Главная      Учебники - Разные     Лекции (разные) - часть 31

 

Поиск            

 

Оптимизация химического состава сплава

 

             

Оптимизация химического состава сплава

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РФ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Нижнетагильский институт

Кафедра металлургической технологии

Расчетно-пояснительная записка по дисциплинам

«Математическое моделирование и оптимизация металлургических

процессов»

«Вычислительная техника в инженерных расчетах»

Оптимизация химического состава сплава

Студент: Бородин А.Н.

Группа: 321 – ОМД

Преподаватель: Грузман В.М.

Преподаватель: Баранов Ю.М.

1998г.


Содержание

Введение 4
Глава 1

Верхний, нижний и основной уровень.

Расчет интервала варьирования

5

Глава 2 Расчет уравнений 7
Расчет уравнения для C, Si и σ текучести 7
Расчет уравнения для С, Si, относительного удлинения 11
Расчет уравнения для С, Si, предела прочности 13
Глава 3 Проверка уравнений 17
Глава 4 Оптимизация состава сплава 18

Целью нашей работы является нахождение оптимального состава стали М74 для получения наилучших физических свойств сплава: предела текучести, предела прочности, абсолютного удлинения. В данной работе использован метод линейного программирования и дальнейшая оптимизация по двухфакторной модели, что позволило получить одновременно решение графическим методом и на ЭВМ.

В ходе работы был определен наилучший состав стали по заданным требованиям:

- для получения минимального предела текучести содержание углерода и кремния должно быть следующим: C=0,7%; Si=0,4%;

- для получения максимального предела прочности: C=0,8%; Si=0,25%;

- для получения максимального абсолютного удлинения: C=0,7%; Si=0,4%.

ВВЕДЕНИЕ

Математическая модель является эффективным современным средством управления производством. В современных условиях быстроизменяющейся обстановке во всех сферах металлургического производства, от исходных материалов до готовой продукции, когда необходимо быстро и с минимальной ошибкой принимать ответственные решения, необходимо знание основ математического моделирования, уметь не только пользоваться готовыми моделями, но и принимать участие в их создании.

Линейное программирование - один из самых распространенных методов решения оптимизационных задач на практике. Он является частью математического программирования вообще, направленного на решение задач о распределении дефицитных ресурсов с учетом технологических, экономических и других ограничений, накладываемых условиями функционирования реального моделируемого объекта. Для линейного программирования используют линейные математические зависимости. Рождение метода линейного программирования связано с именами фон Неймана, Хичкока, Стиглера, которые использования положения теории линейных неравенств и выпуклых множеств, сформулированные в прошлом веке, для оказания помощи руководителям в принятии оптимальных решений. Основная задача линейного программирования была сформулирована в 1947 году Георгом Данцигом из управления ВВС США, который высказал гипотезу, что к анализу взаимосвязей между различными сторонами деятельности крупного предприятия можно подходить с позиций линейного программирования, и что оптимизация программы может быть достигнута максимизацией (минимизацией) линейной целевой функции.

В металлургической технологии наибольшее распространение получила задача составления технологических смесей, а конкретно, задача оптимизации химического состава сплавов.

Для того, чтобы исследовать метод «Оптимизации химического состава сплава», я воспользовался данными из прокатного цеха НТМК, которые отражают влияние содержания углерода и кремния в стали М74 на ее физические свойства: предел текучести, предел прочности и абсолютное удлинение. Данные взяты в ЦЛК (см. приложение 2).

ГЛАВА 1

ОПРЕДЕЛЕНИЕ ВЕРХНЕГО, НИЖНЕГО И ОСНОВНОГО УРОВНЯ. РАСЧЕТ ИНТЕРВАЛА ВАРЬИРОВАНИЯ

По данным выборки назначим верхний и нижний уровень варьирования факторов и рассчитаем интервал варьирования и средний (основной, нулевой) уровень.

Для этого построим таблицу, отражающую частоту «попадания» каждого числа:

Таблица 1

Подсчет частот

Х1 К1 Х2 К2
0,71 7 0,25 2
0,72 26 0,26 5
0,73 50 0,27 0
0,74 49 0,28 6
0,75 79 0,29 11
0,76 35 0,30 21
0,77 53 0,31 38
0,78 48 0,32 88
0,79 36 0,33 66
0,8 9 0,34 44
0,81 4 0,35 28
0,82 4 0,36 42
0,37 29
0,38 7
0,39 13
Итого 400 400

Таблица 2

Нижний, верхний, основной уровень и интервал варьирования

Факторы Х1 Х2
Нижний уровень 0,71 –0,74 0,25 – 0,29
Верхний уровень 0,80 – 0,83 0,37 – 0,41
Основной уровень 0,77 0,32
Интервал варьирования 0,04 0,05

Для нахождения среднего уровня выполняем следующие расчеты:

Найдем средние значения каждого интервала и основной уровень.

основной уровень

основной уровень х2 = 0

ГЛАВА 2

РАСЧЕТ УРАВНЕНИЙ

Необходимо рассчитать три уравнения:

- уравнение для C, Si и σ текучести,

- уравнение для C, Si и относительного удлинения,

- уравнение для C, Si и σ прочности.

2.1. Расчет уравнения для C, Si и σ текучести

Для того, чтобы оценить влияние факторов, часто имеющих разную размерность, производится кодирование – факторы делаем безразмерными, кроме этого кодирование обеспечивает легкость обработки данных.

, где хi - кодированная переменная.

2.1.1.Составление матрицы планирования

Таблица 3

Матрица планирования

N X1 Х2 y1 x1x2
1 1 1 667(40) 667 1
2 1 -1 589(20) 608,5 -1
628(357)
3 -1 1 647(45) 603,5 -1
589(12)
589(191)
589(310)
4 -1 -1 598(19) 586,4 1
598(134)
540(165)
598(253)
598(372)

2.1.2. Определение коэффициентов регрессии

,

где N - число опытов по матрице планирования.

b0 =(667+603,5+586,4+608,5)/4=616,35

b1 =(667+608,5-603,5-586,4)/4=21,4

b2 =(667-608,5+603,5-586,4)/4=18,9

b3 =(667-608,5-603,5+586,4)/4=10,35

2.1.3. Проверка значимости коэффициентов при факторах

Дисперсия воспроизводимости служит для оценки ошибки опыта, для этого необходимо найти опыты в центре плана, для чего составим табл.4.

Таблица 4

Опыты в центре плана.

N X1 x2 y1
3 0,77 0,32 589
96 598
118 589
138 598
215 598 594.4
237 589
257 598
334 598
356 589
376 598

,

где m – число опытов

Проверка значимости коэффициентов регрессии.

;

;

;

;

tтабл. = 2,26; т.е. все коэффициенты значимы.

Получили уравнение

2.1.4. Проверка адекватности математической модели

Проверяем адекватность математической модели по критерию Фишера. Для получения адекватности необходимо, чтобы разброс в точке и разброс в регрессии был сопоставим. ,

где f =N-(k+1)=4-(3+1)=0

Y1 =616,35+21,4+18,9+10,35=667

Y2 =616,35+21,4-18,9-10,35=608,5

Y3 =616,35-21,4+18,9-10,35=603,5

Y4 =616,35-21,4-18,9+10,35=586,5

Критерий Фишера

Математическая модель адекватна.

2.1.5. Переход от кодированных переменных к натуральным

2.2. Расчет уравнения для С, Si, относительного удлинения

2.2.1. Составление матрицы планирования

Таблица 5

Матрица планирования

N x1 x2 x1x2 y2
1 1 1 1 6,7(40) 6,7
2 1 -1 -1 5(20) 5,5
6(357)
3 -1 1 -1 7,3(45) 9,85
10,7(12)
10,7(191)
10,7(310)
4 -1 -1 1 6(19) 6,2
6(134)
7(165)
6(253)
6(372)

2.2.2. Расчет дисперсии воспроизводимости

Таблица 6

Опыты в центре плана

N x1 x2 y2
3 0,77 0,32 7,3 6,1
96 5,3
118 7,3
138 5,3
215 5,3
237 7,3
257 5,3
334 5,3
356 7,3
376 5,3

2.2.3. Определение коэффициентов регрессии

b0 =(6,7+5,5+9,85+6,2)/4=7,0625

b1 =(6,7+5,5-9,85-6,2)/4=-0,9625

b2 =(6,7-5,5+9,85-6,2)/4=1,2125

b3 =(6,7-5,5-9,85+6,2)/4=-0,6125

2.2.4.Проверка значимости коэффициентов регрессии

;

;

;

;

tтабл. = 2,26; t3< tтабл. , t2< tтабл. , т.е. эти коэффициенты незначимы.

2.2.5. Проверка адекватности математической модели

Y1 =7,0625+1,2125=8,275

Y2 =7,0625-1,2125=5,85

Y3 =7,0625+1,2125=8,275

Y4 =7,0625-1,2125=5,85

Критерий Фишера: ; Fрасч. <Fтабл.

Математическая модель адекватна.

2.2.5. Переход от кодированных переменных к натуральным

2.3. Расчет уравнения для С, Si, предела прочности

2.3.1. Составление матрицы планирования

Таблица 7

Матрица планирования

N x1 x2 x1x2 Y3
1 1 1 1 1079 1079
2 1 -1 -1 1030 1044,5
1059
3 -1 1 -1 1028 1024,5
1010
1040
1020
4 -1 -1 1 1020 1028
1030
1010
1040
1040

3.2.Вычисление дисперсии воспроизводимости

Таблица 8

Опыты в центре плана

N X1 x2 y2
3 0,77 0,32 1010 1006,5
96 1010
118 1030
138 1001
215 991
237 1001
257 991
334 1010
356 1001
376 1020

2.3.3. Определение коэффициентов регрессии

b0 =(1079+1044,5+1024,6+1028)/4=1044

b1 =(1079+1044,5-1024,6-1028)/4=17,75

b2 =(1079-1044,5+1024,6-1028)/4=7,75

b3 =(1079-1044,5-1024,6+1028)/4=9,5

2.3.4. Проверка значимости коэффициентов регрессии

;

;

;

;

tтабл. = 2,26; t3< tтабл. , t2< tтабл. , т.е. эти коэффициенты незначимы.

2.3.5. Проверка адекватности математической модели

Y1 =1044+17,75=1061,75

Y2 =1044+17,75=1061,75

Y3 =1044-17,75=1026,25

Y4 =1044-17,75=1026,25

Критерий Фишера: ; Fрасч. <Fтабл.

Математическая модель адекватна.

2.3.6. Переход от кодированных переменных к натуральным

ГЛАВА 3

ПРОВЕРКА УРАВНЕНИЙ

Проверим составленные уравнения, отражающие влияние содержания углерода и кремния в стали на ее физические свойства.

Таблица 9

Проверка уравнений

N опыта 295 392 149
x1= 0,75 0,73 0,79
x2= 0,39 0,29 0,33
yпр1.= 687 589 589
yрасч1.= 632,69 604,61 643,81
yпр.2= 10,7 6 6
yрасч.2= 8,76 6,335 7,305
yпр.3= 1059 1030 1001
yрасч.3= 1035,1125 1026,2375 1052,8625

ГЛАВА 4

ОПТИМИЗАЦИЯ СОСТАВА СПЛАВА

Необходимо оптимизировать химический состав сплава по C и Si. В ходе работы были выявлены зависимости механических свойств от состава сплава:

σтек. – предел текучести,

абсолютное удлинение,

σпр. – предел прочности;

σтек. =

σпр. =

4.1. Оптимальный состав сплава по пределу текучести

Найти оптимальный состав сплава по пределу текучести, т.е. найти такой состав сплава, который обеспечит минимальный предел текучести при следующих ограничениях:

ГОСТ – 84182-80

Строим график(рис.1).

σтек. min

Координаты:

σпр.:

Координаты:

Оптимальный состав сплава при σтек. min является C=0,7%; Si=0,4%.

σтек. =

Рис. 2. Нахождение минимума предела текучести

4. 2.Оптимальный состав сплава по абсолютному удлинению

Найти оптимальный состав сплава по абсолютному удлинению, т.е. найти такой состав сплава, который обеспечит максимальное абсолютное удлинение при следующих ограничениях:

, ГОСТ – 84182-80

Строим график(рис.2).

σтек.

max

Координаты:

σпр.:

Координаты:

Оптимальный состав сплава при . max является C=0,7%; Si=0,4%.

Рис. 3. Нахождение максимального абсолютного удлинения.

4. 3. Оптимальный состав сплава по пределу прочности

Найти оптимальный состав сплава по пределу прочности, т.е. найти такой состав сплава, который обеспечит максимальное значение предела прочности при следующих ограничениях:

ГОСТ – 84182-80

Строим график (рис. 3).

σтек.

Координаты:

σпр. max

Координаты:

Оптимальный состав сплава при σпр. max является C=0,8%; Si=0,25%.

σпр. =

Рис. 3. Нахождение максимального предела прочности.

Как видно, результаты решения задачи графическим методом полностью совпали с решением на компьютере в программе «Эврика» (см. приложение 1) .

Приложение 1

В данном приложении отражено решение задачи оптимизации аналитическим методом с помощью ЭВМ.

***************************************************************

Эврика: Решатель , Верс. 1.0r

Воскр. Ноябрь 23, 1997, 6:47 pm.

Имя файла ввода: C:\TEMP\TMM\EVRIKA\3.EKA

***************************************************************

Y1=1043-649*X1-2579*X2+3700*X1*X2

Y2=-0.6975+24.25*X2

Y3=702.3+443.75*X1

Y1<=680

Y2>=5

Y3>=950

$MIN(Y1)

X1<=0.8

X1>=0.7

X2<=0.4

X2>=.25

***************************************************************

Решение :

Переменные Значения

X1 = .70000000

X2 = .40000000

Y1 = 593.10000

Y2 = 9.0025000

Y3 = 1012.9250

Уровень доверия = 45.8%

Все ограничения удовлетв.

***************************************************************

Эврика: Решатель , Верс. 1.0r

Воскр. Ноябрь 23, 1997, 6:47 pm.

Имя файла ввода: C:\TEMP\TMM\EVRIKA\3.EKA

***************************************************************

Y1=1043-649*X1-2579*X2+3700*X1*X2

Y2=-0.6975+24.25*X2

Y3=702.3+443.75*X1

Y1<=680

Y2>=5

Y3>=950

$MAX(Y2)

X1<=0.8

X1>=0.7

X2<=0.4

X2>=.25

***************************************************************

Решение :

Переменные Значения

X1 = .70522708

X2 = .40000000

Y1 = 597.44370

Y2 = 9.0025000

Y3 = 1015.2445

Уровень доверия = 57.1%

Все ограничения удовлетв.

***************************************************************

Эврика: Решатель , Верс. 1.0r

Воскр. Ноябрь 23, 1997, 6:47 pm.

Имя файла ввода: C:\TEMP\TMM\EVRIKA\3.EKA

***************************************************************

Y1=1043-649*X1-2579*X2+3700*X1*X2

Y2=-0.6975+24.25*X2

Y3=702.3+443.75*X1

Y1<=680

Y2>=5

Y3>=950

$MAX(Y3)

X1<=0.8

X1>=0.7

X2<=0.4

X2>=.25

***************************************************************

Решение :

Переменные Значения

X1 = .80000000

X2 = .25000000

Y1 = 619.05000

Y2 = 5.3650000

Y3 = 1057.3000

Уровень доверия = 53.2%

Все ограничения удовлетв.

Приложение 2


N С Si пр. тек. абс. удл. пр. прочн.
1 0,73 0,34 598 7 1010
2 0,76 0,36 589 6 1030
3 0,77 0,32 589 7,3 1010
4 0,81 0,33 623 6 1030
5 0,77 0,37 589 6,7 1050
6 0,79 0,39 559 8 1001
7 0,82 0,34 638 6 1059
8 0,75 0,36 589 6,7 1040
9 0,75 0,32 598 8 1050
10 0,8 0,34 589 4,7 1010
11 0,74 0,32 579 4,7 991
12 0,74 0,31 569 6,7 971
13 0,73 0,32 589 6,7 1010
14 0,75 0,31 579 6 1030
15 0,73 0,33 589 6,3 1030
16 0,73 0,29 579 7,3 991
17 0,75 0,31 579 8,7 1010
18 0,74 0,32 608 6 1030
19 0,72 0,26 598 6 1020
20 0,8 0,28 589 5 1030
21 0,79 0,36 598 6 1040
22 0,78 0,34 579 7 1020
23 0,77 0,32 598 5,3 1001
24 0,75 0,33 471 9,3 893
25 0,77 0,3 589 6,7 1020
26 0,77 0,31 569 6,7 991
27 0,76 0,32 667 6.3 1059
28 0,78 0,35 608 6,7 1020
29 0,74 0,28 598 6 1020
30 0,75 0,32 589 6,7 1020
31 0,73 0,36 589 7,3 1020
32 0,71 0,31 638 6 1030
33 0,74 0,36 589 6,7 1010
34 0,79 0,33 589 6 1030
35 0,75 0,33 608 8 1030
36 0,78 0,34 589 4 1001
37 0,72 0,32 589 6,7 1010
38 0,72 0,33 589 6,7 1001
39 0,73 0,29 589 6 1010
40 0,8 0,38 667 6,7 1079
41 0,75 0,29 647 6,3 1059
42 0,73 0,32 579 7,3 991
43 0,75 0,28 598 7,3 1020
44 0,72 0,34 598 6 1010
45 0,72 0,38 647 7,3 1028
46 0,79 0,31 598 4 1001
47 0,78 0,37 638 6 1030
48 0,73 0,35 598 6,7 1010
49 0,72 0,32 589 7 1010
50 0,71 0,31 540 7,7 942
51 0,76 0,32 549 6 991
52 0,75 0,37 677 14 1128
53 0,77 0,35 598 4,7 991
54 0,79 0,33 647 6 1050
55 0,72 0,33 579 6,7 971
56 0,78 0,33 657 13,3 1079
57 0,75 0,39 687 10,7 1128
58 0,75 0,36 579 8 1010
59 0,75 0,32 657 6,7 981
60 0,76 0,34 608 8 1059
61 0,74 0,33 569 6,7 981
62 0,73 0,31 569 6,7 981
63 0,78 0,36 687 8 1089
64 0,75 0,33 579 8,7 991
65 0,73 0,35 559 6 1001
66 0,73 0,34 549 8 981
67 0,74 0,33 598 7,3 1010
68 0,74 0,32 598 7 1001
69 0,75 0,32 608 5,7 1030
70 0,78 0,32 589 6,7 1030
71 0,79 0,36 618 6,7 1069
72 0,72 0,37 589 10,7 1010
73 0,76 0,39 687 7,3 1079
74 0,75 0,3 598 8 1040
75 0,74 0,33 589 6,7 1020
76 0,74 0,32 598 6,7 1030
77 0,75 0,31 589 6 1020
78 0,75 0,32 579 6 971
79 0,79 0,32 657 6,7 1059
80 0,77 0,3 618 7 1030
81 0,77 0,3 559 6,7 991
82 0,77 0,34 608 6 1079
83 0,79 0,37 687 7,7 1010
84 0,77 0,35 608 7,3 991
85 0,73 0,35 608 4,6 1010
86 0,76 0,36 589 6,7 952
87 0,73 0,33 559 6,6 961
88 0,74 0,32 598 7,3 1010
89 0,79 0,35 618 7,3 971
90 0,76 0,33 589 4 1059
91 0,75 0,33 618 8,7 1050
92 0,79 0,31 638 6,7 961
93 0,73 0,34 569 6,3 1010
94 0,78 0,37 598 6,6 1030
95 0,75 0,35 638 7 1020
96 0,77 0,32 598 5,3 1010
97 0,78 0,37 569 6,3 991
98 0,76 0,32 569 6,7 1010
99 0,73 0,32 559 6,7 1030
100 0,79 0,34 598 6,7 1069
101 0,78 0,37 667 6 991
102 0,72 0,36 569 6,7 1030
103 0,77 0,34 608 6,7 1010
104 0,76 0,32 569 6,7 1020
105 0,76 0,33 569 6 991
106 0,74 0,33 598 6 1050
107 0,78 0,34 598 6,7 1030
108 0,75 0,35 589 7 1059
109 0,78 0,37 657 6,7 1050
110 0,74 0,32 608 4,7 1001
111 0,77 0,34 589 7 1003
112 0,78 0,33 589 6,7 1020
113 0,77 0,36 698 4,7 1040
114 0,77 0,33 628 7 1020
115 0,77 0,39 589 4,7 1010
116 0,73 0,34 598 7 1030
117 0,76 0,36 589 6 1010
118 0,77 0,32 589 7,3 1030
119 0,81 0,33 628 6 1050
120 0,77 0,37 589 6,7 1001
121 0,79 0,39 559 8 1059
122 0,82 0,34 638 6 1040
123 0,75 0,36 589 6,7 1050
124 0,75 0,32 598 8 1010
125 0,8 0,36 589 4,7 991
126 0,74 0,32 579 4,7 971
127 0,74 0,31 569 6,7 1010
128 0,73 0,32 589 6,7 1030
129 0,75 0,31 579 6 1030
130 0,73 0,33 589 6,3 991
131 0,73 0,29 579 7,3 1010
132 0,75 0,31 579 8,7 1030
133 0,74 0,32 608 6 1020
134 0,72 0,26 598 6 1030
135 0,8 0,3 579 5 1040
136 0,79 0,36 598 6 1020
137 0,78 0,34 579 7 1001
138 0,77 0,32 598 5,3 1001
139 0,75