Главная      Учебники - Разные     Лекции (разные) - часть 31

 

Поиск            

 

Программа для поступающих в вузы (ответы)

 

             

Программа для поступающих в вузы (ответы)

Программа по химии для абитуриентов

1. Предмет химии. Явления химические и физические.

2. Атомно-молекулярное учение. Атомы. Молекулы. Молекулярное и немолекулярное строение вещества. Относительная атомная и молекулярная масса. Закон сохранения массы, его значение в химии. Моль – единица количества вещества. Молярная масса. Закон Авогадро и молярный объем газа. Относительная плотность вещества.

3. Химический элемент. Простые и сложные вещества. Химические формулы.

4. Валентность. Составление химических формул по валентности.

5. Строение атома. Состав атомных ядер. Физический смысл порядкового номера химического элемента. Изотопы. Явление радиоактивности. Электронное строение атома. Понятие об электронном облаке. Атомная электронная орбиталь. Энергетический уровень и подуровень. S -, p -, d -орбитали в атоме. Строение электронных оболочек атомов на примере элементов 1-го, 2-го, 3-го периодов периодической системы.

6. Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе учения о строении атомов. Структура периодической системы. Изменение свойств химических элементов и их соединений по группах и периодах периодической системы.

7. Природа и типы химической связи. Образование ковалентной связи на примере молекул водорода, хлороводорода и аммиака. Полярная и неполярная ковалентные связи. Донорно-акцепторный механизм образования ковалентной связи на примере иона аммония. Ионная связь. Водородная связь. Примеры химических соединений с разными видами связи.

8. Классификация химических реакций по различным оценкам. Типы химических реакций: соединения, разложения, замещения, обмена. Тепловой эффект химической реакции. Термохимические уравнения.

9. Окислительно-восстановительные процессы. Степень окисления элемента. Окисление и восстановление как процессы присоединения и отдачи электронов. Практическое использование окислительно-восстановительных процессов.

10. Представление о скорости химических реакций. Зависимость скорости от природы и концентрации реагирующих веществ, температуры. Катализ и катализаторы.

11. Обратимость химических реакций. Химическое равновесие и условия, которые влияют на смещение химического равновесия.

12. Растворы. Растворимость веществ. Зависимость растворимости от их природы, температуры и давления. Массовая доля растворенного вещества в растворе.

13. Электролиты и неэлектролиты. Электролитическая диссоциация. Сильные и слабые электролиты. Химические свойства кислот, оснований и солей в свете теории электролитической диссоциации. Реакции ионного обмена и условия их необратимости.

14. Оксиды. Классификация оксидов. Способы получения и свойства оксидов. Понятие об амфотерности.

15. Основания. Щелочи и нерастворимые основания. Способы получения и химические свойства.

16. Кислоты. Классификация кислот. Способы получения и общие химические свойства.

17. Соли. Состав солей и их названия. Получение и химические свойства солей. Гидролиз солей.

18. Взаимосвязь между различными классами неорганических соединений.

19. Металлы, их размещение в периодической системе. Физические и химические свойства. Основные способы промышленного получения металлов. Электрохимические способы получения металлов. Электрохимический ряд напряжений металлов. Понятие о коррозии на примере ржавления железа. Значение металлов в народном хозяйстве.

20. Щелочные металлы, их характеристика на основе размещения в периодической системе и строении атомов. Соединения натрия и калия в природе, их использование. Калийные удобрения.

21. Общая характеристика элементов главной подгруппы второй группы периодической системы. Кальций, его соединения в природе. Жесткость воды и способы ее устранения.

22. Алюминий, характеристика элемента и его соединений на основе размещения в периодической системе и строения атома. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.

23. Металлы побочных подгрупп (хром, железо, медь). Физические и химические свойства. Оксиды и гидроксиды. Соли хрома, железа и меди. Роль железа и его сплавов в технике.

24. Водород, его химические и физические свойства. Получение водорода в лаборатории, его использование.

25. Галогены, их характеристика на основе размещения в периодической системе и строении атомов. Хлор. Физические и химические свойства. Хлороводород. Соляная кислота и ее соли. Качественная реакция на хлорид-ион.

26. Общая характеристика элементов главной подгруппы шестой группы периодической системы. Сера, ее физические и химические свойства. Сероводород и сульфиды. Оксиды серы. Серная кислота, ее свойства и химические основы производства контактным способом. Соли серной кислоты. Качественная реакция на сульфат-ион. Сульфаты в природе, промышленности и быту.

27. Кислород, его физические и химические свойства. Аллотропия. Получение кислорода в лаборатории и промышленности. Роль кислорода в природе и использование его в технике.

28. Вода. Электронное и пространственное строение молекулы воды. Физические и химические свойства воды. Вода в промышленности, сельском хозяйстве, быту.

29. Общая характеристика элементов главной подгруппы пятой группы периодической системы. Фосфор. Оксид фосфора, фосфорная кислота и ее соли. Фосфорные удобрения.

30. Азот, его физические и химические свойства. Аммиак. Физические и химические свойства. Химические основы промышленного синтеза аммиака. Соли аммония. Азотная кислота. Химические особенности азотной кислоты. Соли азотной кислоты. Азотные удобрения.

31. Общая характеристика элементов главной подгруппы четвертой группы периодической системы. Кремний, его физические и химические свойства. Оксид кремния и кремниевая кислота. Соединения кремния в природе.

32. Углерод, его аллотропные формы. Химические свойства углерода. Оксиды углерода, их химические свойства. Угольная кислота, карбонаты и гидрокарбонаты, их свойства. Превращения карбонатов и гидрокарбонатов. Качественная реакция на карбонат-ион.

33. Теория химического строения органических веществ. Зависимость свойств органических веществ от химического строения. Изомерия. Электронная природа химической связи в молекулах органических соединений, типы разрыва связи, понятие о свободных радикалах.

34. Гомологический ряд предельных углеводородов (алканов), их электронное и пространственное строение, sp ³-гибридизация. Номенклатура алканов. Физические и химические свойства алканов (реакции галогенирования и окисления). Представления о механизме цепных реакций с участием свободных радикалов. Метан, его использование.

35. Этиленовые углеводороды (алкены); σ- и π-связи, sp ²-гибридизация. Пространственная (геометрическая) изомерия. Номенклатура этиленовых углеводородов. Химические свойства (реакции присоединения водорода, галогенов, галогеноводородов, воды; реакции окисления и полимеризации). Правило Марковникова. Получение и использование этиленовых углеводородов.

36. Общие понятия химии высокомолекулярных соединений (мономер, полимер, структурное звено, степень полимеризации). Полиэтилен. Полихлорвинил. Отношение полимеров к нагреванию, действию растворов кислот и щелочей. Использование полимеров.

37. Диеновые углеводороды, их строение, химические свойства и использование. Природный каучук, его строение и свойства. Синтетический каучук.

38. Ацетилен. Строение тройной связи (sp -гибридизация). Получение ацетилена карбидным способом и из метана. Химические свойства (реакции присоединения). Использование ацетилена.

39. Главные представители ароматических углеводородов. Бензол. Электронное строение бензола и его химические свойства (реакции замещения и присоединения). Получение бензола в лаборатории и промышленности, его использование.

40. Углеводороды в природе: нефть, природный и попутные газы. Переработка нефти: перегонка и крекинг. Использование нефтепродуктов в химической промышленности для получения различных веществ.

41. Предельные одноатомные спирты. Строение и номенклатура. Химические свойства одноатомных спиртов (реакции замещения, дегидратации и окисления). Промышленные и лабораторные способы синтеза этанола, его использование.

42. Многоатомные спирты: этиленгликоль и глицерин, их использование.

43. Фенол, его строение. Сравнение химических свойств фенола со свойствами предельных одноатомных спиртов. Кислотные свойства фенола. Влияние гидроксильной группы на реакции замещения в ароматическом ядре. Получение и применения фенола.

44. Альдегиды, их строение, номенклатура, химические свойства (реакции окисления и восстановления). Получение и использование муравьиного и уксусного альдегидов. Фенолформальдегидные смолы.

45. Карбоновые кислоты. Строение карбоксильной группы. Химические свойства карбоновых кислот. Муравьиная кислота, ее восстановительные способности. Уксусная и стеариновая кислоты, их применение. Олеиновая кислота как представитель непредельных карбоновых кислот. Мыла как соли высших карбоновых кислот.

46. Сложные эфиры, их номенклатура. Получение сложных эфиров и их гидролиз. Применения сложных эфиров. Синтетические волокна на основе сложных эфиров.

47. Жиры как представители сложных эфиров, их роль в природе и свойства. Химическая переработка жиров.

48. Углеводы, их классификация. Моносахариды. Глюкоза, ее строение, химические свойства (реакция окисления и восстановления). Роль в природе. Сахароза, ее гидролиз.

49. Полисахариды как природные полимеры. Крахмал и целлюлоза, их строение, химические свойства. Углеводы как источник сырья для химической промышленности. Искусственные волокна на основе целлюлозы.

50. Амины, их строение и номенклатура. Амины как органические основания, взаимодейст-вие с кислотами. Анилин. Сравнение свойств алкил- и арилзамещенных аминов. Получение анилина из нитробензола (реакция Зинина).

51. Аминокислоты, их строение и кислотно-основные свойства. Синтетические полиамидные волокна.

52. Понятие о строении белковых молекул. α-аминокислоты как структурные единицы белков. Свойства и биологическая роль белков.

53. Взаимосвязь между классами органических соединений.

Предмет химии. Явления химические и физические.

Химия - это наука о веществах и их превращениях. Она изучает состав и строение веществ, зависимость их свойств от строения, условия и способы превращения одних веществ в другие.

Химия имеет большое практическое значение. Много тысячелетий тому назад человек использовал химические явления при выплавке металлов из руд, получении сплавов, варке стекла и т. д. Ещё в 1751г. М.В. Ломоносов в своём знаменитом «Слове о пользе химии» писал: «Широко распростирает химия руки свои в дела человеческие. Куда ни посмотрим, куда не оглянёмся - везде обращаются перед очами нашими успехи её применения.»

В наше время роль химии в жизни общества неизмерима. Химические знания сейчас достигли такого уровня развития, что на их основе коренным образом меняются представления о природе и механизме ряда важнейших естественных и технологических процессов. Химия помогла нам открыть и использовать не только ранее неизвестные свойства веществ и материалов, но и создать новые, не существующие в природе вещества и материалы.

Вещество - это вид материи, обладающей при определённых условиях постоянными физическими свойствами. Однако с изменением условий свойства вещества изменяются.

Всякие изменения, происходящие с веществом, называются явлениями. Явления бывают как физические, так и химические.

Физическими называются такие явления, которые приводят к изменению формы, агрегатного состояния, температуры вещества, не изменяя его состава. Химический состав вещества в результате физического явления не изменяется. Например, воду можно превратить в лёд, в пар, но её химический состав при этом остаётся прежним.

Химическими называются такие явления, при которых происходит коренное изменение состава и свойств веществ. В результате химических явлений происходит превращение одних веществ в другие, т.е. изменяется состав молекул, образуются молекулы другого вещества. Однако атомы при химических реакциях остаются неизменными. Примером может служить разложение известняка:

CaCO3 → CaO + CO2

Химические явления иначе называют химическими реакциями. Характерные признаки химических явлений (реакций): выделение тепла, газа, выпадение осадка, изменение цвета, появление запаха. При физических явлениях этого наблюдать нельзя.

Атомно-молекулярное учение. Атомы. Молекулы. Молекулярное и немолекулярное строение вещества. Относительная атомная и молекулярная масса. Закон сохранения массы, его значение в химии. Моль – единица количества вещества. Молярная масса. Закон Авогадро и молярный объем газа. Относительная плотность вещества.

Теоретическую основу современной химии составляет атомно-молекулярное учение.

Атомы – мельчайшие химические частицы, являющиеся пределом химического разложения любого вещества.

Химический элемент представляет собой вид атомов с одинаковым положительным зарядом ядра.

Следовательно, атом – это наименьшая частица химического элемента, сохраняющая все его химические свойства. В настоящее время известно 110 элементов, из которых 92 встречаются в природе.

В зависимости от природы частиц, из которых построено вещество, различают вещества с молекулярной и немолекулярной структурой. Практически все органические вещества (т.е. подавляющее большинство известных веществ) состоят из молекул. Среди неорганических соединений молекулярное строение имеют примерно 5%. Таким образом, наиболее типичной формой существования вещества является молекула.

Молекула – наименьшая частица вещества, способная существовать самостоятельно и сохраняющая его основные химические свойства.

При обычных условиях вещества с молекулярной структурой могут находиться в твердом, жидком или газообразном состоянии. Вещества с немолекулярной структурой находятся только в твердом состоянии, преимущественно в кристаллической форме. Носителями химических свойств таких веществ являются не молекулы, а комбинации атомов или ионов которые образуют данное вещество.

Символическая запись простейшего численного соотношения, в котором атомы различных элементов образуют химическое соединение, называется формулой. Следовательно, формула выражает определенный (качественный и количественный) состав соединения. Так, SO2, N2, CO - формулы веществ, имеющих молекулярное строение. Их состав всегда строго постоянен. NaCl, AlF3, ZnS– формулы веществ, не имеющих молекулярное строение при обычных условиях. Состав таких веществ не всегда постоянен и часто зависит от условия их получения. Отклонение от целочисленного соотношения могут быть выражены при записи формулы: Fe0,9S, TiO0,7, ZrN0,69. Вещества с постоянным составом называются дальтонидами, вещества с переменным составом – бертоллидами.

Массы атомов химических элементов чрезвычайно малы. В химии пользуются не их абсолютными значениями, а относительными.

Относительной атомной массой химического Ar элемента называется величина, равная отношению средней массы атомов данного элемента (с учетом процентного содержания его изотопов в природе ) к 1\12 массы изотопов углерода – 12. 1\12 массы атома изотопа углерода 12 принята за атомную единицу массы (а. е. м.), международное обозначение - u.

Относительная атомная масса является величиной безразмерной.

Относительной молекулярной массой Mr вещества называется отношение массы его молекулы к 1\12 массы атома изотопа углерода 12.

Поскольку большинство неорганических веществ при обычных условиях не имеют молекулярного строения, в данном случае можно говорить о формульной массе F, понимая под ней сумму атомных масс всех элементов, входящих в соединение, с учетом числа атомов каждого элемента в формуле.

Единицей измерения количества вещества n (ν) в Международной системе единиц является моль .

Моль – количество вещества, содержащее столько структурных элементарных единиц (атомов, ионов, молекул, электронов, эквивалентов и т.д.), сколько содержится атомов в 0,012 кг изотопа углерода 12.

Число атомов NA в 0,012 кг углерода (т.е. в 1моль) легко определить, зная массу атома углерода. Точное значение этой величины – 6,02·10²³ . Эта величина называется постоянной Авогадро и является одной из важнейших универсальных постоянных. Она равна числу структурных единиц в 1 моль любого вещества.

Масса 1 моль вещества Х называется молярной массой М(Х) и представляет собой отношение массы m этого вещества к его количеству n.

Закон сохранения массы: «Масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции, с учетом массы, соответствующей тепловому эффекту реакции». Он был сформулирован великим русским ученым М.В.Ломоносовым в 1748г. и подтвержден экспериментально им самим в 1756г. и независимо от него французским химиком А.Л.Лавуазье в 1789г.

Закон постоянства состава вещества:«Любое сложное вещество молекулярного строения независимо от способа получения имеет постоянный количественный состав».

Закон Авогадро:«В равных объемах различных газов при одинаковых условиях содержится одно и то же количество молекул».

Следствия: 1. Если число молекул некоторых газов равно, то при н.у. они занимают равные объемы. Если же число молекул равно 6,02·10²³, то объем газа равен 22,4 л. Этот объем называется молярным объемом.

1. Абсолютная плотность газа равна отношению его молекулярной массы к молярному объему

2. Относительная плотность газа (Х) по другому газу (Y) равна отношению молярной массы газа (Х) к молярной массе газа (Y).

Уравнение Клаперона:


Уравнение Менделеева-Клаперона:

Уравнение Бойля-Мариотта:

Уравнение Шарля-Гей-Люсака:


Химический элемент. Простые и сложные вещества. Химические формулы.

Вид атомов с одинаковыми химическими свойствами называется элементом. Атомы одного и того же элемента могут отличаться только массой. Химические свойства у них одинаковы. Существуют разновидности атомов одного и того же элемента, называемые изотопами .

Понятие «химический элемент» в равной мере относится к атомам данного элемента как находящимся в свободном виде, так и входящим в состав соединений.

Молекулы образуются из атомов. В зависимости от того, состоит ли молекула из атомов и того же элемента или из атомов различных элементов, все вещества делятся на простые и сложные.

Простыми веществами называются такие, молекулы которых состоят из атомов одного элемента. Молекулы простых веществ могут состоять из одного, двух и большего числа атомов одного элемента. В настоящее время является неоспоримым факт существования одного и того же элемента в свободном состоянии в виде ряда различных форм, т.е. в виде нескольких простых веществ.

Существование элемента в виде нескольких простых веществ называется аллотропией. Простые вещества, образованные одним и тем же элементом, называются аллотропическими видоизменениями этого элемента. Эти видоизменения отличаются как числом, так и расположением одних и тех же атомов в молекуле.

Сложными веществами или химическими соединениями называются такие, молекулы которых состоят из атомов двух или более элементов. Атомы, вступившие в химическое соединение, не остаются неизменными. Они оказывают друг на друга взаимное влияние. В различных молекулах атомы находятся в различных состояниях.

Химическая формула – это изображение состава вещества посредством химических знаков. Химические формулы обозначают молекулу вещества, ее качественный и количественный состав.

Валентность. Составление химических формул по валентности.

Важным понятием химии является валентность . Валентность – способность атома соединяться с другими атомами определенным числом химических связей. Числовое значение валентности определяется общим числом атомных орбиталей, участвующих в образовании химической связи:

↑↓
↑↓ ↑↓

СО: С≡О С: 1s2 2s2 2p2 валентность:3

O: 1s2 2s2 2p4

Все сказанное относится к соединениям с ковалентной связью. Если элемент образует ионные связи, то его валентность называется стехиометрической. Она ничего не говорит о числе связей. Высшая валентность равна номеру группы, в которой находится элемент, однако N, O и F имеют высшую валентность – 4. Это объясняется тем, что атомы этих элементов не могут переходить в возбужденное состояние из-за отсутствия вакантных орбиталей на ВЭУ.

Строение атома. Состав атомных ядер. Физический смысл порядкового номера химического элемента. Изотопы. Явление радиоактивности. Электронное строение атома. Понятие об электронном облаке. Атомная электронная орбиталь. Энергетический уровень и подуровень. S -, p -, d -орбитали в атоме. Строение электронных оболочек атомов на примере элементов 1-го, 2-го, 3-го периодов периодической системы.

Атом любого элемента состоит из ядра и и электронной оболочки (QA = 0, QЯ = 1, MЯ = 1). Ядро состоит из протонов (Q = 1)и нейтронов (Q = 0). Количество протонов равно порядковому номеру элемента. Число нейтронов в ядре равно разности между массовым числом изотопа и порядковым номером.

Массовое число – сумма количества нейтронов и протонов в ядре. Оно получается округлением относительной атомной массы изотопа до целого числа.

Атомы одного элемента с разными числами нейтронов в ядре называются изотопами (Протий – 1p0n, Дейтерий – 1p1n, Тритий – 1p2n, Квадрий – 1p3n).

Число электронов в электронной оболочке равно заряду ядра (или порядковому номеру элемента). Электроны в атоме различаются энергией, формой электронных облаков, размерами электронных облаков, расположением их в пространстве.

Устойчивому состоянию ядер атомов соответствуют определенные соотношения чисел нейтронов и протонов. При нарушении устойчивого протонно-нейтронного соотношения ядро (а вместе с ним и атом) становится радиоактивным. Радиоактивность – самопроизвольное превращение неустойчивых атомных ядер в другие ядра, сопровождающееся испусканием различных частиц. Основными типами радиоактивного распада являются α-распад и β-распад.

Чем больше расстояние от ядра до электрона, тем выше энергия последнего. Все электроны с одинаковым запасом энергии образуют один энергетический уровень. Число энергетических уровней в атоме равно номеру периода.


В пределах одного уровня электроны могут иметь различную форму облаков. Электронное облако – область околоядерного пространства, в которой вероятность пребывания электрона равна 90-95%. Электроны одного уровня с одинаковой формой облаков образуют один энергетический подуровень . Число подуровней на данном уровне равно его номеру.

S P D F

Электроны одного подуровня различаются расположением электронных облаков в пространстве. Каждому варианту расположения соответствует одна орбиталь.

S – 1

P – 3

D – 5

F – 7

S: P:

y y

z z


D:






Атомы разных элементов с одинаковым числом нейтронов в ядре называются изотонами (K и Ca). Атомы элементов с одинаковыми массами называются изобарами.

Каждый электрон в атоме характеризуется четырьмя квантовыми числами: n – главное,l – орбитальное (побочное), m – магнитное,ms – спиновое. Главное квантовое число характеризует энергию электронов на данном уровне и размер электронного облака: чем больше значение n, тем больше энергия электронов и размер электронного облака. Число n изменяется от 1 до 7. Значение n данного электрона равно номеру уровня, на котором он находится.

О ))))

1 2 3 4

Орбитальное квантовое число характеризует форму электронного облака и принимает значения от 0 до n–1. Число значений l равно числу подуровней на данном уровне:

L – 0 1 2 3 4

s p d f g

Магнитное квантовое число характеризует расположение облаков в пространстве и принимает значения + l….0….- l. Число значений m равно числу орбиталей в главном подуровне:

S l=0 m=

P l=1 m=

D l=2 m=

F l=3 m=

Спиновое квантовое число характеризует собственный момент количества движения электрона и принимает значения +1/2 и –1/2. Спин – чисто квантовое понятие, не имеющее аналогов в макромире. Это собственный момент импульса электрона, не связанный с движением в пространстве.

Принцип минимальной энергии – атомные орбитали заполняются электронами последовательно с увеличением суммы n+l:

1s—→2s—→2p—→3s—→3p—→3d—→4s—→4p—→4d—→….

1+0 2+0 2+1 3+0 3+1 3+2 4+0 4+1 4+2

1 2 3 3 4 5 4 5 6

Если сумма n+l для двух орбиталей одинакова, то в первую очередь заполняется орбиталь с меньшим n.

7 7s 7p
- -
6 6s 6p 6d 6f 6g 6h
- - -
5 5s 5p 5d 5f 5g
У - - -
Р 4 4s 4p 4d 4f
О - -
В 3 3s - 3p 3d
Н -
И 2 2s - 2p
-
1 1s
S P D F G H
П О Д У Р О В Н И

Принцип Паули: в атоме не может быть двух электронов с одинаковыми значениями их квантовых чисел. Электроны должны различаться одним, двумя или тремя квантовыми числами обязательно!

Принцип Хунда: суммарный спин подуровня должен быть максимальным по абсолютной величине.


2p³:

Явление проскока электрона наблюдается в атомах Cu, Cr, Mn, Ag, Mo, Nb и др.

24Cr ))))

s s s s

p p p

d d

f

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе учения о строении атомов. Структура периодической системы. Изменение свойств химических элементов и их соединений по группах и периодах периодической системы.

С развитием науки элементов открывали все больше и больше, причем некоторые из них имели сходные свойства. Появилась необходимость упорядочить, классифицировать их, т. к. это позволило бы более основательно изучать свойства элементов и их соединений. Вначале попытались классифицировать элементы, положив в основу их химические и физ. свойства. Однако эти попытки не привели к желаемым результатам. Правильно подошел к этому вопросу Д. И. Менделеев. Он обратил внимание, что атомный вес объединяет и связывает отдельные элементы между собой, и положил его в основу классификации. Располагая известные в то время элементы в порядке возрастания атомных весов, Д. И. Менделеев обнаружил, что свойства элементов периодически повторяются. В 1869 г. он сформулировал свой закон:

Свойства простых веществ, а также формы и свойства соединений химических элементов находятся в периодической зависимости от величины их атомных весов.

В 1913 г. английский ученый Мозли открыл, что важнейшей характеристикой химического элемента является не атомная масса, а заряд ядра, который совпадает с порядковым номером. Поэтому в настоящее время закон формулируется так:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов их атомных ядер.

Графическим изображением периодического закона является периодическая таблица. Формы такого изображения различны: их насчитывается около 500, однако подход к построению таблиц единый - элементы располагаются в порядке возрастания заряда их атомных ядер.

Периодом в периодической системе называется последовательный ряд элементов, электронная конфигурация ВЭУ которых изменяется от ns1 до ns2 np6 . При этом номер периода совпадает со значением главного квантового числа n ВЭУ. Каждый из периодов (кроме 1) начинается типичным металлом и заканчивается благородным газом, которому предшествует неметалл.

В вертикальных колонках, называемых группами объединены элементы, имеющие сходное электронное строение. Каждая группа состоит из главной и побочной подгрупп. Элементы, расположенные в одной подгруппе, называются аналогами и имеют сходные строения ВЭУ при разных значениях n и поэтому проявляют сходные химические свойства. Элементы главных и побочных подгрупп различаются своими химическими свойствами, но их объединяет номер группы . Он, как правило, указывает число электронов, участвующих в образовании химических связей. У элементов главных подгрупп валентными являются только электроны ВЭУ, а у элементов побочных подгрупп – и электроны предвнешних уровней. Это основное различие между элементами гл. и побочных подгрупп.

Периодически изменяются радиусы атомов, энергия ионизации, сродство к электрону и электроотрицательность:

1.Радиус: 2.Еион: 3.Еср 4.Электроотрицательность:


Периодический закон сыграл большую роль в развитии химии. Он помог установить взаимную связь между элементами и объединить их по свойствам, расположить элементы в естественной последовательности, исправить и уточнить атомные массы, предсказать существование новых элементов.

Периодическая система помогает определить состав и формулы химических соединений. Она является выражением общего закона природы – закона развития в неорганическом мире.

Периодический закон – величайшее открытие человечества!

Природа и типы химической связи. Образование ковалентной связи на примере молекул водорода, хлороводорода и аммиака. Полярная и неполярная ковалентные связи. Донорно-акцепторный механизм образования ковалентной связи на примере иона аммония. Ионная связь. Водородная связь. Примеры химических соединений с разными видами связи.

Химическая связь – взаимодействие, связывающее атомы в молекулы, кристаллы или радикалы, а также ионы в ионные радикалы. Природа ХС –электрическая. Т. к. связь образуется за счет валентных электронов. Механизм образования связи – квантово-механический. Расчеты показали, что связь образуется за счет перекрывания эл. облаков и образования общей эл. плотности между атомами. Типы химической связи определяются разностью в значениях ЭО связанных атомов: ΔЭО = 0 – ковалентная неполярная; 0<ΔЭО<2 – ковалентная полярная; ΔЭО>2 – ионная. Ковалентная связь характеризуется энергией Е, длиной l, кратностью k, полярностью, насыщаемостью, направленностью. Энергия связи – это энергия, которая выделяется при образовании 1 моль связи или поглощается при разрыве 1 моль связи. Чем больше энергия, тем прочнее связь. Длина связи – расстояние между ядами атомов в молекуле. Кратность – число общих электронных пар. Полярность связи определяется смещением ОЭП к одному из атомов. Количественно полярность выражается через дипольный момент m ( m = |q|∙l ). Чем больше m, тем полярнее связь. Насыщаемость – способность атома соединяться с др. атомом определенным числом связей, которое определяется числом валентных электронов. Направленность определяется величиной угла между направлениями связей в пространстве. Существуют два вида образования связи: обменный и донорно-акцепторный. Ионная связь, в отличие от ковалентной, является ненаправленной и ненасыщаемой. Ненаправленность ионной связи заключается в том, что каждый ион создает вокруг себя электрическое поле, силовые линии которого направлены во все стороны от него, поэтому любой положительный ион притягивает к себе множество отрицательных ионов, образуя кристалл. Никогда нельзя определить направление ионной связи: она действует сразу во всех направлениях. Например, в кристалле NaCl каждый ион натрия окружен 8-ю ионами хлора, и каждый ион хлора окружен 8-ю ионами натрия.

Особыми типами связей является водородная и металлическая связи. Водородная связь осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом другой молекулы: Х – Н ∙∙∙ Х –, где Х – атом F, O, N, реже Cl, S. Возникновение ВС обусловлено тем, что у атома водорода имеется только один электрон, который при образовании ковалентной связи с сильно электроотрицательным элементом смещается в сторону этого элемента. На атоме водорода возникает эффективный положительный заряд, что в сочетании с отсутствием внутренних электронных слоев позволяет другому атому сближаться до расстояний, близких к длинам атомных связей. Наличие ВС влияет на физические и химические свойства веществ. В частности, аномально высокие температуры плавления и кипения. С повышением температуры число ВС сокращается.

Металлическая связь – особый тип химической связи, напоминающей как ионную, так и ков. полярную связи. В основе образования МС лежит возникновение «электронного газа». Небольшая часть атомов (3-5%) теряют свои валентные электроны (обычно с s-подуровня). Облака свободных электронов перекрываются и образуют одно электронное облако, занимающее весь объем кристалла. «Электронный газ», заряженный в целом отрицательно, удерживает в кристалле катионы металлов. Этот тип связи встречается во всех металлах, а также в некоторых карбидах.

Вид связи определяется формой перекрывающихся облаков и характером их перекрывания: σ-связь образуется, если области перекрывания лежат на линии, соединяющей центры атомов; π-связь образуется, если область перекрывания находится выше и ниже линии связи; δ-связь образуется при перекрывании двух d-облаков в 4-ех точках пространства.

Классификация химических реакций по различным оценкам. Типы химических реакций: соединения, разложения, замещения, обмена. Тепловой эффект химической реакции. Термохимические уравнения.

Химическая реакция – процесс, при котором из одних веществ получаются другие. В общем виде уравнение химической реакции можно записать следующим образом:

а1 А1 + а2 А2 +… → b1 В1 + b2 В2 +…

Здесь, А1 , А2 называются реагентами, В1 , В2 – продуктами, а числа а1 , а2 , b1 , b2 – стехиометрическими коэффициентами. Химические реакции классифицируются различными способами. При этом классификации делится на феноменологические, когда за основу берется некий наблюдаемый параметр, и по механизму реакции.

Феноменологические классификации

1.По виду взаимодействия:

а) разложения 2H2 O2 → 2H2 O + O2

б) соединения H2 + I2 → 2HI

в) замещения Fe + CuCl2 → FeCl2 + Cu

г) обмена Na2 SO4 + BaCl2 → 2NaCl + BaSO4

2. По изменению СО участвующих в реакции веществ:

а) ОВР 2HgO → 2Hg + O2

б) без изменения СО HgO + 2HCl → HgCl2 + H2 O

3. По полноте протекания процесса:

а) необратимые 2H2 О2 →2H2 O + O2

б) обратимые 3H2 + N2 == 2NH3

4. По тепловому эффекту:

а) экзотермические P2 O3 + 3H2 O → 2H3 PO4 + Q

б) эндотермические N2 + O2 → 2NO – Q

Окислительно-восстановительные процессы. Степень окисления элемента. Окисление и восстановление как процессы присоединения и отдачи электронов. Практическое использование окислительно-восстановительных процессов.

Все химические реакции можно разделить на 2 группы. К первой из них относятся реакции, протекающие без изменения степени окисления атомов элементов, входящих в состав реагирующих веществ. Ко второй группе относятся реакции, идущие с изменением степени окисления атомов реагирующих веществ. Такие реакции носят название окислительно-восстановительных реакций. ОВР – самые распространенные и играют большую роль в природе и технике. Окислением называется процесс отдачи электронов атомом, молекулой или ионом. При окислении степень окисления повышается. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом. При восстановлении степень СО понижается. Атомы, молекулы или ионы, отдающие электроны называются восстановителями. Во время реакции они окисляются. Атомы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстановляются. Восстановители и окислители могут быть как простыми веществами, так и сложными. Металлы содержат на ВЭУ 1 – 2 электрона. Поэтому в химических реакциях оно отдают валентные электроны, т.е. окисляются и проявляют восстановительные свойства. В периодах с повышением порядкового номера восстановительные свойства понижаются, а окислительные – возрастают. У элементов главных подгрупп окислительные свойства ослабевают и усиливаются восстановительные с ростом порядкового номера. Элементы побочных подгрупп имеют металлический характер, поэтому проявляют восстановительные свойства. Неметаллы могут быть как окислителями, так и восстановителями. Важнейшими восстановителями являются: металлы, водород, углерод, оксид углерода (II), сероводород, оксид серы (IV), сернистая кислота и ее соли, галогенводородные кислоты, хлорид олова (II), сульфат железа (II), сульфат марганца (II), сульфат хрома (III), азотистая кислота, аммиак, гидразин, оксид азота (II), фосфористая кислота, альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза, катод при электролизе. Важнейшие окислители – галогены, перманганат калия, манганат калия, оксид марганца (IV), азотная кислота, кислород, озон, пероксид водорода, концентрированная серная кислота, оксиды меди (II), серебра (I), свинца (IV), хлорид железа (III), гипохлориты, хлораты и перхлораты, «царская водка», анод при электролизе.

ОВР классифицируются по нескольким признакам:

1. По числу элементов, атомы которых меняют СО:

1) 1 элемент: KClO3 ® KCl + KClO4

2) 2 элемента: CuS + O2 ® CuO + SO2

3) 3 элемента: FeS + O2 ® Fe2 O3 + SO2

2. По принадлежности атомов окислителя и восстановителя одному или нескольким элементам:

1) в одном веществе: NH4 NO3 ® N2 O + H2 O

2) в разных веществах: H2 S + HNO3 ® H2 SO4 + NO2 + H2 O

3. По способу изменения СО одного элемента:

1) Диспропорционирования: Эy ¬ Эx ® Эz

KClO3 ® KCl + KClO4 Cl-1 ¬ Cl+5 ® Cl+7

2) компропорционирования: Эy ® Эx ¬ Эz

NH3 + NO2® N2 + H2O N-3 ® N0 ¬ N+4

Представление о скорости химических реакций. Зависимость скорости от природы и концентрации реагирующих веществ, температуры. Катализ и катализаторы.

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени. Рассмотрим в общем виде скорость реакции, протекающей по уравнению:

A + B → C + D.

По мере расхода вещества А скорость реакции уменьшается. Отсюда следует, что скорость реакции может быть определена лишь для некоторого промежутка времени. Так как, концентрация вещества А в момент времени t1 измеряется величиной с1 , а в момент времени t2 – величиной с2 , то за время Δt= t2 - t1 концентрация изменится на Δс= с2 - с1 :

Обычно скорость измеряется в моль/л·с.

Поскольку скорость все время изменяется, то в химической кинетике рассматривают только истинную скорость, т.е. скорость в данный момент времени. При рассмотрении скорости необходимо различать реакции, протекающие в гомогенной и гетерогенной системе. Гомогенной системой называется система, состоящая из одной фазы. Гетерогенная система состоит из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком. Если реакция идет в гомогенной системе, то она идет во всем объеме этой системы. Если реакция протекает в гетерогенной системе, то она может идти только на поверхность раздела. В связи с этим скорость определяется различно. Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции в единицу времени в единице объема:

Скорость гетерогенной реакции определяется количеством вещества, вступившего в реакцию или образовавшегося в результате реакции за единицу времени на единице поверхности фазы:

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции, важнейшими из которых являются концентрация, температура и присутствие катализатора. Чтобы осуществить химическое взаимодействие, необходимо, чтобы вещества А и В столкнулись. Чем больше столкновений, тем быстрее идет реакция. Число столкновений тем выше, чем больше концентрация. Следовательно, скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Для реакции A +B = C + D этот закон выразится уравнением:

V = k∙c[A]∙c[D].

Этот закон химической кинетики назван законом «Действующих масс». Константа скорости k зависит от природы реагирующих веществ и температуры, но не зависит от концентрации! Зависимость скорости реакции от температуры отражается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2-4 раза:

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции. Изменение скорости под действием температуры связано с тем, что неактивные молекулы превращаются в активные, обладающие энергией для осуществления данной реакции. Эта энергия называется энергией активации .

Другой способ регулирования скорости – применение катализаторов. Катализаторы – вещества, которые ускоряют химическую реакцию путем многократного участия в промежуточном химическом взаимодействии с реагентами, но после каждого цикла восстанавливающие свой химический состав. Различают положительные катализаторы, которые ускоряют реакцию, и отрицательные катализаторы (ингибиторы), замедляющие ее. Ускоряющее действие катализаторов заключается в уменьшении энергии активации. Различают два вида катализа: гетерогенный (1) – катализатор и реагирующие вещества находятся в разных фазах, и гомогенный (2) – катализатор и вещества находятся в одной фазе:

1. MnO2 + 4HCl → MnCl2 + Cl2 + 2H2 O

2. 2NO + O2 → 2NO 2

2NO2 + 2SO2 → 2SO2 + 2NO.

Обратимость химических реакций. Химическое равновесие и условия, которые влияют на смещение химического равновесия.

Химическая реакция – процесс, при котором из одних веществ получаются другие. Как известно, по признаку процесса различают несколько типов реакций: разложения, замещения и т. д. По характеру обратимости реакции делятся на обратимые и необратимые. Реакции, протекающие в одном направлении и приводящие к полному превращению исходных веществ в продукты реакции, называются необратимыми:

K2 CO3 + 2HCl → 2KCl + CO2 + H2 O.

Обратимыми называются реакции, которые одновременно идут в двух взаимно противоположных направлениях: слева направо – прямая, справа налево – обратная. Обе реакции идут с определенной скоростью. В ходе обратимой реакции концентрация исходных веществ уменьшается, а концентрация продуктов реакции увеличивается. Соответственно скорость прямой реакции будет уменьшаться, а обратной – увеличиваться до тех пор, пока эти скорости не станут равными. Состояние системы, при котором скорость прямой реакции равна скорости обратной, называется химическим равновесием. При состоянии химического равновесия реакция не прекращается, а обе реакции идут с равными скоростями

Выразим скорости прямой и обратной реакций:

К – константа химического равновесия.

Полученное уравнение выражает закон “Действующих масс” для химического равновесия. При установившемся химическом равновесии отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ есть величина постоянная при определенных условиях. Физический смысл константы химического равновесия состоит в том, что она показывает во сколько раз прямая реакция идет быстрее обратной. Если K>1, то преобладает прямая реакция, если K<1 – обратная. Это положение дает возможность не только определить направление реакции, но и регулировать любой химический процесс, смещая его в ту или иную сторону.

При изменении температуры, давления или концентрации регентов равновесие может сместиться. Изменения, происходящие в системе в результате внешних воздействий, определяются принципом «подвижного равновесия» или принципом Ле-Шателье:

Внешние воздействия на систему, находящуюся в состоянии химического равновесия, приводят к смещению этого равновесия в направлении, при котором ослабевает эффект произведенного воздействия.

[c]: при увеличении концентрации одного из реагирующих веществ равновесие сместится в сторону расхода вводимого вещества, при уменьшении концентрации равновесие сместится в сторону образования этого вещества.

[t]: при повышении температуры равновесие сместится в стороны эндотермической реакции, при понижении – в сторону экзотермической реакции.

[p]: при увеличении давления равновесие сместится в сторону уменьшения газообразных веществ, при уменьшении – в сторону увеличения газообразных веществ. Если реакция протекает без изменения числа молекул газообразного вещества, то давление не влияет на химическое равновесие.

Растворы. Растворимость веществ. Зависимость растворимости от их природы, температуры и давления. Массовая доля растворенного вещества в растворе.

Раствором называют гомогенную систему переменного состава, состоящую из двух и более компонентов. Каждый из компонентов раствора равномерно распределен в массе другого в виде молекул, атомов или ионов. Растворы бывают газообразные, жидкие и твердые. Практически наиболее важны жидкие растворы. Условно компоненты раствора делятся на растворенные вещества и растворитель . Если раствор образуется при смешивании компонентов одинакового агрегатного состояния, растворителем считается компонент, которого в растворе больше. В остальных случаях растворителем является тот компонент, агрегатное состояние которого не меняется при образовании раствора. При растворении происходит взаимодействие растворенного вещества и растворителя, называемое сольватацией , в случае водных растворов – гидратацией . Растворение в жидкостях газов и жидкостей сопровождается обычно выделением теплоты (ΔH<0); растворение твердых веществ в большинстве случаев – процесс эндотермический (ΔH>0). Энтропия при растворений твердых веществ, как правило, увеличивается (ΔS>0), газов – уменьшается (ΔS<0).

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества приданных условиях является содержание его в насыщенном растворе. Раствор называется насыщенным , если он находится в равновесии с растворяемым веществом (ΔG=0), т.е. в насыщенном растворе содержится предельное при данных условиях количество растворенного вещества. Раствор, содержащий вещества больше, чем это определяется его растворимостью, - пересыщенный , раствор, содержащий вещества меньше, чем это определяется его растворимостью, - ненасыщенный. На практике растворимость твердых веществ часто выражают величиной, называемой коэффициентом растворимости , который показывает массу безводного вещества, насыщающую 100 г растворителя при данной температуре. Растворимость вещества зависит от природы растворяемого вещества и растворителя, их агрегатного состояния, наличия в растворе посторонних веществ, температуры, а в случае газообразного растворяемого вещества – и от давления. Согласно правилу «подобное растворяется в подобном» , ионные соединения и молекулярные с полярным типом связи лучше растворяются в полярных растворителях, неполярные вещества – в неполярных растворителях. При повышении температуры растворимость газов обычно уменьшается. Растворимость твердых веществ меняется по-разному, что определяется знаком теплового эффекта процесса растворения: растворение большинства твердых веществ – процесс эндотермический (ΔH>0), поэтому с повышением температуры растворимость их увеличивается. Влияние давления на растворимость газов в жидкостях выражает закон Генри :

Растворимость газа при постоянной температуре прямо пропорционально его парциальному давлению над раствором:

x = k∙p

где x – молярная доля растворенного вещества в насыщенном растворе; k – коэффициент пропорциональности, называемый константой (коэффициентом) Генри ; р – парциальное давление.

Закон Генри справедлив для случая сравнительно разбавленных растворов, невысоких давлений и отсутствия химического взаимодействия между молекулами растворяемого газа и растворителя.

Присутствие посторонних веществ, как правило, уменьшает растворимость данного вещества. Уменьшение растворимости веществ в присутствии солей называется высаливанием. Растворимость малорастворимых электролитов уменьшается при введении в насыщенный раствор одноименных ионов.

На практике состав растворов выражают с помощью следующих величин: безразмерных – массовая и молярная доли и размерных – молярная концентрация вещества, молярная концентрация вещества эквивалента, моляльность и массовая концентрация вещества.

Массовая доля растворенного вещества w – отношение массы растворенного вещества m1 к общей массе m:

Массовая доля выражается в процентах и в долях единицы.

Молярная доля i-го компонента раствора xi отношение количества вещества данного компонента к общему количеству вещества раствора. Для бинарного раствора:

Молярная доля также выражается в процентах и в долях единицы.

Моляльность раствора b(X) – отношение количества растворенного вещества Х к массе растворителя m:

Моляльность выражается в моль/кг.

Молярная концентрация вещества в растворе частиц Х с(Х) – отношение количества вещества к объему раствора:

Молярная концентрация выражается в моль/л.

Молярная концентрация вещества эквивалента (1/z*)X в раствореc[(1/z*)X ] – отношение количества растворенного вещества эквивалента (1/z*)Xк объему раствора:

Она выражается в моль/л.

Массовая концентрация вещества Х в растворе Т(Х) – отношение массы растворенного вещества Х к объему раствора:

Массовая концентрация выражается в г/л.

Электролиты и неэлектролиты. Электролитическая диссоциация. Сильные и слабые электролиты. Химические свойства кислот, оснований и солей в свете теории электролитической диссоциации. Реакции ионного обмена и условия их необратимости.

Взаимодействие с растворителем растворенного вещества может вызвать распад последнего на ионы. Распад растворенного вещества на ионы под действием молекул растворителя называется электролитической диссоциацией или ионизацией веществ в растворах.

Возможность и степень распада растворенного вещества на ионы определяется природой растворенного вещества и растворителя. Электролитической диссоциации подвергаются ионные соединения и молекулярные соединения с полярным типом связи в полярных растворителях. Вода относится к наиболее сильноионизирующим растворителям.

Вещества, распадающиеся в растворах или расплавах на положительно заряженные (катионы) и отрицательно заряженные (анионы) ионы, называются электролитами . Электролитами являются кислоты, основания, соли.

Ионы в растворе сольватированы (гидратированы), т.е. окружены оболочкой из молекул растворителя. Катионы К связаны с молекулами воды гидратной оболочки донорно-акцепторной связью и являются акцепторами электронных пар; доноры – атомы кислорода Н2 О.

Анионы А – связаны с молекулами Н2 О либо кулоновскими силами, либо водородной связью, при образовании которой они – доноры электронных пар. Схематически гидратную оболочку ионов можно изобразить следующим образом:

Обычно пользуются упрощенными уравнениями электролитической диссоциации, в которых гидратная оболочка ионов не указывается.

По степени диссоциации α в растворах электролиты подразделяют на сильные и слабые:

Степень диссоциации выражают в долях единицы или процентах. Электролиты, у которых α<1, относятся к слабым, у сильных электролитов α = 1.

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты, гидроксиды щелочных и щелочноземельных металлов.

Сильные электролиты в водных растворах распадаются на ионы полностью. Их истинная степень диссоциации не зависит от концентрации раствора.

Диссоциация слабых электролитов - обратимый процесс. Для диссоциации слабого бинарного электролита КА

на основании ЗДМ справедливо соотношение:

Константу равновесие К в данном случае называют константой ионизации.

Согласно закону разбавления Оствальда, константа диссоциации бинарного электролита связана со степенью диссоциации соотношением:

Это уравнение выражает зависимость степени диссоциации от концентрации раствора. Если α<<1, то

Иными словами, закон Оствальда гласит: с уменьшением концентрации раствора степень диссоциации слабого электролита увеличивается. В соответствии с принципом Ле-Шателье введение в раствор слабого электролита одноименных ионов уменьшает степень его диссоциации. При уменьшении концентрации одного из ионов диссоциация слабого электролита усиливается.

Вода является очень слабым амфотерным электролитом: К = 1,8·10-16 . В воде и разбавленных водных растворах электролитов значения концентрации и активности практически совпадают, а с(Н2О) практически постоянна. Поэтому можно считать постоянным ионное произведение воды (произведение концентраций водородных ионов и гидроксид-ионов при данной температуре для воды и разбавленных водных растворов) KW (KH2O): KW = K∙c(H2O) = c(H+ )∙c(OH- ). При 25°С Kw = 10ˉ14 моль² /л². При увеличении температуры Kw значительно возрастает. В любом растворе одновременно присутствуют Н+ и ОН ионы. Кислотность и щелочность среды обычно характеризуют концентрацией водородных ионов или водородным показателем рН. Он равен десятичному логарифму концентрации водородных ионов, взятому с обратным знаком: pH = - lgc(H ). Значение рН может быть больше 14 и быть отрицательным. Приближенно реакцию среды определяют с помощью специальных реактивов – индикаторов.

Оксиды. Классификация оксидов. Способы получения и свойства оксидов. Понятие об амфотерности.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода и какого-нибудь другого элемента.

Оксиды могут быть получены как при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путем (например, при разложении солей, кислот, оснований). В обычных условиях оксиды бывают в твердом, жидком и газообразном состоянии.

В зависимости от того, будет этим другим элементом металл или неметалл, оксиды делятся на основные и кислотные.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидраты, относящиеся к классу оснований.

Если в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность, то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидраты, относящиеся к классу кислот.

Особую группу составляют амфотерные окисиды. Амфотерными оксидами называются оксиды, которые взаимодействуют как с кислотами, так и с основаниями, образуя соли.

H2 O + ZnCl2 ← 2HCl + ZnO + 2NaOH + 2H2 O → Na2 [Zn(OH)4 ] + H2

По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие.

Солеобразующие оксиды – оксиды, которые в результате реакций образуют соли.

CuO + 2HCl → CuCl2 + H2 O;

CuO + SO3 → CuSO4

Несолеобразующие оксиды солей не образуют!

Элементы, обладающие постоянной СО, образуют оксиды одной из перечисленных групп. Элементы, проявляющие переменную СО могут образовывать различные оксиды. Как правило, в низшей степени окисления элемент образует основный оксид, в переходной СО – амфотерный, в высшей – кислотный.

Основные

1. Na2 O + H2 O → 2NaOH

2. Na2 O + SO3 → Na2 SO4

3. CuO + H2 SO4 → CuSO4 + H2 O

Кислотные

1. SO3 + H2 O → H2 SO4

2. CO2 + CaO → CaCO3

3. CO2 + Ba(OH)2 → BaCO2 + H2 O

Основания. Щелочи и нерастворимые основания. Способы получения и химические свойства.

Основаниями называются сложные вещества, молекулы которых состоят из атома металла и одной или нескольких гидроксильных групп.

Число гидроксильных групп в молекуле основания зависит от степени скисления металла и равно ее абсолютной величине.

Все основания – твердые вещества, имеющие различную окраску. Основания щелочных и щелочноземельных металлов хорошо растворимы в воде и называются щелочами. Остальные основания плохо растворяются в воде.

Химические свойства оснований обусловливаются отношением их к кислотам, ангидридам кислот и солям.

1. CO2 + Ba(OH)2 → BaCO3 + H2 O

2. 2KOH + H2 SO4 → K2 SO4 + 2H2 O

Реакция взаимодействия основания с кислотой называется реакцией нейтрализации , т.к. после ее окончания среда должна стать нейтральной.

3. 2NaOH + CuSO4 → Cu(OH)2 + Na2 SO4 .

Кислоты. Классификация кислот. Способы получения и общие химические свойства.

Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на металл.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные, двухосновные и трехосновные.

По составу кислоты делятся на бескислородные и кислородсодержащие .

Получение кислот:

1. Бескислородные кислоты могут быть получены при непосредственном взаимодействии неметалла с водородом:

H2 + S → H2 S

2. Кислородсодержащие кислоты нередко могут быть получены при растворении кислотных оксидов в воде:

SO3 + H2 O → H2 SO4

3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакции обмена между солями и другими кислотами:

BaBr2 + H2 SO4 → BaSO4 + 2HBr

CuSO4 + H2 S → H2 SO4 + CuS

4. В некоторых случаях для получения кислот могут быть использованы ОВ процессы:

3P + 5HNO3 + 2H2 O → 3H3 PO4 + 5NO

Химические свойства кислот обусловлены отношением их к основаниям, металлам, солям и основным оксидам.

1. CuO + H2 SO4 → CuSO4 + H2 O

2. 2KOH + H2 SO4 → K2 SO4 + 2H2 O

3. Zn + 2HCl → ZnCl2 + H2

4. CuCl2 + H2 SO4 → CuSO4 + 2HCl

Соли. Состав солей и их названия. Получение и химические свойства солей. Гидролиз солей.

Солями называются сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков.

Соль представляет собой продукт полного или частичного замещения атомов водорода кислоты металлом. Отсюда различают следующие группы солей:

1. Средние соли – все атомы водорода в кислоте замещены на металл.

2. Кислые соли – не все атомы водорода в кислоте замещены на металл. Разумеется, кислые соли могут образовывать только двухосновные или трехосновные кислоты.

3. Двойные соли – атомы водорода кислоты замещены не одним, а несколькими металлами.

4. Основные соли – продукт неполного или частичного замещения гидроксильных групп оснований кислотными остатками.

5. Смешанные соли – в них содержится один катион и два разных аниона.

Соли тесно связаны со всеми остальными классами неорганических соединений и могут быть получены практически из любого класса. Соли бескислородных кислот, кроме того, могут быть получены при непосредственном взаимодействии металла с неметаллом.

Химические свойства:

1. 2NaCl + H2 SO4 → Na2 SO4 + 2HCl

2. Ba(OH)2 + CuSO4 → BaSO4 + Cu(OH)2

3. NaCl + AgNO3 → AgCl + NaNO3

4. Fe + CuSO4 → FeSO4 + Cu

Обменная реакция между водой и соединением называется его гидролизом . Гидролиз солей представляет собой реакцию, обратную реакции нейтрализации слабых кислот (оснований) сильными основаниями (кислотами) или слабых кислот слабыми основаниями. Гидролизу по аниону подвергаются соли, образованные катионом сильного основания и анионом слабой кислоты. Создается щелочная среда.

Na2 SO3 → 2Na+ + SO3 2-

Na+ + HOH → реакция не идет

SO3 2- + HOH ↔ HSO3 - + OH-

HSO3 - + HOH ↔ H2 SO3 + OH-

Na2 SO3 + HOH ↔ NaHSO3 + NaOH

NaHSO3 + HOH ↔ H2 SO3 + NaOH

Гидролизу по катиону подвергаются соли, образованные катионом слабого основания и анионом сильной кислоты. Создается кислая среда.

CuCl2 → Cu2+ + 2Cl-

Cl- + HOH → реакция не идет

Cu2+ + HOH ↔ CuOH+ + H+

CuCl2 + HOH ↔ CuOHCl + HCl

Гидролизом по второй ступени при обычных условиях можно пренебречь.

Гидролизу по катиону и аниону подвергаются соли, образованные катионом слабого основания и анионом слабой кислоты. Реакция среды зависит от соотношения констант диссоциации образующихся кислот и оснований.

CuF2 → Cu2+ + 2F-

Cu2+ + HOH ↔ CuOH+ + H+

F- + HOH ↔ HF + OH-

Cu2+ + F- + HOH ↔ CuOH+ + HF

CuF2 + HOH ↔ CuOHF + HF

Гидролиз в данном случае протекает довольно интенсивно. Если кислота и основание, образующие соль, не только являются слабыми электролитами, но и малорастворимы или неустойчивы и разлагаются с образованием газообразных продуктов, гидролиз таких солей в ряде случаев протекает практически необратимо:

Al2 S3 + 6H2 O → 2Al(OH)3 ↓+ 3H2 S↑

Количественно гидролиз соли характеризуется степенью гидролиза :

Для гидролиза по аниону в общем виде А + НОН ↔ НА + ОН , согласно закону действующих масс, приближенно справедливо

.

Используя соотношение , получаем

.

Для гидролиза по катиону К+ + НОН ↔ КОН + Н+ аналогично

.

Для гидролиза по катиону и аниону К+ + А + НОН ↔ КОН + НА

В соответствии с принципом Ле Шателье гидролиз по катиону (аниону) усиливается при добавлении к раствору соли основания (кислоты).

Взаимосвязь между различными классами неорганических соединений.



1. Металл ® соль:

2Na + Cl2 → 2NaCl (t);

2. Соль ® металл:

NiSO4 + 2H2 O → Ni + O2 + H2 + H2 SO4 (электролиз);

2AgNO3 → 2Ag + 2NO2 + O2 (t);

3. Неметалл ® соль :

2Na + Cl2 → 2NaCl (t);

4. Соль ® неметалл :

SiCl4 + 2Zn → Si + 2ZnCl2 ;

5. Металл ® оксид металла:

2Mg + O2 → 2MgO;

6. Оксид металла ® металл:

2Fe2 O3 + 3C → 4Fe + 3CO2 (t);

7. Неметалл ® оксид неметалла:

4Р + 5О2 → 2Р2 О5 ;

8. Оксид неметалла ® неметалл:

SiO2 + 2Mg → Si + 2MgO (t);

9. Оксид металла ® соль:

CuO + 2HCl → CuCl2 + H2 O;

10. Соль ® оксид металла:

СаСО3 → СаО + СО2 ( t);

11. Оксид неметалла ® соль:

СО2 + 2NaOH → Na2 CO3 + H2 O;

12. Соль ® оксид неметалла:

СаСО3 → СаО + СО2 (t);

13. Оксид металла ® основание:

CaO + H2 O → Ca(OH)2 ;

14. Основание ® оксид металла:

Cu(OH)2 → CuO + H2 O (t);

15. Оксид неметалла ® кислота:

SO3 + H2 O → H2 SO4 ;

16. Кислота ® оксид неметалла:

H2 SO3 → SO2 + H2 O (t);

17. Основание ® соль :

NaOH + HCl → NaCl + H2 O;

18. Соль ® основание :

СuSO4 + NaOH → Cu(OH)2 + Na2 SO4 ;

19. Соль ® кислота :

NaCl + H2 SO4 → HCl + NaHSO4 (t);

20. Кислота ® соль :

NaOH + HCl → NaCl + H2 O.

Металлы, их размещение в периодической системе. Физические и химические свойства. Основные способы промышленного получения металлов. Электрохимические способы получения металлов. Электрохимический ряд напряжений металлов. Понятие о коррозии на примере ржавления железа. Значение металлов в народном хозяйстве.

В настоящее время известно 109 элементов, большинство из которых как по физическим, так и по химическим свойствам являются металлами. В природе металлы встречаются как в свободном виде, так и в виде соединений. В свободном виде существуют химически менее активные, трудно окисляющиеся кислородом металлы: платина, золото, серебро, ртуть, медь и др. все металлы, за исключением ртути, при обычных условиях твердые вещества с характерным блеском, хорошо проводят электрический ток и тепло. Большинство металлов может коваться, тянуться и прокатываться. По цвету, все металлы условно подразделяются на две группы: черные и цветные. По плотности различают металлы легкие (ρ<5) и тяжелые (ρ>5). Примером легких металлов служат калий, натрий, кальций, алюминий и др. К тяжелым металлам относятся осмий, олово, свинец, никель, ртуть, золото, платина и т.д. Температура плавления металлов также различна: от 38.9° (ртуть) до 3380° (вольфрам). Металлы могут отличаться и по твердости: самыми мягкими металлами являются натрий и калий (режутся ножом), а самыми твердыми – никель, вольфрам, хром (последний режет стекло). Тепло и электричество различные металлы проводят неодинаково: лучшим проводником электричества является серебро, худшим – ртуть.

В расплавленном состоянии металлы могут распределяться друг в друге, образуя сплавы. Большинство расплавленных металлов могут смешиваться друг с другом в неограниченных количествах. При смешивании расплавленных металлов происходит либо простое растворение расплавов одного металла в другом, либо металлы вступают в химическое соединение. Чаше всего сплавы представляют собой смеси свободных металлов с их химическими соединениями. В состав сплавов могут входить также и неметаллы (чугун – сплав железа с углеродом). Свойства металлов существенно отличаются от свойств составляющих их элементов.

Известно, что у металлов на ВЭУ имеется 1-3 валентных электрона. Поэтому они сравнительно легко отдают свои электроны неметаллам, у которых на ВЭУ 5-7 электронов. Так, металлы непосредственно реагируют с галогенами. Большинство Ме хорошо реагируют с кислородом (исключая золото, платину, серебро), образуя оксиды и пероксиды; взаимодействуют с серой с образованием сульфидов. Щелочные и щелочноземельные металлы легко реагируют с водой с образованием растворимых в ней щелочей. Ме средней активности реагируют с водой только при нагревании. Малоактивные Ме с водой вообще не реагируют. Большинство металлов растворяется в кислотах. Однако химическая активность различных металлов различна. Она определяется легкостью атомов металла отдавать валентные электроны. По своей активности все металлы расположены в определенной последовательности, образуя ряд активности или ряд стандартных электродных потенциалов:

Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H , Bi, Cu, Hg, Ag, Pd, Pt, Au.

В этом ряду каждый предыдущий металл вытесняет из соединений все последующие металлы.

Электролиз – ОВ процесс, протекающий при прохождении постоянного электрического тока через расплав или раствор электролита. Анодом называется положительный электрод, на нем происходит окисление; катодом называется отрицательный электрод, на нем происходит восстановление. При электролизе расплава происходит распределение ионов соли в анодном и катодном пространстве. Ион металла восстанавливается до металла, а кислотный остаток бескислородной кислоты окисляется до соответствующего газа или элемента. Электролиз растворов солей более сложен из-за возможности участия в электродных процессах молекул воды. На катоде: 1) ионы металлов от лития до алюминия не восстанавливаются, но идет процесс восстановления водорода из воды, 2) ионы металлов от алюминия до водорода восстанавливаются до металлов вместе с восстановлением водорода из воды, 3) ионы металлов от висмута до золота восстанавливаются до металлов. На аноде: 1) анионы бескислородных кислот окисляются до соответствующих элементов, 2) при электролизе солей кислородсодержащих кислот происходит окисление не кислотных остатков, а воды с выделением кислорода, 3) в щелочных растворах происходит окисление гидроксид-ионов до кислорода и воды, 4) при использовании растворимых анодов, на них образуются катионы металла, из которого сделан анод.

Основные промышленные способы получения металлов:

1. Пирометаллургический:

1) коксотермия Fe2 O3 + 3CO → 2Fe + 3CO2

Fe(CO)3 → Fe + 5CO

2) алюмотермия Fe2 O3 + 2Al → 2Fe + Al2 O3

3) магнийтермия TiO2 + 2Mg → Ti + 2MgO

4) водородотермия CuO + H2 → Cu + H2 O

2. Электрохимический:

1) электролиз расплавов: NiCl2 → Ni + Cl2

2) электролиз растворов: MgSO4 + 2H2 O → Mg + O2 + H2 + H2 SO4

3. Гидрометаллургический:

Cu + 2H2 SO4 → CuSO4 + SO2 + 2H2 O

CuSO4 + Fe → Cu + FeSO4 .

Щелочные металлы, их характеристика на основе размещения в периодической системе и строении атомов. Соединения натрия и калия в природе, их использование. Калийные удобрения.

К элементам группы 1А относятся литий, натрий, калий, рубидий, цезий, франций. Все металлы серебристого цвета, кроме цезия (желтый). Относятся к легким металлам. Очень мягкие – режутся ножом. Все щелочные металлы сильные восстановители. Реакционная способность возрастает в ряду литий – цезий. Самым активным является цезий, т. к. у него самый низкий потенциал ионизации. Щелочные металлы энергично реагируют с большинством неметаллов, разлагают воду, бурно реагируют с растворами кислот. Комплексообразование для щелочных металлов не характерно. В природе в свободном виде не встречаются ввиду их чрезвычайной активности. Литий существенно отличается от остальных элементов группы: он не имеет р-орбиталей. По ряду свойств он ближе к магнию, чем к щелочным металлам. Наиболее промышленно важные металлы – это калий и натрий. Основные природные соединения этих металлов – поваренная соль (NaCl), мирабилит (Na2 SO4 ·10H2 O), сильвинит (NaCl·KCl), сильвин (KCl), ортоклаз (K[AlSiO3 ]), карналлит (KCl·MgCl2 ·6H2 O). Основные способы получения – электролиз расплавов их солей в смеси с KCl, CaCl2 (натрий) и NaCl (калий). Применяется также восстановление их оксидов, хлоридов, карбонатов алюминием, кремнием, кальцием, магнием при нагревании в вакууме:

6KCl + 4CaO + 2Al(Si) → 6K + 3CaCl2 + CaO·Al2 O3 (CaO·SiO2 )

Химические свойства:

1. С простыми веществами:

1) 2Э + H2 →2ЭH

2) 2Э + Hal2 → 2ЭHal

3) 2Э + O2 → Э2 O2 (Li2 O)

4) 2Э + S → Э2 S

5) 6Э + N2 → 2Э3 N t

6) 3Э + P → Э3 P.

2. Со сложными веществами:

1) 2Э + 2HCl(p) → 2ЭCl + H2

2) 2Э + 2H2 O → 2ЭOH + H2

3) 2Э + H2 SO2 → Э2 SO2 + H2

4) 8Э + 10HNO3 → 8ЭNO3 + NH4 NO3 + 3H2 O.

Щелочные металлы и их соединения – важнейшие компоненты различных химических производств. Они используются в металлотермическом производстве различных металлов, таких как Ti, Zr, Nb, Ta. Соединения натрия и калия находят применение в мыловарении (Na2 CO3 ), производстве стекла (Na2 CO3 , K2 CO3 , Na2 SO4 , Li2 O), используются для отбелки и дезинфекции (Na2 O2 ), в качестве удобрений (KCl, KNO3 ). Из поваренной соли получают многие важные химические соединения: Na2 CO3 , NaOH, Cl2 .

Калий улучшает водный режим растений, способствует обмену веществ и образованию углеводов, повышает морозо- и засухоустойчивость. Содержание калия выражается в пересчете на К2 О. Стандартным считается удобрение, содержащее 41,6% К2 О. Важнейшими калийными удобрениями являются хлорид и сульфат калия. Хлорид калия содержит 50-60% К2 О и его получают из минералов, используя его особую растворимость. Сульфат калия содержит 45-52% К2 О и получается следующим образом:

2KCl + 2MgSO4 → K2 SO4 ·MgSO4 + MgCl2

K2 SO4 ·MgSO4 + 2KCl → 2K2 SO4 + MgCl2

Общая характеристика элементов главной подгруппы второй группы периодической системы. Кальций, его соединения в природе. Жесткость воды и способы ее устранения.

К 2А группе относится элементы: бериллий, кальций, стронций, барий, радий. Строение ВЭУ этих элементов выражается общей формулой ns²np°, где n номер периода.

Бериллий, магний, кальций получают в основном электролизом расплавов их хлоридов в смеси с NaCl (Be), KCl (Mg, Ca) и CaF2 (Ca). Применяется также восстановление оксидов и фторидов металлов алюминием, магнием, углеродом, кремнием:

4ЭО + 2Al → ЭО·Al2 O3 + 3Э (Э – Ca, Sr, Ba),

BeF2 + Mg → MgF2 + Be,

MgO + C → CO + Mg,

2MgO + 2CaO + Si → 2CaO·SiO2 + 2Mg

Металлы группы 2А – сильные восстановители. Они довольно легко реагируют с большинством неметаллов; уже при обычных условиях интенсивно разлагают воду (кроме Be и Mg); легко растворяются в кислотах; Be реагирует и с кислотами, и со щелочами, образуя аква- и гидроксокомплексы. Химическая активность повышается от Be к Ra. По химическим свойствам Be существенно отличается от остальных элементов группы. Mg также во многих отношениях отличается от щелочноземельных металлов.

Э + H2 → ЭH2 (t; (кроме Be); Mg (p)),

Э + Hal2 → ЭНal2 (t),

2Э + O2 → 2ЭO (t),

Э + S → ЭS (t),

3Э + N2 → Э3 N2 (t),

3Э + 2P → Э3 P2 (t),

Э + C → ЭC2 (t).

Э + 2HCl → ЭCl2 + H2 ([Вe(OH2 )4 ]Cl2 ),

Э + H2 SO4 р → ЭSO4 + H2 ([Ве(OH2 )4 ]SO4 ]),

Э + 2H2 SO4 → ЭSO4 + H2 S + H2 O (кроме Be),

Be + NaOH → Na2 [Be(OH)4 ],

Э + HNO3p → Э(NO3 )2 + N2 O + H2 O,

Э + HNO3 → Э(NO3 )2 + NH4 NO3 + H2 O.

Важнейшими металлами из данной группы являются магний и кальций. Они широко используются для металлотермического получения ряда металлов; магниевые сплавы, как самые легкие, используются в авиационной промышленности. Различные соединения этих металлов находят различное применение в строительстве, для изготовления огнеупорных изделий, для осушки и очистки ряда веществ и в др. областях.

Магний и кальций важны для всех форм жизни. Главная природная функция магния связана с процессом фотосинтеза в растениях и микроорганизмах. Ионы магния принимают также участие в регулировании действия некоторых ферментов и клеточных систем. Биологические функции кальция разнообразны: он входит в состав опорных и защитных частей организма, его соединения образуют основу твердой части зубной ткани, скорлупы яйца. Ионы кальция содержаться в ряде белков, оказывают существенное влияние на работу ферментных систем, на процессы свертываемости крови, осмотическое равновесие в клетках. Соединение кальция и магния нетоксичны.

Всем известно, что в дождевой воде мыло хорошо пенится, а в криничной – обычно плохо. Поэтому такую воду принято называть жесткой. Анализ жесткой воды показывает, что в ней содержится большое количество растворимых солей кальция и магния. Эти соли образуют с мылом нерастворимые соединения. Такая вода неприменима для охлаждения двигателей внутреннего сгорания и обеспечения паровых котлов, потому что при нагревании жесткой воды на стенках охладительных систем образуется накипь. Накипь плохо проводит тепло, поэтому возможен перегрев моторов, паровых котлов, кроме того, быстрее происходит их снашивание.

Существует два вида жесткости.

Карбонатная, или временная, жесткость обусловлена присутствием гидрокарбонатов кальция и магния.Ее можно устранить следующими способами:

1. Кипячением:

Ca(HCO3 )2 → CaCO3 + CO2 + H2 O;

Mg(HCO3 )2 → MgCO3 + CO2 + H2 O.

2. Действием известкового молока или соды:

Ca(OH)2 + Ca(HCO3 )2 → 2CaCO3 + 2H2 O;

Ca(HCO3 )2 + Na2 CO3 → CaCO3 + 2NaHCO3 ;

Некарбонатная, или постоянная, жесткость обусловлена присутствием сульфатов и хлоридов магния и кальция. Ее устраняют действием соды:

CaSO4 + Na2 CO3 → CaCO3 + Na2 SO4 ;

MgSO4 + Na2 CO3 → MgCO3 + Na2 SO4 .

Карбонатная и некарбонатная жесткости в сумме образуют общую жесткость воды.

Алюминий, характеристика элемента и его соединений на основе размещения в периодической системе и строения атома. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.

В периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s2 2s2 2p6 3s2 3p1 . Металлический атомный радиус 0,143 нм, ковалентный - 0,126 нм, условный радиус иона Al3+ - 0,057 нм. Энергия ионизации Al – Al+ 5,99 эВ.

Наиболее характерная степень окисления атома алюминия +3. Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d -подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl4- , AlH4- , алюмосиликаты), но и 6 (Al2 O3 ,[Al(OH2 )6 ]3+ ).

Алюминий - типичный амфотерный элемент. Для него характерны не только анионные, но и катионные комплексы. Так, в кислой среде существует катионный аквакомплекс [Al(OH2 )6 ]3+ , а в щелочной - анионный гидрокомплекс и [Al(OH)6 ]3- .

В виде простого вещества алюминий - серебристо-белый, довольно твердый металл с плотностью 2,7 г/см3 (т. пл. 660о С, т. кип. ~2500о С). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминиевый провод весит вдвое меньше медного.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. При обработке поверхности алюминия сильными окислителями (конц. HNO3 , K2 Cr2 O7 ) или анодным окислением толщина защитной пленки возрастает. Устойчивость алюминия позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты.

Алюминий легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Основную массу алюминия используют для получения различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Важнейшие из них - дюралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумин (85 - 90% Al, 10 - 14% Sk, 0,1% Na) и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях промышленности. По широте применения сплавы алюминия занимают второе место после стали и чугуна.

Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:

2Al + 6H2 O = 2Al(OH)3 + 3H2 ­

Сильно разбавленные, а также очень концентрированные HNO3 и H2 SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты - соли, содержащие алюминий в составе аниона:

Al2 O3 + 2NaOH + 3H2 O = 2Na[Al(OH)4 ]

Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород:

2Al + 6H2 O = 2Al(OH)3 + 3H2 ­

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH)3 + NaOH = Na[Al(OH)4 ]

Суммарное уравнение растворения алюминия в водном растворе щелочи:

2Al + 2NaOH + 6H2 O = 2Na[Al(OH)4 ] + 3H2 ­

Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na2 CO3 .

В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.

Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050о С) и нерастворимую в воде массу. Природный Al2 O3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al2 O3 (т. н. глинозем) можно перевести сплавлением со щелочами.

Ввиду нерастворимости Al2 O3 в воде отвечающий этому оксиду гидроксид Al(OH)3 может быть получен лишь косвенным путем из солей. Получение гидроксида можно представить в виде следующей схемы. При действии щелочей ионами OH- постепенно замещаются в аквокомплексах [Al(OH2 )6 ]3+ молекулы воды:

[Al(OH2 )6 ]3+ + OH- = [Al(OH)(OH2 )5 ]2+ + H2 O

[Al(OH)(OH2 )5 ]2+ + OH- = [Al(OH)2 (OH2 )4 ]+ + H2 O

[Al(OH)2 (OH2 )4 ]+ + OH- = [Al(OH)3 (OH2 )3 ]0 + H2 O

Al(OH)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH4 OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида - алюмогель используется в технике в качестве адсорбента.

При взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + Al(OH)3 = Na[Al(OH)4 ]

Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al2 O3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO2 . Большинство из них в воде нерастворимо.

С кислотами Al(OH)3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.

Галогениды алюминия в обычных условиях - бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF3 основан на действии безводного HF на Al2 O3 или Al:

Al2 O3 + 6HF = 2AlF3 + 3H2 O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl3 , AlBr3 и AlI3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

Сульфат алюминия Al2 (SO4 )3 . 18H2 O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

Алюмокалиевые квасцы KAl(SO4 )2 . 12H2 O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

Из остальных производных алюминия следует упомянуть его ацетат (иначе - уксуснокислую соль) Al(CH3 COO)3 , используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.

Несмотря на наличие громадных количеств алюминия в почках, растениях, как правило, содержат мало этого элемента. Еще значительно меньше его содержание в животных организмах. У человека оно составляет лишь десятитысячные доли процента по массе. Биологическая роль алюминия не выяснена. Токсичностью соединения его не обладают.

Металлы побочных подгрупп (хром, железо, медь). Физические и химические свойства. Оксиды и гидроксиды. Соли хрома, железа и меди. Роль железа и его сплавов в технике.

Металлы побочных подгрупп являются d-элементами. Особенность строения их атомов заключается в том, что на внешнем электронном слое, как правило, содержатся два s-электрона (иногда один – Cr, Cu, у палладия в его невозбужденном состоянии нет s-электронов) и во втором снаружи электронном слое их атомов имеется не полностью занятый электронами d-подуровень. Для образования химических связей атомы элементов могут использовать не только внешний электронный слой, но также d-электроны и свободные d-орбитали предшествующего слоя. Этим и объясняются их отличительные свойства. Возрастание порядкового номера не сопровождается существенным изменением структура внешнего электронного слоя; поэтому химические свойства этих элементов изменяются не так резко, как у элементов главных подгрупп. Закономерности изменения химической активности у элементов побочных подгрупп сверху вниз иные, чем у главных подгрупп, химическая активность (с некоторым исключением) уменьшается. Так, например, золото химически менее активно по сравнению с медью. В побочных подгруппах с возрастанием порядкового номера элемента окислительные свойства понижаются. Так, соединения хрома (VI) – сильные окислители, а для соединений молибдена (VI) и вольфрама – не характерны. Можно отметить отдельные общие закономерности общих подгрупп. Максимальная положительная степень окисления совпадает с номером группы (исключения составляют железо – +6; кобальт, никель, медь – +3). С увеличением степени окисления атомов металлов побочных подгрупп основные свойства их оксидов и гидроксидов уменьшаются, а кислотные – усиливаются. Из металлов побочных подгрупп наибольшее практическое значение имеют медь, цинк, титан, хром, железо. Свойства соединений железа и хрома рассмотрим подробнее.

Железо проявляет степени окисления +2, +3, +6. Железо в бинарных соединениях проявляет степени окисления +2, +3 и образует оксиды FeO и Fe2 O3 . Эти оксиды – твердые вещества, с большой долей нестехиометрии, практически нерастворимы в воде и щелочах, что свидетельствует об основном характере проявляемых свойств (только Fe2 O3 – амфотер). При нагревании совместно с восстановителем (Н2 , СО, С и др.) оксид FeO восстанавливается до металла, а при обычном нагревании переходит в оксид Fe2 O3 или Fe3 O4 . Оксид Fe2 O3 взаимодействует со щелочами, оксидами и карбонатами различных металлов (обычно при сплавлении) с образованием ферритов – солей железистой кислоты НFeO2 , не выделенной в свободном состоянии:

Fe2 O3 + 2NaOH → 2NaFeO2 + H2 O.

При добавлении щелочей к растворам, содержащим Fe2+ , выпадает осадок гидроксида Fe(ОН)2 . Гидроксид железа Fe(ОН)2 желтовато-белого цвета, на воздухе легко превращается в бурый Fe(ОН)3 :

4Fe(ОН)2 + О2 + Н2 О → 4Fe(ОН)3 .

Fe(ОН)2 легко растворим в кислотах, но под действием сильно концентрированных щелочей образуют соединения типа Na2 [Fe(OH)4 ]. При нагревании без доступа воздуха Fe(ОН)2 превращаются в FeO. Гидроксид Fe(ОН)3 выпадает в осадок при действии щелочей на растворы солей Fe3+ . Для него характерны амфотерные свойства:

Fe(ОН)3 + 3HCl → FeCl3 + 3H2 O;

Fe(ОН)3 + 3KOH → K3 [Fe(OH)6 ].

При окислении Fe(ОН)3 в щелочной среде образуются ферраты – соли не выделенной в свободном состоянии железной кислоты Н2 FeO4 :

2Fe(ОН)3 + 10KOH + 3Br2 → 2K2 FeO4 + 6KBr + 8H2 O.

Ферраты являются очень сильными окислителями.

Хром образует пять оксидов (+2, +3, +4, +5, +6). Все оксиды при обычных условиях – твердые вещества. Наиболее устойчивый – Cr2 O3 , он может быть получен при непосредственном взаимодействии простых веществ. Остальные оксиды получаются косвенным путем. Низшие оксиды – сильные восстановители и обладают кислотными свойствами. С ростом СО наблюдается увеличение кислотных свойств. Так, Cr2 O3 – амфотер, CrO3 – типичный кислотный оксид со свойствами сильнейшего окислителя. CrO3 при растворении в воде образует хромовую кислоту Н2CrO4 или дихромовую кислоту Н2 Cr2 O7 , которые являются кислотами средней силы и существуют только в водных растворах. Соли этих кислот являются сильными окислителями. При действии на растворы солей Cr2+ щелочей выпадает малорастворимое основание Cr(ОН)2 , являющееся (как и соли Cr2+ ) сильным восстановителем. Cr(ОН)2 уже на воздухе окисляется до Cr(ОН)3 , который представляет собой зеленовато-серый студенистый осадок. Cr(ОН)3 – амфотер, при взаимодействии со щелочами образует гидроксохромиты типа Mn[Cr(OH)n+3 ] (n=1, 2, 3 и растет с увеличением концентрации щелочи). При прокаливании эти соли обезвоживаются и переходят в безводные хромиты , являющиеся солями не выделенной в свободном состоянии хромистой кислоты НСrO2 . Хромиты образуются также при сплавлении Cr2 O3 или Cr(ОН)3 со щелочами или основными оксидами. При растворении Cr(ОН)3 в кислотах образуются соответствующие соли Cr3+ .

Водород, его химические и физические свойства. Получение водорода в лаборатории, его использование.

Водород – первый элемент и один из двух представителей первого периода системы. По электронной формуле 1s¹ он формально относится к s-элементам и является типовым аналогом типических элементов 1 группы (лития и натрия) и собственно щелочных металлов. Водород и металлы 1А-группы проявляют степень окисления +1, являются типичными восстановителями. Однако в состоянии однозарядного катиона Н+ (протона) водород не имеет аналогов. В металлах 1А-группы валентный электрон экранирован электронами внутренних орбиталей. У атома водорода отсутствует эффект экранирования, чем и объясняется уникальность его свойств.

С другой стороны, как у водорода, так и у галогенов не хватает одного электрона до электронной структуры последующего благородного газа. Действительно, водород, подобно галогенам, проявляет степень окисления –1 и окислительные свойства. Сходен водород с галогенами и по агрегатному состоянию и по составу молекул Э2 .

Давно известно, что реакционная способность водорода резко повышается, если его использовать в момент выделения. В этом случае химически реагируют не молекулы, а атомы водорода. Атомарный водород уже при комнатной температуре восстанавливает перманганат калия, реагирует с кислородом, многими металлами и неметаллами.

Молекула водорода представляет собой пример простейшей молекулы, состоящей из двух атомов, связанных ковалентной связью. Вследствие большой прочности и высокой энергии диссоциации распад молекул водорода на атомы происходит в заметной степени лишь при температуре 2500º.

Интересной особенностью молекулярного водорода является наличие в смеси двух видов молекул. Обе модификации отличаются друг от друга направлением собственного момента вращения протонов. В орто -форме о2 оба протона вращаются вокруг своей оси в одинаковых направлениях, т.е. спины ядер параллельны (↑↑). У пара -формы п2 ядра вращаются в противоположных направлениях и спины антипараллельны (↑↓). Существование орто- и пара- водорода – пример новой разновидности аллотропии.

При нормальных условиях водород представляет собой очень легкий (в 14,32 раза легче воздуха) бесцветный газ без вкуса и запаха. Плотность его при 0º равна 0,0000899 кг/л. Из всех газов водород обладает наибольшей теплопроводностью. Водород очень трудно сжижается. Точки кипения

(-252,56º) и плавления (-259,1º) отстоят друг от друга всего на 6,5º. Жидкий водород – прозрачная, бесцветная, неэлектропроводная жидкость. Водород плохо растворяется в воде, еще хуже в органических растворителях. Небольшие количества водорода растворимы во всех расплавленных металлах.

Исключительная прочность молекул водорода обусловливает высокие энергии активации химических реакций с участием молекулярного водорода. При обычных условиях водород взаимодействует только со фтором и при освещении с хлором. При нагревании же молекулярный водород вступает в химическое взаимодействие со многими металлами, неметаллами и сложными веществами.

1. H2 + 2Na → 2NaH

2. H2 + I2 → 2HI

3. H2 + PbO → Pb + H2 O

В лабораторных условиях водород получают действием цинка на соляную или серную кислоту.

Крупным потребителем водорода в химической промышленности является производство аммиака, львиная доля которого имеет на производство азотной кислоты и минеральных удобрений. Кроме того, водород широко используется для синтеза хлороводорода и метанола. Значительные количества водорода расходуются в процессах каталитической гидрогенизации жиров, масел, углей и нефтяных прогонов. Пламя водорода достигает 2700º С, благодаря чему он применяется при сварке и резке тугоплавких металлов и кварца. Восстановительная способность водорода используется в металлургии при получении металлов из их оксидов и галогенидов. Жидкий водород применяют в технике низких температур, а также в реактивной технике как одно из наиболее эффективных реактивных топлив.

Галогены, их характеристика на основе размещения в периодической системе и строении атомов. Хлор. Физические и химические свойства. Хлороводород. Соляная кислота и ее соли. Качественная реакция на хлорид-ион.

К 7А группе относятся элементы фтор, хлор, бром, йод, астат. Эти элементы принято называть галогенами. Почти все способы получения свободных галогенов основаны на окислении их отрицательных ионов различными окислителями или под действием электрического тока. В промышленности Br2 и I2 получают окислением бромидов и иодидов природной воды хлором, в лаборатории – окисление различными сильными окислителями соляной кислоты, бромидов, иодидов:

16HCl + 2KMnO4 → 5Cl2 + MnCl2 + 2KCl + 8H2 O;

2NaBr + Cl2 → Br2 + 2NaCl;

2NaI + MnO2 + 2H2 SO4 → I2 + MnSO4 + Na2 SO4 + 2H2 O.

Химическая активность простых веществ галогенов чрезвычайно высока. Они проявляют сильные окислительные свойства, энергично реагируют с металлами, большинством неметаллов, окисляют ряд сложных веществ. Окислительная способность уменьшается в ряду F2 – At2 . Фтор – один из сильнейших окислителей, с большинством простых веществ реагирует бурно уже при обычной температуре, с некоторыми из них (S, P) – даже при температуре жидкого воздуха (-190˚ С); окисляет инертные газы (Kr, Xe, Rn) и такие стойкие соединения, как вода и SiO2 . Бром, йод, астат окисляются при действии сильных окислителей, хлор – только при взаимодействии с фтором. Способность окисляться повышается в ряду Br2 – At2 . Для хлора, брома, йода характерны реакции диспропорционирования; способность к диспропорционированию уменьшается в ряду Cl2 – I2 .

Э2 + H2 → 2HЭ

Э2 + Hal2 → ЭHal

F2 + O2 → O2 F2

Э2 + S → Sx Эy

3F2 + N2 → 2NF3

Э2 + P → PЭ3 , PЭ5

2F2 + C → CF4

Э2 + Me → MeЭ, MeЭ2

2F2 + 2NaOH → OF2 + 2NaF + H2 O

Э + NaOH → NaЭ + NaЭO

2F2 + H2 O → 2HF + OF2

Э + H2 O → HЭ + HЭO

I2 + HNO3 (к) → HIO3 + NO2