С парафин, чтобы в течение 1-2 сек. он покрылся парафиновой оболочкой толщиной 0.5-1 мм. , следя за тем чтобы между поверхностью образца о парафином не возникало пузырьков воздуха. Парафин с заранее известной плотностью не должен содержать примесей. Запарафинированный образец взвешивается и помещается на сетку, подвешенную на коромысло технических весов, и опускается в стакан с водой, стоящий на подставке под коромыслом, и снова взвешивается в воде. Взвешенный запарафинированный образец извлекается из воды, обсушивается фильтровальной бумагой и проходит контрольное взвешивание для проверки герметичности оболочки. Если разность во взвешивании превышает 0.2 г то образец считается забракованным. Из очищенного от парафина образца отбирается проба на влажность.

Плотность грунта вычисляется по формуле:

где m – масса образца до парафинирования, г; m1 – масса образца с парафиновой оболочкой, г; m2 – масса запарафинированного образца в воде, г; ρп – плотность парафина, обычно принимаемая за 0.9 г/см3 ; ρв – плотность воды, принимаемая за единицу, при температуре 20 о С, г/см3 .

Все данные, необходимые для расчета плотности грунта методом парафинирования, заносят в журнал.

Определение плотности минеральных частиц грунта:

Для определения плотности частиц незасоленных грунтов применяют мерные сосуды (пикнометры, колбы) вместимостью не менее 100 мл, весы технические с точностью взвешивания 0.01 г, фарфоровую ступку с пестиком, эксикатор, сушильный шкаф, термометр, песчаную баню и бюксы.

Образец грунта в воздушно – сухом состоянии растирается в ступке пестиком с резиновым наконечником. После тщательного перемешивания отбирают пробу в 15 г и высушивают до постоянной массы при температуре 105 + 2о С. Из этого же образца отбирается проба для определения гигроскопической влажности.

В предварительно взвешенный и высушенный пикнометр насыпают взятую навеску и взвешивают. До половины объема пикнометр заполняют дистиллированной водой, взбалтывают несколько раз и кипятят на песчаной бане. При определении плотности суглинков и глин время кипячения 60 минут, пески кипятятся в течении 30 минут. Остудив пикнометр, доливают его дистиллированной водой до мерной черты и взвешивают. Необходимо следить за тем, чтобы нижний край мениска суспензии находился строго на уровне мерной черты. После взвешивания суспензия выливается, а тщательно промытый пикнометр наполняется дистиллированной водой для повторного взвешивания. Все данные заносится в журнал.

Применяемая для анализа дистиллированная вода кипятится в течение 1 часа для полного дегазирования и хранится в закупоренном виде.

На основе данных занесенных в журнал испытания производят вычисление плотности частиц грунта по формуле:

где m0 –масса сухого грунта, г; m2 – масса пикнометра с грунтом и водой, г; m3 – масса пикнометра с водой, г; ρв – плотность воды, г/см3 , определяется в зависимости от температуры воды:

Табл.20

Температура,

о С

Плотность,

г/см3

Температура,

о С

Плотность,

г/см3

Температура,

о С

Плотность,

г/см3

10

11

12

13

14

15

16

17

0.999727

0.999632

0.999524

0.999404

0.999271

0.999126

0.998969

0.998800

18

19

20

21

22

23

24

25

0.998621

0.998430

0.998229

0.998017

0.997795

0.997563

0.997321

0.997069

26

27

28

29

30

31

32

33

0.996808

0.996538

0.996258

0.995969

0.995672

0.995366

0.995051

0.994728

Определение влажности грунтов:

Влажность грунтов определяется содержанием в них различного количества свободной и связанной воды, удаляемой при высушивании. Различают весовую и объемную влажность ; выражается она в процентах или долях единицы.

Определяется она термостатно – весовым способом (ГОСТ 5180 – 84). В заранее взвешенной стеклянный или алюминиевый стаканчик с открытой крышкой помещают около 15 г грунта, взвешивают и ставят в сушильный шкаф, в котором проводят высушивание до постоянной массы образца при температуре 105 + 2о С для глинистых и песчаных грунтов; 80 + 2о С для загипсованных грунтов.

Продолжительность начального высушивания глинистых грунтов составляет 5 ч , для песчаных 3 ч. Последующую сушку ведут для глинистых грунтов в течение – 2 ч, а для песчаных – в течение одного часа. Загипсованные сначала высушиваются в течение 8 ч, а затем в течение 2 ч. Разность между двумя взвешиваниями не должна превышать 0.02 г.

Стаканчик (бюкс) с высушенным грунтом охлаждают в эксикаторе с хлористым кальцием или прокаленным силикагелем и взвешивают. Для каждого образца производится два параллельных определения, расхождения между которыми не должно превышать 2%.

Данные анализа заносятся в журнал определения.

Расчет весовой влажности (в %) производится по формуле:

где m – масса бюксы, г; m0 – масса высушенного образца, г; m1 – масса влажного грунта, г.

Расчет выполняется с точностью до 0.1%.

Определение границ пластичности по методу Васильева: