Главная      Учебники - Разные     Лекции (разные) - часть 31

 

Поиск            

 

Гидроочистка дизельного топлива 2

 

             

Гидроочистка дизельного топлива 2

ВВЕДЕНИЕ

Во многих странах мира нефтеперерабатывающая промышленность стоит перед решением проблем, связанных с введением более строгих спецификаций на моторные топлива и с изменением спроса на них. Особенно быстро в разных странах меняются спецификации на бензин и дизельное топливо, вынуждая нефтепереработчиков инвестировать средства в строительство новых или в реконструкцию действующих установок.

С 1.01.05г в странах ЕС действуют нормы по выбросам вредных веществ для автомобильной техники Евро 4, регламентирующие содержание серы в дизельном топливе не более 0,05%. К 2010 году планируется весь дизельный транспорт перевести на топливо с ультра низким содержанием серы 0,01%.

Снижение содержания серы в дизельном топливе может быть достигнуто путем гидроочистки, проводимой в более жестких условиях. Указанная цель также может быть достигнута подбором нового, более эффективного для данного типа сырья, катализатора [1].

Большинство реакторов гидропереработки нефтяного сырья, находящихся в настоящее время в эксплуатации, спроектированы и построены в середине 70-х годов. Поскольку выходы продуктов и их качество изменились, многие нефтепереработчики смогли получить преимущества от использования прогресса в разработке катализаторов и избежать крупных капиталовложений в свои установки. Однако для того, чтобы полностью реализовать потенциал реакторной системы экономически эффективно, необходима подробная оценка рабочих характеристик и конструкции существующих реакторных систем в сочетании с тщательным рассмотрением имеющихся в наличии вариантов модернизации реакторов.

По совершенствованию качества дизельных топлив большие усилия прилагают европейские страны. В них принята концепция ужесточения требований к этому виду топлива, особенно по содержанию в нём сернистых соединений. В настоящее время ограниченное число нефтеперерабатывающих заводов в мире может получать дизельное топливо с ультранизким содержанием сернистых соединений. Кроме этого в этих топливах предусматривается уменьшение присутствия ароматических углеводородов, 98%-й точки выкипания фракции и повышении цетанового числа (в настоящее время 52 пункта, а в перспективе до 55-58 пунктов).

В моем проекте я попыталась раскрыть сущность процесса гидроочистки, его актуальность и наибольшую эффективность.

1 Литературный обзор

1.1 История развития гидрогенизационных процессов

История развития промышленных гидрогенизационных процессов начиналась с гидрогенизации продуктов ожижения угля. Еще до второй мировой войны Германия достигла больших успехов в производстве синтетического бензина при гидрогенизационной переработке углей (на основе применения синтеза Фишера-Тропша), а в годы второй мировой войны Германия производила более 600 тыс.т/год синтетических жидких топлив, что покрывало большую часть потребления страны. В настоящее время мировое производство искусственного жидкого топлива на основе угля равно около 4,5 млн. т/год. После широкого промышленного внедрения каталитического риформинга, при котором производился в качестве побочного продукта – избыточный дешевый водород, наступает период массового распространения различных процессов гидроочистки сырьевых нефтяных фракций (необходимо и для процессов риформинга) и товарной продукции НПЗ (бензиновые, керосиновые, дизельные и масляные фракции). Первая установка гидрокрекинга запущена в 1959 году в США[2].

1.2 Понятие процесса гидроочистки Гидроочистка — одноступенчатый процесс, проходящий в наиболее мягких, по сравнению с гидрокрекингом и деструктивной гидрогенизацией, условиях. Процесс протекает при 350—430°С, 3,0—6,0 МПа, циркуляции водородсодержащего газа 100—600 м33 сырья и объемной скорости 3 —10ч-1 с применением катализатора (обычно алюмокобальтмолибденовый или алюмоникельмолибденовый).Гидроочистке (или гидрооблагораживанию) может подвергаться различное сырье, получаемое как при первичной перегонке нефти, так и при термокаталитических процессах, от газа до масел и парафина. Наибольшее применение гидроочистка имеет для обессеривания сырья каталитического риформинга, а также для получения реактивного и малосернистого дизельного топлива из сернистых и высокосернистых нефтей. При гидроочистке происходит частичная деструкция в основном сероорганических и частично кислород- и азотсодержащих соединений.Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Удаление гетероатомов происходит в результате разрыва связей C–S, C–N и C–O и насыщения образующихся осколков водородом. При этом сера, азот и кислород выделяется соответственно в виде H2 S, NH3 и H2 O. Алкены присоединяют водород по двойной связи. Частично гидрируются полициклические ароматические углеводороды.

1.3 Химизм процесса гидроочистки

В неуглеводородных соединениях связи C–S и S–S менее прочны, чем связи С–С и С–Н, усредненные энергии связи которых равны 201, 218, 247 и 365 кДж/моль, соответственно. Но поскольку процесс гидроочистки каталитический, то прочность связи следует оценивать с учетом энергии образования промежуточных комплексов катализатора с осколками, образовавшимися после разрыва связей. Эта энергия значительно компенсирует затрату энергии разрыва связи. Например, на никеле энергия разрыва связи C–S составляет 20 кДж/моль, С–N – 104 кДж/моль, а С–С – 201кДж/моль. Этим объясняется селективность процессов гидроочистки: почти количественная деструкция связей С–S без существенного затрагивания связей С–С, т.е. без заметной деструкции сырья.

Меркаптаны превращаются в углеводород и сероводород:

RSH + H2 RH + H2 S

Дисульфиды гидрируются до сероводорода и соответствующих углеводородов также через стадию образования меркаптанов:

H2

H2


RSSR’ RSH + R’SH RH + R’H + 2H2 S

В циклических сульфидах, например тиофане, вначале разрывается кольцо, затем отщепляется сероводород и образуется соответствующий углеводород:

2H2

S

CH3 CH2 CH2 СН2 CH3 +H2 S

Соединения тиофенового ряда представлены бензтиофеном, дибензтиофеном, алкилдибезтиофенами и диалкилдибензтиофенами – малоактивны. Их доля в составе серосодержащих соединений дизельных фракций достигает 50 – 60 %, что в пересчете на серу при общем ее содержании около 1,2%(масс.) составляет 0,3 – 0,7%(масс.). Устойчивость сероорганических соединений к гидрогенолизу с увеличением числа ароматических и нафтеновых колец в его молекуле возрастает.

Тиофен и бензтиофен сначала гидрируются до производных тетрагидротиофена, которые затем превращаются алканы и алкилпоизводные ароматических углеводородов:

H2

H2


S

S

CH3 CH2 CH(R)CH3 + H2 S

+ H2 S

Гидрогенолиз дибензтиофена происходит по схеме:

По реакции (1) гидрогенолиз дибензтиофена происходит преимущественно на алюмокобальтмолибденовом, а по реакции (2) и (3) – на алюмоникельмолибденовом катализаторе.

Азот в нефтепродуктах находится в основном в гетероциклах – в виде производных пиррола и пиридина.

Гидрогенолиз связи C – N протекает труднее, чем связи C – S, поэтому в процессах гидроочистки азот удалить сложнее, чем серу. Легче всего гидрируются амины:

H2


C6 H5 CH2 NH2 C6 H5 CH3 + NH3

Анилин, содержащий аминогруппу, связанную с ароматическим кольцом, гидрируется значительно труднее:

H2


С6 Н5 NH2 C6 H6 + NH3

Хуже всего удаляется азот из циклических структур. Пиррол гидрируется до бутана и аммиака:

2H2

H2

H2


NH

CH3 CH2 CH2 CH2 NH2 CH3 CH2 CH2 CH3 + NH3

Пиридин превращается в пентан и аммиак по схеме:

H2

H2


N

CH3 CH2 CH2 CH2 CH2 NH2 CH3 CH2 CH2 CH2 CH3 + NH3

Так как сопряжённая электронная система в молекуле пиридина значительно более устойчива, чем в молекуле пиррола, пиридин гидрируется труднее, чем пиррол.

Гидрирование бициклических и полициклических ароматических углеводородов начинается с кольца, содержащего гетероатом:

H2

H2


+ NH3

N


Кислород в средних дистиллятах может быть представлен соединениями типа спиртов, эфиров, фенолов и нафтеновых кислот. В высококипящих фракциях кислород находится в основном в мостиковых связях и в циклах молекул. Наибольшее количество кислородсодержащих соединений концентрируется в смолах и асфальтенах.

При гидрогенолизе кислородсодержащих соединений образуются соответствующие углеводороды и вода:

2H2


R COOH R CH3 + 2H2 O

2H2


RC6 H4 OH RC6 H5 + H2 O

Смолы и асфальтены превращаются в низкомолекулярные соединения. Гидроочистка от кислородсодержащих соединений протекает в тех же условиях, что и удаление сернистых примесей. В присутствии обычных катализаторов гидроочистки достигается практически полное гидрирование кислородсодержащих соединений.

Металлоорганические соединения, присутствующие в нефтяных фракциях, разлагаются на активных центрах катализатора с выделением свободного металла, являющегося каталитическим ядом. Гидроочистка позволяет удалять большую часть металлоорганических соединений. Таким образом, ванадий удаляется на 98-100%, а никель на 93-96%.

В процессе гидроочистки одновременно с реакциями сернистых, азотистых и кислородных соединений протекают многочисленные реакции углеводородов:

- изомеризация парафиновых и нафтеновых углеводородов;

- насыщение непредельных углеводородов;

- гидрокрекинг;

- гидрирование ароматических углеводородов и другие.

Изомеризация парафиновых и нафтеновых углеводородов происходит при любых условиях обессеривания.

H2

При температуре 350÷500˚С происходит практически полное гидрирование непредельных соединений при сравнительно низком парциальном давлении водорода:

RCH = CH2 RCH2 CH3

Интенсивность гидрокрекинга усиливается с повышением температуры и давления. При более высоких температурах и низких давлениях происходит частичное дегидрирование нафтеновых и дегидроциклизация парафиновых углеводородов. В некоторых случаях гидрогенизационного обессеривания эти реакции могут служить источником получения водорода для реакции собственного обессеривания, т.е. обеспечивают протекание процесса автогидроочистки.

В процессе гидрирования наиболее стойкими являются ароматические углеводороды. Гидрирование ароматических углеводородов с конденсированными кольцами может происходить в условиях процесса гидроочистки:



Наряду с последовательным гидрированием ароматических колец возможно расщепление образовавшихся насыщенных колец и выделение алкилзамещённых аренов:

CH3

C3 H7


H2

CH2

+

Алкилбензолы на катализаторах с высокой гидрирующей активностью подвергаются дальнейшему гидрогенолизу, в основном с последовательным отщеплением метана[4]:


H2

1.4 Термодинамика процесса

Термодинамически процесс гидроочистки низкотемпературный. Для быстрого протекания реакций на существующих промышленных катализаторах достаточна температура 330-380°С. Поскольку реакции присоединения водорода сопровождаются изменением объёма, давление в реакционной зоне оказывает решающее влияние на глубину процесса. Наиболее часто при гидроочистке применяют давление 2,5-5,0 МПа.

Гидрирование ароматических углеводородов идёт с выделением теплоты и снижением энтропии, константы равновесия гидрирования быстро уменьшаются с ростом температуры.

Суммарный тепловой эффект гидроочистки составляет 20 – 87 кДж на 1 кг сырья для прямогонных фракций. Добавление к прямогонному сырью до 30% фракций вторичного происхождения повышает теплоту реакции до 125–187 кДж/кг в зависимости от содержания непредельных углеводородов в сырье.

1.5 Механизм процесса гидроочистки

Механизм гидрирования сераорганических соединений в значительной степени зависит от их строения. Скорость гидрирования, в общем, возрастает в ряду: тиофены < тиофаны » сульфиды < дисульфиды < меркаптаны.

Данных о гидрировании азот- и кислородорганических соединений очень мало. В таблице 1.1 приведены данные о гидрировании некоторых азот-, кислород- и сероорганических аналогов на Ni2 S3 [4].

Таблица 1.1

Степень превращения различных видов гетероатомных соединений в зависимости от температуры

Углеводород

Превращение, %

при 200°С

при 350°С

при 400°С

Тиофан

41

100

100

Тетрагидрофуран

0

25

55

Тиофен

0

15

39

Фуран

0

0

10

Пиррол

0

0

0

При одинаковом строении устойчивость относительно гидрирования возрастает в ряду соединений: сераорганические < кислородорганические < < азоторганические.

1.6 Катализаторы гидроочистки

Ужесточающиеся требования к качеству нефтепродуктов, в первую очередь по снижению содержания в среднедистиллятных фракциях серы и ароматических углеводородов, заставляют искать более эффективные катализаторы гидроочистки. Катализаторы гидроочистки представляют собой сочетание окислов активных компонентов (никель, кобальт, молибден и др.) с носителем, в качестве которого чаще всего используют активную окись алюминия. Носитель в составе катализатора гидроочистки играет роль не только инертного разбавителя, но и участвует в формировании активных фаз, а также служит в качестве структурного промотора, создающего специфическую пористую структуру, оптимальную для переработки конкретного сырья.

Для гидроочистки применяют катализаторы на основе оксидов металлов VII и VIII групп (никель, кобальт, молибден, вольфрам). В промышленности используют алюмокобальтмолибденовый (АКМ) и алюмоникельмолибденовый (АНМ) катализаторы. В алюмокобальтмолибденовый катализатор на силикатной основе для увеличения прочности вводят диоксид кремния (АНМС).

Носителем служит оксид алюминия. Катализаторы выпускают в виде частиц неправильной цилиндрической формы. В настоящее время применяются катализаторына цеолитной основе. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, достаточно активен в гидрировании непредельных соединений. Катализатор АНМ проявляет большую активность при гидрировании ароматических и азотистых соединений.

При гидроочистке катализатор может работать без потери активности 18-30 месяцев. Активность катализатора максимальна при соотношении Co:Мо=2:1, общее содержание Со+Мо на окиси алюминия составляет 8-13% масс. Оксиды кобальта и молибдена при гидроочистке переходят в сульфидную форму, и их активность при этом повышается. Если в сырье мало серы, то катализатор перед использованием целесообразно осернить. Алюмокобальтмолибденовые катализаторы содержат 10-15% металлов при атомном соотношении Со:Ni:Мо от 1:2:6. Удельная поверхность катализаторов гидроочистки составляет 160-330м2 /г. Для определения активности катализатора сравнивают обессеривающую способность испытываемого катализатора с обессеривающей способностью эталонного образца.

Испытания ведут на пилотной установке по специальной методике. Для этого рассчитывают индекс активности.

Сам катализатор должен иметь индекс активности не ниже 95%.Если активность свежего катализатора не достигает максимальной величины, катализатор активизирует в течение нескольких часов водородом при выше 300о С. Со временем активность катализатора падает за счет отложений кокса на поверхности катализатора. Частичную регенерацию катализатора можно провести гидрированием коксовых отложений при циркуляции водорода и температурах 400-420о С.

Наиболее распространенные для гидроочистки в отечественной и зарубежной практики катализаторы приведены в таблице 1.2[5].

Таблица 1.2

Катализаторы гидроочистки нефтяных фракций

Марка катали-затора

Характеристика

Сырьё

Форма

Тип носи-теля

Актив-ные компо-ненты

AKZO Nobel

KF–845

высокая обессеривающая и деазотирующая активность

от бензина до вакуумного газойля

четырёхли-стник

Al2 O3

NiMo

KF–747

глубокое гидрообессеривание

от дизельного топлива до вакуумного газойля

Четырёхли-стник

Al2O3

CoMo

Criterion Catalyst

С–448

для получения низкосернистого дизельного топлива

средний дистиллят, вакуумный газойль

сформо-ванные экструдаты

Al2 O3

CoMo

HDS–3

насыщение ароматических углеводородов

от бензина до вакуумного газойля

сформо-ванные экструдаты

Al2O3

NiMo

«Всероссийский институт по переработке нефти»

ГS–168

обессеривающая активность

бензин, дизельная фракция

цилиндр

Al2 O3 + SiO2

NiMo

ГДК–202

высокая обессеривающая активность

среднедистил-лятные фракции

цилиндр

Al2O3+ цеолит

NiMo

Procatalyse

HR–306C

гидрообессеривание гидродеазотирова-ние

от бензина до вакуумного газойля

экструда-ты

Al2 O3

-

Особый интерес представляют катализаторы фирм Criterion Catalyst, Procatalyse, AKZO Nobel, а также отечественные катализаторы[6].

1.7 Характеристика сырья и продуктов гидроочистки

Глубина гидроочистки дистиллятов от серы и других соединений зависит от типа углеводородного сырья, температуры процесса, парциального давления водорода и его кратности циркуляции, объемной скорости подачи сырья и других факторов.

Гидроочистке подвергают как прямогонные фракции (бензин, реактивное и дизельное топливо, вакуумные газойли), так и дистилляты вторичного происхождения (лёгкая фракция пиролизной смолы, бензины, лёгкие газойли коксования и каталитического крекинга).

С утяжелением сырья степень его очистки в заданных условиях процесса снижается. С повышением средней молярной массы доля серы, содержащейся в устойчивых относительно гидрирования структурах, увеличивается. По мере утяжеления сырья всё большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через плёнку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Увеличение в сырье количества полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки.

При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) проходит значительно труднее. Это связано с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат большое количество ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганических соединений.

Качество получаемой продукции, то есть дизельного топлива, должно соответствовать показателям, приведенным ниже (таблица 1.3, таблица 1.4, таблица 1.5, таблица 1.6):

Таблица 1.3

Показатели качества сероводорода

Показатели качества продукта

Содержание сероводорода, % объемных

не менее 98,0

Применяется в качестве сырья для производства серной кислоты.

Таблица 1.4

Фракция дизельного топлива гидроочищенная

Показатели качества продукта

Содержание воды и механических примесей

отсутствие

Фракционный состав

50% отгоняется при температуре не выше

90% отгоняется при температуре не выше

96% отгоняется при температуре не выше

280°С

340°С

360°С

Сероводородная коррозия

отсутствие

Испытание на медной пластинке

выдерживает

Температура вспышки,

определяемая в закрытом тигле, °С

не ниже 62

Массовая доля общей серы, % масс.

не более 10

Азот, % масс.

не более 20

Йодное число, гр/100гр.

0,5

Плотность, кг/м3

не более 834

Таблица 1.5

Показатели качества продукта

Содержание воды и механических примесей

отсутствие

Испытание на медную пластинку

выдерживает

Температура начала кипения, °С

не ниже 40

Температура конца кипения, °С

не выше 180

Применяется как компонент автомобильных бензинов.

Показатели качества отгоняемого бензина

Таблица 1.6

Очищенный углеводородный газ

Показатели качества продукта:

Содержание сероводорода, % объемных

не более 0,20

Применяется в качестве печного топлива на установке.

По отношению к действующему европейскому стандарту EN 590, на территории СНГ был разработан и введен в действие с 1.02.2007 стандарт СТБ 1658-2006, который устанавливает технические требования и методы испытания дизельного топлива, используемого для транспортных средств (таблица 1.7)[7].

Таблица 1.7

Общие требования и методы испытаний

Наименование показателя

Единица измерения

Значение показателя

Метод испытания

min

max

Цетановое число

-

51,0

-

СТБ ИСО 5165

Цетановый индекс

-

46,0

-

СТБ ИСО 4264

Плотность при 15 °СС '

кг/м3

820

845

СТБ ИСО 3675

ЕН ИСО 12185

Массовая доля полициклических ароматических углеводородов

%(m/m)

11

СТБ ЕН 12916

мг/кг

350*

СТБ ИСО 20846

ЕН ИСО 20847

ЕН ИСО 20884

Содержание серы

50*

ЕН ИСО 20847

ЕН ИСО 20884

10*

СТБ ИСО 20846

ЕН ИСО 20884

Температура вспышки

°С

выше 55

-

СТБ ИСО 2719

Коксуемость 10 %-ного остатка

% (m/m)

-

0,30

СТБ ИСО 10370

Зольность

% (m/m)

-

0,01

СТБ ИСО 6245

Содержание воды

мг/кг

-

200

СТБ ИСО 12937

Содержание механических примесей

мг/кг

-

24

СТБ ЕН 12662

Коррозия медной пластинки (3 ч при 50 °С)

единицы по шкале

класс 1

СТБ ИСО 2160

Стойкость к окислению

г/м3

-

25

СТБ ИСО 12205

Смазывающая способность: скорректированный диаметр пятна износа (WSD 1,4) при 60°С

мкм

-

460

СТБ ИСО 12156-1

Вязкость при 40 °С

мм2

2,00

4,50

СТБ ИСО 3104

Объемная доля метиловых эфиров жирных кислот (FАМЕ)

% (V/V)

-

5

ЕН 14078

Доведение качества отечественных ДТ до требований ЕН 590 возможно только при комплексном внедрении на нефтеперерабатывающих заводах современных дорогостоящих технологий гидроочистки (гидрокрекинг и др.) и использовании противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок.

За рубежом для характеристики воспламеняемости топлива наряду с цетановым числом используют дизельный индекс. Этот показатель нормируется и в отечественной технической документации на дизельное топливо, поставляемое на экспорт: ТУ 38.401-58-110-94.

Дизельный индекс (ДИ) вычисляют по формуле :

ДИ =tан d/100,

где tан – анилиновая точка (определяют в °С и пересчитывают в ,°F)

10F = (9,5°С + 32), d – плотность,.

Между дизельным индексом и цетановым числом топлива существует зависимость, представленная в таблице 1.8 :

Таблица 1.8

Зависимость цетанового числа от дизельного индекса

Дизельный индекс

20

30

40

50

62

70

80

Цетановое число

30

35

40

45

55

60

80

В отечественной нефтеперерабатывающей промышленности нормируется дизельный индекс.

Дизельный индекс определяют:

ДИ= (108А+32)(141,5-131,5 )/100 ,

где А- анилиновая точка испытуемого топлива, °С;

- относительная плотность топлива.

В настоящее время разработаны и применяются различные методы качественного и количественного анализа серосодержащих соединений в нефти и нефтепродуктах. Качественные методы анализа необходимы прежде всего для обнаружения таких активных соединений, как сероводород, тиолы и свободная сера. Из качественных методов определения активных серосодержащих соединений в лабораторной практике наибольшее применение нашли проба на медную пластинку и так называемая докторская проба. Анализ на докторскую пробу заключается в том, что нефтепродукт интенсивно перемешивают с раствором плюмбита натрия и порошковой серой.

При этом если анализируемый нефтепродукт содержит сероводород, выпадает чёрный кристаллический осадок сульфида свинца:

Na2 PbO2 + H2 S = PbS + 2NaOH

Докторская проба очень чувствительна и позволяет обнаруживать сероводород при его содержании 0,0006%.

Тиолы взаимодействуют с плюмбатом натрия по реакции :

Na2 PbO2 + 2RSH = (RS)2 Pb + 2NaOH,

При этом анализируемый нефтепродукт окрашивается в оранжевый, коричневый или черный цвет. Для обнаружения сероводорода и свободной серы применяют пробу на медную пластинку, принятую в качестве стандартной (ГОСТ 6321-69). В результате сернистой коррозии медная пластинка, выдержанная в нефтепродукте, при повышенной температуре в течение определенного времени окрашивается в различные цвета от бледно-серого до почти черного.

К инструментальным методам определения группового и структурного состава серосодержащих соединений относятся газожидкостная и жидкость-жидкостная хромотография, полярография, потенциометрическое и амперометрическое титрование, УФ-,ИК- и ЯМР-спектроскопия, масс-спектроскопия.

Полярографическим методом анализа можно определять в нефтепродуктах содержание свободной, сероводородной, тиольной, сульфидной и дисульфидной серы.

Сероводородную и тиольную серу в моторных топливах определяют согласно ГОСТ 17323-71 методом потенциометрического титрования нитратом диамминсеребра. По характеру кривых титрования можно качественно оценить наличие в топливе свободной серы

Методы анализа общей серы делят на два класса: химические и физические. Из физических методов анализа следует отметить нейтронно-активационный (НАА), рентгено-флюоресцентный (РФА) и рентгено-радиометрический (РРМ). НАА основан на взаимодействии нейтронов с ядрами облучаемой пробы. Предел обнаружения серы равен 5∙10-2 %. В основе РРМ лежит измерение поглощения рентгеновских лучей при известной зависимости степени поглощения от концентрации анализируемого вещества. РРМ можно использовать для анализа нефтепродуктов с массовой долей серы не менее 0,5%

Метод РФА – флюоресцентный вариант рентгено-радиометрического анализа. Предел обнаружения серы составляет 5∙10-3 %.

Из химических методов анализа общей серы наиболее распространены и стандартизированы окислительные методы. В окислительных методах навеску нефтепродукта сжигают в приборах различной конструкции. В качестве окислителя используются воздух, кислород, диоксид марганца. В основе методов сжигания лежит реакция окисления всех серосодержащих соединений анализируемого нефтепродукта в оксиды серы (SO2 ,SO3 ) с последующим их поглощением и анализом.

1.8 Установки гидроочистки, применяемые в настоящее время

Современные гидрогенизационные процессы фирмы Union Oil Co: процесс Юникрекинг/ДП включает последовательно работающие два реактора гидроочистки и селективной гидродепарафинизации для обработки сырья – дизельных фракций и вакуумных газойлей с получением низкозастывающией температурой дизельного топлива (температура застывания иногда до минус 80С) с содержанием 0,002% серы, менее 10% ароматики на катализаторах НС-К и НС-80 при конверсии сырья 20%; процесс Юникрекинг с частичной конверсией 80%сырья – вакуумных газойлей с получением дизельного топлива с содержанием 0,02% серы, менее 10% ароматики на катализаторе предварительной гидроочистки НС-К и усовершенствованном цеолитном катализаторе DHC-32. Для реформулирования нефтяных остатков в мировой практике применяют, в частности следующие процессы: гидроочистка RCD Unionfining (Union Oil Co.) для уменьшения содержания серы, азота, асфальтенов, металлов и снижения коксуемости остаточного сырья с целью получения качественного малосернистого топлива или для дальнейшей переработки при гидрокрекинге, коксовании, каталитическом крекинге остаточного сырья; гидроочистка RDS/VRDS (Chevron) по назначению похожа на предыдущий процесс, при этом перерабатывается сырье с вязкостью при 1000 С до 6000мм2 /с и с содержанием металлов до 0,5 г/кг, применяется технология «замены катализатора на ходу», которая дает возможность выгружать катализатор из реактора и заменять его свежим при сохранении нормального режима работы в параллельных реакторах, что позволяет перерабатывать очень тяжелое сырье с пробегом установки более года[8].

2 Технологический раздел

2.1 Выбор метода производства

В последнее время ужесточились требования к дизельному топливу, поэтому в данном дипломном проекте была модернизирована установка гидроочистки дизельного топлива.

Новые ключевые решения по модернизации сводятся к следующим:

- К существующему реактору добавили второй, для того чтобы увеличить количество катализатора в системе. Добавление реактора привело к росту перепада давления в реакционном узле.

-Свежий водород ввели непосредственно во второй реактор, смешивая его с потоком из первого реактора. Цель этой меры - поддержание высокого парциального давления водорода во втором реакторе и охлаждение его на выходе в него.

-Заменили внутренние устройства в первом реакторе на более совершенные[9].

Все эти вышесказанные меры позволили значительно углубить степень гидрообессеривания.

Одним из наиболее важным этапом усовершенствования катализатора гидроочистки было повышение их гидрообессеривающей активности за счет оптимизации природы исходных реагентов(катализаторы ГО-30-7, ГО-70), увеличение содержания гидрирующих металлов (катализаторв ГО-116, ГО-117) а также введение структурных и химических модификаторов – гидроксилиованного кремнезема, алюмосиликата (Г,С-168ш) или синтетических цеолитов (ГК-35). При этом технология приготовления основывалась на наиболее простой технологии соэкструзии соединений гидрирующих металлов. Сравнение результатов эксплуатации катализаторов ГК-35 и ГС-168ш в промышленности и катализаторов гидрообессеривания первого поколения приведено в таблице 2.1.

Таблица 2.1

Характеристики некоторых катализаторов гидроочистки дизельных фракций.

Показатель

АКМ

АКМ-АНМС

ГК-35

ГС-168ш

Температура процесса, о С

Начальная

Через 800ч

Содержание серы в гидрогенизате, %(масс.)

Степень обессеривания, %

Межрегенерационный пробег

364

395

0,12

85

11

380

406

0,13

84,7

11

362

384

0,1

88,2

24

365

370

0,07

85,9

24

Для процесса гидроочистки был выбран катализатор ГК-35.

Преимущество этого катализатора – увеличение (при равной степени обессеривания) объемной скорости процесса и снижение рабочей температуры. Применение его позволяет снизить начальную температуру обессеривания продукта на 20-23о С, уменьшить скорость повышения температуры на 20-22%, увеличить производительность установки на 10-20% и межрегенерационный период – в 2 раза[10].

2.2 Выбор места строительства

Выбору промышленной площадки предшествуют работы по выполнению технико-экономических обоснований целесообразности строительства завода в заданном районе с учетом наличия сырьевых баз и расстояния от них топливных, энергетических и водных ресурсов, местных строительных материалов и трудовых резервов. После того как установлен пункт для строительства завода, производится выбор участка в пределах выбранной местности.

Выбор участка для завода и поселка входит в общий комплекс проектных работ и утверждается одновременно с проектным заданием.

Для снижения расходов на транспорт сырья площадка для строительства завода должна, как правило, располагаться вблизи сырьевых баз или предприятия, отходы которого используются в качестве сырьевых материалов. Кроме того, ее следует располагать вблизи крупных населенных пунктов, с тем чтобы привлекать местное население в строительство.

Одновременно с выбором площадки решаются вопросы о снабжении намечаемого к строительству завода электроэнергией, водой, а также о присоединении подъездных железнодорожных путей к магистральным путям.

При выборе промышленной площадки одновременно выбирается и площадка для строительства жилого поселка или же отводится территория для строительства жилого и необходимого социально-бытового фонда в существующем поселке или городе. Выбор площадки и ее жилого фонда увязывается с имеющейся или проектируемой планировкой застройки данного промышленного района. При этом предусматривается возможность кооперирования с близлежащими предприятиями как в части объектов производственного значения (общих источников энергоснабжения, водоснабжения, железнодорожных путей, подсобных служб), так и в части объектов культурно-бытового назначения. Помимо указанных выше условий, при выборе площадки должны учитываться следующие положения:

- при взаимном расположении площадки для завода и жилищного поселка следует принимать во внимание направления господствующих ветров т. е. площадка должна быть расположена с наветренной стороны;

- площадка должна иметь относительно ровную поверхность, не требующую большого объема земляных работ, и удобные подъезды железно - дорожных путей;

- грунты должны допускать строительство зданий и сооружений без применения специальных дорогостоящих оснований и не иметь оползней;

- площадка не должна затапливаться ни поверхностными, ни паводковыми водами, а уровень грунтовых вод должен быть по возможности ниже глубины приямков, тоннелей и т. п.;

- при выборе площадки следует предусматривать возможность размещения завода (цеха) в объеме, установленном проектом.

При выборе участков для застройки необходимо предусматривать определенный разрыв между промышленной площадкой и жилым поселком или жилым районом — так называемую санитарно-защитную зону, предохраняющую население окружающей местности от дыма, газов, копоти, пыли и шума.

В зависимости от количества, запыленности и способов улавливания дыма и газов, выбрасываемых в атмосферу промышленными предприятиями, ширина санитарно-защитной зоны устанавливается от 2000 до 50 м. Санитарно-защитная зона обычно застраивается зданиями подсобного и обслуживающего назначения (пожарное депо, гараж, склады, торговые здания и пр.) и озеленяется.

Выбор точки строительства нефтеперерабатывающего завода зависит от ряда факторов, главный из которых – потребность близлежащих районов в нефтепродуктах. Разумеется, желательно, чтобы вблизи завода имелись источники сырья – нефти. В недалеком прошлом именно наличием нефти определялось местонахождение перерабатывающего завода. С течением времени требование о наличии сырьевых ресурсов в непосредственной близости от нефтеперерабатывающего завода престало быть обязательным. Широкое развитие транспорта, в особенности трубопроводного, сделало экономически целесообразной передачу нефти на большие расстояния. Как показал технико-экономический анализ, транспорт нефти более рентабелен, чем перевозка готовых нефтепродуктов с заводов, расположенных вблизи нефтепромыслов, к месту их потребления. Нефтеперерабатывающие заводы начали строить в районах, где совершенно отсутствуют нефтяные месторождения, но очень велика потребность в нефтепродуктах.

Потребностью экономического района в нефтепродуктах того или иного ассортимента определяется в основном и выбор направления переработки нефти на заводе. Качество сырья при этом уже не имеет такого значения, как это было раньше, поскольку разработаны процессы, позволяющие получать большинство нефтепродуктов, в том числе и высокого качества, из любых нефтей[11].

Участок, выбранный для строительства завода, не всегда удовлетворяет всем вышеперечисленным требованиям, Часто он имеет преимущества в одном отношении и недостатки в другом. В таком случае необходимо по возможности использовать все преимущества данного участка и устранить или свести к минимуму недостатки, влияющие на общие условия выполнения генерального плана.

Свой нефтеперерабатывающий завод и цех по гидроочистке дизельного топлива я бы разместила на территории Западного Казахстана, преимущественно в Атырауской области, в связи с тем что в своем дипломном проекте я характеризую тенгизскую нефть. Главным достоинством этого региона является богатая сырьевая база, в него вкладывают свои инвестиции большинство ведущих зарубежных компаний[12], также там имеется много высококвалифицированных кадров.

2.3 Месторождение Тенгиз

В таблице 2.2 указаны некоторые особенности и свойства тенгизской нефти.

Таблица 2.2

Физико-химические показатели нефти

Показатели

Скважина №16

Скважина №38

ρ4 20

Содержание, %:

Общей серы

Меркаптановой серы

Азота

Вязкость кинематическая при 50о С, мм2

Содержание, %:

Смол силикагелевых

Асфальтенов

Ванадия

Никеля

Парафина(с tпл ~60о С)

Фракций до 200о С

Фракций до 350о С

Температура, о С:

Застывания

Вспышки в открытом тигле

Коксуемость, %

Кислотное число, мг КОН на 1г

Содержание хлоридов, мг/л

Зольность, %(масс.)

0,8120

0,570

0,026

-

1,55

2,20

0,09

0,0002

-

4,5

42,3

74,6

-28

-37

0,33

0,01

Менее 40

-

0,8006

0,800

-

0,09

2,51

2,30

0,36

-

-

9,8

37,7

76,4

-35

-28

0,60

0,24

26

0,02

Месторождение Тенгиз расположено на северо-восточном побережье Каспийского моря, в 150км к юго-востоку от города Атырау.

Продуктивные пласты залегают на глубинах 3867-4111м в сложных горно-геологических условиях, связанных с аномально высокими пластовыми давлениями. Граница залежи принята условно на отметке 5100метров. Пластовое давление в пределах разведанной продуктивной зоны изменяется от 81 до 91мПа, пластовая температура – от 107 до 125о С.

По величине запасов нефти месторождение считается уникальным.

Нефть и газ характеризуется аномальным количеством агрессивных компонентов: сероводорода, углекислоты, меркаптановой серы. Содержание сероводорода в попутном газе достигает 20-30 %(масс.), двуокиси углерода 3,7-7,5%(масс.). Специфичность состава нефти и связанная с ней коррозия оборудования определяют необходимость изменения технологии как ее добычи, так и переработки. Ниже в таблице 2.3 представлены некоторые свойства дизельных фракций.

Таблица 2.3

Физико-химические характеристики фракций дизельного топлива.

Показатели

160-350о С

180-350о С

200-300о С

200-350о С

200-360о С

230-360о С

240-350о С

Выход, %

ρ4 20

Фракционный состав, о С, при:

50%

96%

Вязкость при 20о С, мм2

Температура, о С:

Помутнения

Застывания

Вспышки

Содержание, %:

Серы

Н-алканов

Кислотность, мг

КОН на 100мл

Коксуемость 10% остатка, %

Цетановое число

49,0

0,8184

246

342

3,01

-14

-25

72

0,38

-

7,9

0,02

55

43,3

0,8237

255

342

3,67

-13

-23

78

0,41

23

8,2

0,02

54

32,3

0,8171

250

311

3,30

-12

-22

85

0,40

25

6,9

0,03

59

38,7

0,8244

260

342

4,06

-11

-19

88

0,46

26

7,5

0,04

57

40,3

0,8286

263

349

4,23

-10

-18

88

0,46

-

7,9

0,04

53

30,9

0,8361

276

343

5,55

-8

-15

109

0,54

-

6,0

0,03

53

27,2

0,8270

279

344

5,80

-7

-14

119

0,56

-

6,6

0,05

53

Нефть легкая, низкозастывающая, парафинистая, с небольшим содержанием смолисто-асфальтеновых веществ. Ванадия и никеля мало. Содержание фракций до 200, 350 и 490о С очень высокое. Выход бензиновых фракций высокий, октановое число очень низкое(36-41), соответствующее ее углеводородному составу. Содержание серы в бензинах и их кислотность высоки – 0,11-0,17% и 4,1-6,3мг КОН на 100мл соответственно; азот отсутствует. Фракция дизельного топлива по всем показателям соответствует требованиям ГОСТа 305-82 на дизельное топливо Л-0,5-61 (за исключением фракций 230-350 и 240-350о С, которые не соответствуют стандарту по содержанию серы и кислотности), а по температуре помутнения, застывания, вспышки и коксуемости 10% остатка имеют большой запас качества. Высокое содержание н-алканов позволяет рассматривать фракции дизельного топлива как перспективное сырье для производства жидких парафинов.

Характерной чертой тенгизской нефти является значительное содержание в ней меркаптанов. Изучение закономерностей распределения общей и меркаптановой серы по фракциям показало, что содержание общей серы во фракциях, выкипающих до 200о С, для тенгизской нефти значительно выше, чем для западносибирской, в основном за счет меркаптанов. По характеру распределения сернистых соединений в низкокипящих фракциях тенгизская нефть близка к оренбургскому, карачаганакскому, астраханскому меркаптаносодержащим газовым конденсатам.

Распределение меркаптановой серы по фракциям для тенгизской нефти следующее:

Фракция Меркаптановая сера, %

Углеводородный газ С24 0,1-0,25

Н.к.-62о С 0,10-0,15

62-120о С 0,04-0,06

120-240о С 0,05-0,07

180-350о С 0,04-0,05

Значительное содержание меркаптановой серы во фракции 120-240о С. С дальнейшим повышением температуры ее концентрация снижается. Наличие меркаптанов во всех фракциях тенгизской нефти делает необходимой их гидроочистку или меркаптанизацию. Содержание общей серы возрастает по мере повышения температуры выкипания фракций: в бензиновых – от 0,07 до 0,18%, в дизельных – до 0,7%, в тяжелых (350-500 и 500-560о С) – до 1,11 и 1,29 соответственно[13].

2.4 Реактор гидроочистки

Основным оборудованием выбранной технологической схемы является реактор гидроочистки дизельного топлива. Реактор гидроочистки дизельных топлив отличается меньшим отношением высоты аппарата к диаметру и наличием всего двух слоев катализатора (верх­ний высотой 2,6 м и нижний высотой 4,7 м). Верхний слой катализатора засыпается на колосниковую решетку, нижний — на фарфоровые шарики, которыми заполняется сферическая часть нижнего днища.

Сырье, подаваемое через штуцер в верхнем днище, равно­мерно распределяется по всему сечению, затем для задержания механических примесей проходит через фильтрующее устрой­ство, состоящее из сетчатых корзин, погруженных в верхний слой катализатора. Промежутки между корзинами заполнены фарфоровыми шарами.

На рисунке приведена схема устройства реактора гидроочистки дизельных топлив. Он представляет собой цилиндрический вертикальный сосуд с шаровыми днищами. Катализатор загружают в реактор через верхний штуцер, а выгружают через нижний. Во избежание «удара» паров продукта и газа вследствие этого истирания катализатора в верхней части реактора имеется распределительная тарелка. Парогазовая смесь через слой катализатора проходит в аксиальном направлении. Остальная аппаратура, оборудование и контрольно-измерительные приборы установки имеют очень много общего с оборудованием, аппаратурой и приборами, применяемыми на установках для каталитического риформинга.

По окончании процесса гидрирования, длительность которого определяется степенью падения активности катализатора, один из блоков установки переводят на регенерацию катализатора – выжег отложившихся на катализаторе кокса и серы. Оба блока имеют общую систему регенерации, которая рассчитана на регенерацию катализатора с одного блока.

На каждом нефтеперерабатывающем заводе имеются инструкции по пуску, эксплуатации и остановки установки. На установках для гидроочистки много такого же оборудования, как на других, уже описанных установках. Остановимся на особенностях пуска установки для гидроочистки на примере одной из них.

Загрузка катализатора. Катализатор перед загрузкой просеивают на сите с ячейками 3*3мм для отделения мелочи. Загружают катализатор через брезентовый рукав, опущенный до уровня загружаемой тарелки; по мере загрузки рукав поднимают для уменьшения механического разрушения гранул катализатора.

С этой же целью в нижней части аппарата перед загрузкой катализатора размещают слой фарфоровых шариков; такими же шариками покрывают верхний слой катализатора (после его загрузки в реактор).

Прием инертного газа. После заполнения системы инертным газом (по инструкции) поднимают давление до 30-32 кгс/см2 , затем включают центробежный компрессор и налаживают циркуляцию инертного газа. Одновременно производят отдув части его по линии сброса в линию топочного газа до тех пор, пока содержание кислорода в циркулирующим газе будет не более 0,3% (объемн.).

Затем проверяют на проходимость аварийные линии установки, а также факельную линию, по которой подается газ для снятия тепла в реакторе, тем же инертным газом. При этом устраняют все замеченные дефекты в системе.

Если выявится необходимость в прокалке катализатора, то повышают температуру газо-воздушной смеси до 550-5600 С (на выходе из печи) и концентрацию кислорода до 1,5%[14]. Реактор установки гидроочистки работает в условиях химической и электрохимической коррозии, а также механического износа металла аппаратов катализатором.


Химическая коррозия реак­тора обусловлена содержанием в высокотемпературных газо­вых потоках сероводорода и водорода, а электрохимическая коррозия — содержанием в циркулирующих дымовых газах регенерации паров воды и диоксида серы. На рисунке 2.1 изображен реактор гидроочистки.

1-корпус; 2-стаканы распределительной тарелки; 3-распределительная тарелка; 4-фарфоровые шары; 5-корзина; 6-монтажный штуцер; 7-колосниковая решетка; 8-коллектор пара; 9-опорное кольцо; 10-опора; 11-сетка дренажной трубы; 12-выгрузка катализатора; 13-штуцера для термопар.

Рисунок 2.1. Реактор гидроочистки дизельного топлива.

Сероводородная коррозия металла аппаратов реакторного блока установок тем сильнее, чем больше концентрация серы в сырье и чем выше содержание се­роводорода в циркулирующем газе. Водород, циркулирующий в сис­теме реакторного блока, вызывает межкристаллитную коррозию ме­талла, сопровождающуюся сниже­нием его прочности и увеличением хрупкости. Межкристаллитное рас­трескивание, образование раковин и вздутий в металле оборудования под действием водорода усиливают­ся при повышении температуры и давления в системе.

Сульфидная коррозия практически протекает очень медлен­но, однако продукты коррозии засоряют катализатор, забива­ют поры между таблетками, а также трубы теплообменников, что нарушает технологический режим процесса гидроочистки, ухудшает теплопередачу и приводит к недопустимому возрастанию гидравлического со­противления. По возникновению большого перепада давления между входом в реактор и выходом из него часто судят о сте­пени сульфидной коррозии.

Реактор и катализатор засоряются также из-за присутствия в газовых потоках кислорода, хлоридов и азотсодержащих соединений. Кислород способствует окислению сернистых сое­динений, поэтому его концентрация в циркулирующем газе должна быть ограничена (0,0002—0,0006%). Хлориды и азотсо­держащие соединения при взаимодействии с водородом образу­ют соответственно хлористый водород и аммиак, которые, свя­зываясь, превращаются в хлорид аммония, выпадающий в виде осадка. Осадок удаляют периодической промывкой, для чего в процессе эксплуатации установки по ходу продуктов реакции от реактора до сепаратора в систему впрыскивают воду. Про­мывку продолжают до тех пор, пока перепад давления не уменьшится до значения, определенного технологической картой.

2.5 Технологическая схема гидроочистки дизельного топлива

На рисунке 2.2 изображена выбранная технологическая схема гидроочистки.

1,15,19,21-насосы; 2-трубчатая печь; 3-реактор; 4-6,10-теплообменники; 7,12,14-аппараты воздушного охлаждения; 8-водяной холодильник; 9,13,17,20-сепараторы; 11-стабилизационная колонна; 16-центробежный компрессор; 18,22-абсорберы.

Рисунок 2.2. Технологическая схема установки гидроочистки

Установка, предназначенная для гидроочистки дистиллята дизельного топлива, технологическая схема которой приведена на рисунке, включает реакторный блок, состоящий из печи и одного реактора, системы стабилизации гидроочищенного продукта, удаления сероводорода из циркуляционного газа, а также промывки от сероводорода дистиллята. Процесс проводится в стационарном слое алюмо-кобальтмолибденового катализатора.

Сырье, подаваемое насосом 1 смешивается с водородсодержащим газом, нагнетаемым компрессо­ром 16. После нагрева в теплообменниках 6 и 4 и в змеевике трубчатой печи 2 смесь при темпера­туре 380—425°С поступает в реактор 3. Разность температур на входе в реактор и выходе из него не должна превышать 10°С.

Продукты реакции охлаждаются в теплообмен­никах 4, 5 и 6 до 160°С, нагревая одновременно газосырьевую смесь, а также сырье для стабилизационной колонны. Дальнейшее охлаждение газо­продуктовой смеси осуществляется в аппарате воздушного охлаждения 7, а доохлаждение (примерно до 38°С) — в водяном холодильнике 8.

Нестабильный гидрогенизат отделяется от цир­куляционного газа в сепараторе высокого давле­ния 9. Из сепаратора гидрогенизат выводится снизу, проходит теплообменник 10, где нагревается примерно до 240°С, а затем — теплообменник 5 и поступает в стабилизационную колонну 11.

На некоторых установках проводится высокотем­пературная сепарация газопродуктовой смеси. В этом случае смесь разделяется при температуре 210—230°С в горячем сепараторе высокого давле­ния; уходящая из сепаратора жидкость поступает в стабилизационную колонну, а газы и пары — в ап­парат воздушного охлаждения. Образовавшийся конденсат отделяется от газов в холодном сепараторе и направляется также в стабилизационную колон­ну[15].

Циркуляционный водородсодержащий газ после очистки в абсорбере 18 от сероводорода водным рас­твором моноэтаноламина возвращается компрессо­ром 16 в систему.

В низ колонны 11 вводится водяной пар. Пары бензина, газ и водяной пар по выходе из колонны при температуре около 135°С поступают в аппарат воз­душного охлаждения 12, и газожидкостная смесь разделяется далее в сепараторе 13. Бензин из се­паратора 13 насосом 15 подается на верх колонны // в качестве орошения, а балансовое его количество выводится с установки. Углеводородные газы очи­щаются от сероводорода в абсорбере 22.

Гидроочищенный продукт, уходящий с низа ко­лонны 11, охлаждается последовательно в тепло­обменнике 10, аппарате воздушного охлаждения 14 и с температурой 50о С выводится с установки.

На установке имеется система для регенерации катализатора (выжиг кокса) газовоздушной смесью при давлении 2—4 МПа и температуре 400—550°С. После регенерации катализатор прокаливается при 550°С и 2 МПа газовоздушной смесью, а затем си­стема продувается инертным газом[16].

2.6 Абсорбер очистки циркуляционного газа установки гидроочистки

В качестве вспомогательного оборудования был выбран абсорбер установки гидроочистки. Процесс абсорбции состоит в избирательном поглощении жид­костью (абсорбентом) целевых составных частей исходной га­зовой смеси. Абсорбцию применяют для разделения, очистки и осушки различных углеводородных газов, извлечения бензи­на и пропан-пропиленовой фракции из естественных и попутных газов и т. д. Процесс абсорбции протекает тогда, когда парциальное давление или концентрация извлекаемого компонента в газовой смеси больше, чем в жидкости (абсорбенте). Чем больше эта разность, тем интенсивнее переход компонента из газовой смеси в жидкость. Когда парциальное давление или концентрация компонента в жидкости больше, чем в газовой смеси, происходит десорбция — выделение растворенного газа из раствора.

Абсорберы и десорберы работают попар­но. В некоторых случаях абсорбцию и де­сорбцию осуществляют последовательно в одном и том же аппарате. Конструкции аб­сорберов и десорберов, представляющих со­бой цилиндрические вертикальные аппараты, отличаются большим разнообразием и за­висят от конкретного технологического про­цесса. Колонна ра­ботает при давлении 0,3—4 МПа. В качестве абсорбента применяют масла или другие нефтепродукты. Степень извлечения компо­нента из газовой смеси зависит от основных параметров процесса абсорбции — давления, температуры, числа тарелок в колонне и рас­хода абсорбента.


Этот аппарат служит для удаления сероводорода и водяных паров из циркуляцион­ных газов. На рисунке приведена схема абсорбера установки гидроочистки. Он представляет собой колонну диаметром 3 м, высотой 20 м, снабженную одной глухой тарелкой 4 и тринад­цатью барботажными тарелками 8 из S-образных элементов (рисунок 2.3).

1-вывод конденсата; 2-сливная труба; 3- ситчатый каплеотбойник; 4- глухая тарелка; 5 - вывод раствора; 6-газовая труба; 7- отбойная шляпка; 8-барботажная тарелка; 9-ввод абсорбента; 10- отбойник-сепаратор; 11-верхний каплеуловитель; 12-выход газа; 13-ввод газа.

Рисунок 2.3. Абсорбер очистки циркуляционного газа уста­новки гидроочистки

Газ по штуцеру 13 поступает в нижнюю часть абсорбера под вертикальный ситчатый каплеотбойник 3 и, отделившись от конденсата, который стекает по сливной трубе 2 и далее от­водится через штуцер 1 на десорбцию, попадает под глухую та­релку 4. С глухой тарелки, снабженной трубами 6 и отбойными шляпками 7 для прохода газов, насыщенный абсорбент и конденсат газа отводятся по штуцеру 5. Постепенное насыще­ние абсорбента целевым компонентом происходит на барботажных тарелках 8. Абсорбент подают в колонну по штуцеру 9. Очищенная газовая смесь покидает колонну через штуцер 12, предварительно пройдя отбойник-сепаратор 10 и верхний каплеуловитель 11.

Многие абсорберы снабжены насадочными каскадными та­релками.

3 Расчетный раздел

3.1 Исходные данные

а) Производительность по сырью:

G=2,1млн.т/год;

б) Характеристика сырья:

Фракционный состав 200-350о С

ρ0 =0,8244г/см3

Содержание серы So =0,49%, в том числе меркаптановой серы Sм =0,04%, сульфидной Sc =0,24%, дисульфидной Sд =0,05% и тиофеновой Sт =0,16%

Содержание непредельных углеводородов 10%(масс.) на сырье;

в) Остаточное содержание серы в очищенном дизельном топливе Sк <0,05%(масс.), т.е. степень гидрообессеривания 90%;

г) Гидроочистка производится на алюмокобальтмолибденовом катализаторе при Р=4МПа, при кратности циркуляции водородсодержащего газа к сырью æ=200нм33 [17];

д) Кинетические константы процесса: k0 =4,62∙106 , Е=67040 кДж/моль, n=2.

Расчет выхода гидроочищенного топлива Вдт %(масс.)на исходное сырье равен:

Вдт =100-Вбг -∆S,

где Вб - выход бензина, %(масс.);

Вг - выход газа, %(масс.);

∆S-количество удаленной из сырья серы, %(масс.)

В 100кг сырья содержится 0,49 кг серы.

Бензин и газ образуются преимущественно при гидрогенолизе сернистых соединений. При средней Мr =209, в 100кг сырья содержится 100/209=0,48 кмоль.

0,49кг серы содержат 0,49/32=0,015кмоль серы, т.е. содержание молекулы составляют (0,015/0,48)∙100%=3,1%общго числа молекул. Если принять равномерное распределение атомов серы по длине углеводородной цепочки, то при гидрогенолизе сераорганических соединений с разрывом у атомов серы выход бензина и газа составит:

Вб =∆S=0,44%(масс.)

∆S=So -Sк

Вr =0,3∆S=0,3∙0,44=0,132%(масс.)

Тогда выход дизельного топлива будет равен:

Вдт =100-0,44-0,132-0,44=98,99%(масс.)

Полученная величина в дальнейших расчетах уточняется после определения количества водорода, вошедшего в состав дизельного топлива при гидрогенолизе сернистых соединений и гидрировании непредельных углеводородов. Полученные значения выхода газа, бензина и дизельного топлива далее будут использованы при составлении материального баланса установки и реактора гидроочистки.

Водород в процессе гидроочистки расходуется на: гидрогенолиз сераорганических соединений, гидрирование непредельных углеводородов, потери водорода с отходящими потоками (отдувом и жидким гидрогенизатом). Расход водорода на гидрогенолиз сераорганических соединений можно найти по формуле:

G1 =m∆S,

где G1 -расход 100%-го водорода, %(масс.) на сырье;

∆S-количество серы, удаляемое при гидроочистке, %(масс.) на сырье;

m-коэффициент, зависящий от характера сернистых соединений.

Значение m для свободной серы равно 0,0625, для меркаптанов – 0,062, дисульфидов – 0,0938, тиофенов – 0,250 и бензотиофенов – 0,187.

Наиболее стабильны при гидроочиске тиофеновые соединения, поэтому при расчете принимаем, что вся остаточная сера (0,05%(масс.) на сырье) в гидрогенолизате тиофеновая, а остальные сераорганические соединения полностью разлагаются.

При этом получаем:

G1 =Sм ∙mм +Sc ∙mc +Sд ∙mд +(Sт -Sк )mт =0,04∙0,062+0,24∙0,125+0,05∙0,0938+(0,16-0,05)∙0,250=0,0024+0,03+0,0046+0,0275=0,0645

Расход водорода на гидрирование непредельных углеводородов равен:

G2 =2∆Gh /M,

где G2 -расход 100% водорода %(масс.) на сырье,

М-средняя молекулярная масса сырья;

Gh -разность содержания непредельных углеводородов в сырье и гидрогенизате, %(масс.) на сырье, считая на моноолефины.

Среднюю молекулярную массу сырья рассчитаем по следующей формуле:

М=44,29∙d15 15 /(1,03- d15 15 )

М=44,29∙0,8244/1,03-0,8244=36,51/0,2059=177,6.

Принимая, что степень гидрирования непредельных углеводородов (10%) и гидрогенолиза сернистых соединений одинакова:

G2 =2∙10∙0,9/177,6=0,101

Мольную долю водорода, растворенного в гидрогенизате, можно рассчитывать из условий фазового равновесия в газосепараторе высокого давления:

Х′н2 =Y′н2р ,

где Х′н2 и Y′н2 – мольные доли водорода в паровой и жидких фазах;

Кр – константа фазового равновесия (для газосепаратора высокого давления при 40о С, Кр =30.

Х′н2 =0,8/30=0,027

Потери водорода от растворения в гидрогенизате G3 =(%масс.) на сырье составляют:

G3 = Х′н2 ∙Мн2 ∙100/ Х′н2 ∙Мн2 +(1- Х′н2 )∙М

G3 =0,027∙2-100/0,027∙2+(1-0,027)∙177,6=5,4/0,054+172,8=0,031%(масс.)

Кроме этих потерь имеют место потери водорода за счет деформации водорода через стенки аппаратов и утечки через неплотности, так называемые механические потери. Механические потери G4 (%масс.) на сырье равны:

G4 =æ∙0,01∙Мн2 ∙100/(ρ0 ∙22,4),

где æ - кратность циркуляции водородсодержащего газа, нм33 ;

ρ0 – плотность сырья, кг/м3 .

G4 =200∙0,01∙2∙100/(824,4∙22,4)=0,022%(масс.)

Потери водорода с отдувом.

На установки гидроочистки обычно подается водородсодержащий газ (ВСГ) с установок каталитического риформинга, в котором содержание концентрации водорода колеблется от 70 до 85%(об.)

Состав водородсодержащего газа, при производстве автомобильного бензина с октановым числом 85:

Содержание компонента Н2 СН4 С2 Н6 С3 Н8 ∑С4 Н10

%(об.) 85,0 7,0 5,0 2,0 1,0

%(масс.) 29,4 19,4 26,0 15,2 10,0

Объемный баланс по водороду и углеводородным газам записывают в следующем виде:

V0 ∙y′0 =Vp +Vотд ∙у′,

V0 ∙(1-y′0 )+Vг.к =Va +Vотд (1-у′),

где V0 ,Vг.к ,Va ,Vотд , Vp – объемы свежего ВСГ, химически реагирующего и сорбируемого гидрогенизатом водорода, отдува, газов гидрокрекинга и газов, абсорбируемых жидким гидрогенизатом, м3 /ч;

у′0 , у′ - объемные концентрации водорода в свежем и циркулирующем ВСГ.

Решением этой системы уравнений получаем объем газов отдува:

Vотд =Vp ∙((1- у′0 )+Vг.к -Va )∙y′0 /( y′0 -y′)

Объем водорода в отдуваемом газе равен Vотд ∙у′. Тогда общий расход водорода с учетом газа отдува составит:

Vотд +Vp = Vp ∙[1+((1-y′0 )∙y′0 / y′0 -y′)]+( Vг.к - Va )∙( y′0 -y′/ y′0 -y′)

Расчет ведем на 100кг, так как при этом абсолютные значения расходных показателей (в%масс.) можно использовать с размерностью кг:

Vp =0,387∙22,4/2=4,34м3

Vг.к =0,54∙22,4/Мг.к =0,54∙22,4/37=0,327м3

Содержание отдельных компонентов в циркулирующем газе константы фазового равновесия в условиях газосепаратора высокого давления (400 Си 0,5МПа)приведен ниже:

С1 С2 С3 С4

Содержание компонента уi , мольные доли 0,2 0,05 0,02 0,01

Константа фазового равновесия Кpi 3,85 1,2 0,47 0,18

Количество абсорбируемого компонента i в кг на 100кг гидрогенизата:

gi =xi ∙Mi ∙100/Mr

Количество абсорбируемого компонента i (υi , м3 на 100кг гидрогенизата) составляет:

υi =gi ∙22,4/Mi =xi ∙ Mi ∙100/Mr∙22,4/Mi = xi ∙100∙22,4/Mr

x′i =y′i /Kpi

Подставляя для каждого компонента соответствующие данные, получим объем компонента, растворенного в гидрогенизате:

V1 =Vметана =yметана /Kpiметана ∙100∙22,4/Mr=0,2/3,85∙100∙22,4/177,6=0,655м3

V2 =Vэтана =yэтана /Kpiэтана ∙2240/Mr=0,05∙22,4/1,2∙177,6=0,526м3

V3 =Vпропана =yпропана /Kpiпропана ∙2240/Mr=0,02∙2240/0,47∙177,6=0,526м3

V4 =Vбутана =yбутана /Kpiбутана ∙2240/Mr=0,01∙2240/0,18∙177,6=0,700м3

Суммарный объем абсорбированных газов будет равен:

∑Vi=Vметана +Vэтана +Vпропана +Vбутана

∑Vi=0,655+0,525+0,537+0,700=2,48м3

Балансовый объем углеводородных газов определяем по формуле:

V0 ∙(1-y′0 )+Vг.к ≤Va

4,34∙(1-0,855)+0.327≈0,98<Va

Так как равенство выполняется, возможна работа без отдува части циркулирующего водородсодержащего газа (ЦВСГ). Таким образом, общий расход водорода в процессе гидроочистки будет складываться из водорода, поглощаемого при химической реакции, абсорбируемого в газосепараторе высокого давления и механически теряемого.

Gводорода =G1 +G2 +G3 +G4 =0,0645+0,101+0,031+0,022=0,219%(масс.)

Расход свежего ВСГ на гидроочистку равен:

Go водорода =Gводорода /0,29=0,219/0,29=0,755%(масс.),

где 0,29-содержание водорода в свежем ВСГ, %(масс.)

3.2 Материальный баланс установки

На основании полученных данных составляем материальный баланс установки (таблица 3.1).

Вначале рассчитываем выход сероводорода:

Bсероводорода =∆S∙Mсероводорода /Ms =0,44∙34/32=0,468%(масс.)

Таким образом, балансовым сероводородом поглощается 0,468-0,44=0,028%(масс.) водорода.

Количество водорода вошедшего при гидрировании в состав дизельного топлива равно:

G1 +G2 -0,028=0,0645+0,101-0,028=0,138%(масс.)

Уточненный выход гидроочищенного дизельного топлива, равен:

98,99+0,138=99,13%

Выход сухого газа, выводимого с установки, складывается из углеводородных газов, поступающих со свежим ВСГ, газов, образующихся при гидрогенолизе, а также абсорбированного гидрогенизатом водорода:

Вс.г =0,755∙(1-0,29)+0,132+0,031=0,536+0,132+0,031=0,699%(масс.)

Таблица 3.1

Материальный баланс установки

Наименование потоков

%(масс.)

Т/год

Т/сутки

Кг/ч

Взято:

Дизельное топливо

(неочищенное)

ВСГ,

в том числе 100% водород

100

0,755

0,219

2100000

15855

4599

6562,5

49,55

14,37

273437,5

2064,6

598,8

Итого

100,75

2115855

6612,05

275502,1

Получено:

Дизельное топливо

(очищенное)

Сероводород

Сухой газ

Бензин

99,13%

0,468

0,72

0,44

2081730

9828

15120

9240

6505,40

30,71

47,25

28,88

271058,6

1279,6

1968,8

1203,3

Итого

100,75

2115918

6612,2

275510

3.3 Материальный баланс реактора

В реактор поступает сырье, свежий водородсодержащий газ и циркулирующий водородсодержащий газ (ЦВСГ):

Состав ВСГ:

Н2 СН4 С2 Н6 С3 Н8 С4 Н10

Мольная доля у′ 0,720 0,200 0,050 0,020 0,010

Массовая доля у 0,192 0,427 0,201 0,103 0,077

Средняя молекулярная масса ЦВСГ Мц равна:

Мц =∑Мi y′i

Мц =2∙0,720+16∙0,2+30∙0,05+44∙0,02+58∙0,01=7,6кг/кмоль

Расход ЦВСГ на 100кг сырья Gц можно найти по формуле:

Gц =100∙æ∙Мцс ∙22,4=100∙200∙7,6/824,4∙22,4=8,23кг

Составляем материальный баланс реактора гидроочистки (таблица 3.2).

Таблица 3.2

Материальный баланс реактора

 

 

 

Наименование потоков

%(масс.)

Кг/т

Взято:

Сырье

Свежий водородсодержащий газ

ЦВСГ

100

0,755

273437,5

2064,6

Итого

108,99

298006